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Abstract

Background: Enriching chicken with docosahexaenoic acid (DHA) and calcidiol may be used to improve public
nutrition and health. It remains unclear if superanutritional levels of DHA and calcidiol impair growth or metabolism
of broiler chickens. The aim of the study was to determine singular and combined effects of high levels of
supplemental DHA-rich microalgal biomass or oil and calcidiol on growth performance, plasma and tissue lipid
profiles, and bone characteristics of broiler chickens.

Methods: In Experiment 1, 144 day-old Cornish chicks were divided into 4 groups (6 cages/treatment, 6 birds/cage),
and were fed a corn-soybean meal basal diet (BD), BD + 10000 IU calcidiol/kg (BD+Cal), BD + 1% DHA-rich
Aurantiochytrium(1.2 g DHA/kg; BD+DHA), and BD+Cal+DHA for 6 wk. In Experiment 2, 180 day-old chicks were
divided into 5 groups (6 cages/treatment, 6 birds/cage), and were fed: BD, BD+ DHA (oil, 1.5 to 3.0 g DHA/kg), BD +
DHA + EPA (eicosapentaenoic acid, 0.3 to 0.6 g/kg), BD+DHA+ calcidiol (6,000 to 12000 IU/kg diet), and
BD+DHA+EPA+Cal for 6 wk. Growth performance, concentrations of triglyceride, cholesterol, and nonesterifed fatty
acids in plasma, liver, breast, and thigh, and biophysical properties of tibia were determined.

Results: Birds fed BD+Cal diet in Experiment 1 and BD+DHA+EPA diet in Experiment 2 had higher (P < 0.05 body
weight gain (10-11%) and gain: feed ratio (7%), and lower (P < 0.05) total cholesterol and triglyceride concentrations
in plasma (18-54%), liver (8-26%), breast (19-26%), and thigh (10-19%), respectively, over the controls. The two diets
also improved (P < 0.05) tibial breaking strength (8-24%), total bone volume (2-13%), and(or) bone mineral density
(3-19%) of chickens.

Conclusion: Superanutrition of dietary calcidiol and DHA alone or together did not produce adverse effects, but
improved growth performance, lipid profiles of plasma and muscle, and bone health of broiler chickens.

Background

Biofortifications of chicken with omega-3 fatty acids in particular DHA, and calcidiol have been viewed as an
effective strategy to produce health-promoting meat for human consumption [1, 2]. Earlier studies with relatively low
to moderate inclusion levels of DHA-rich microalgal biomass or oil (0.55 to 2.55 g DHA/kg diet) and calcidiol (1600
to 2800 IU/kg diet) in broiler diets demonstrated no negative effects on growth performance, lipid profile of tissues,
or bone strength [3-7]. In contrast, high inclusion levels of DHA-rich microalgal biomass (4.9 and 6.8 g DHA/kg diet)
and calcidiol (27600 IU/kg diet) in broiler diets decreased growth performance by 19% and breast muscle weight by
21% [8-10]. Past studies were focused on fortifying chicken with DHA and calcidiol singularly [1, 4, 11]. Little
research was attempted to enrich chicken simultaneously with these two nutrients or to look out for potential
adverse effects of extremely high supplementations of these two nutrients together on growth performance, lipid
metabolism, and bone integrity of chickens.

To fill in the gap of knowledge, we conducted two experiments to examine those effects of supplementing high
levels of these two bioactive nutrients in broiler chickens. In the first experiment, DHA-rich Aurantiochytrium sp
biomass was used as the source of DHA (Tolba et al., 2019). In the subsequent experiment, a DHA-rich microalgal
oil was the source of DHA, along with EPA-rich Nannochloropsis sp CO18 biomass. In both experiments, a feed
grade of synthetic calcidiol was used as the source of bioactive (OH)24 vitamin D3.

Materials And Methods
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Animal, diets, and management

Our animal protocols were approved by the Cornell University Institutional Animal Care and Use Committee. DHA-
rich microalgal Aurantiochytrium biomass and oil were provided by Heliae (Gilbert, AZ) and ADM (Decatur, IL),
respectively. EPA-rich Nannochloropsis sp CO18 and calcidiol were provided by Duke University (Beaufort, NC) and
DSM (Parsippany, NJ), respectively. In Experiment 1, Cornish male broiler chicks (day old, total = 144) were
purchased from Moyer’s Chicks (Quakertown, PA) and housed in a temperature-controlled unit at Cornell University
Poultry Research Farm. Chicks were allotted into 4 treatment diets (6 replicates per diet, 6 birds per replicate). Birds
were fed 1 of the 4 diets: a corn-soybean meal basal diet (BD), BD + 10000 IU calcidiol/kg of diet (BD + Cal), BD +1%
DHA-rich microalgal biomass (Aurantiochytrium, 1.2 g DHA/kg diet; BD + DHA), and BD + Cal + DHA.

In Experiment 2, 180 Cornish male broiler chicks were purchased from same supplier as in Experiment 1 and allotted
into 5 treatment diets (6 cages/diet, 6 birds/cage): BD, BD + DHA-rich microalgal oil (1.5 g DHA/kg diet (0.33%) for
0-3 wk and 3.0 g DHA/kg (0.66%) for 4—6 wk; BD + DHA), BD + DHA + EPA rich Nannochloropsis sp CO18 (0.3 g
EPA/kg diet (1.9%) for 0-3 wk and 0.6 g EPA/kg diet (3.8%) for 4-6 wk; BD + DHA + EPA), BD + DHA + Cal (6,000
IU/kg diet for 0-3 wk and 12,000 IU/kg diet for 4-6 wk; BD + DHA + Cal), and BD + DHA + EPA + Cal. All experimental
diets were formulated according to nutrient requirements for broilers by the National Research Council [12].
Compositions of starter and finisher diets used in Experiment 1 and Experiment 2 are presented in Supplemental
Tables 1-4. Both experiments lasted for 42 days, Birds had free access to feed and water and received a lighting
schedule of 22 h light and 2 h dark throughout.

Growth Performance Measures And Sample Collections

During both experiments, body weights of individual birds were recorded at wk 3 and wk 6. Feed disappearance of
cages were recorded weekly to calculate feed intakes. Chicken health and mortality were checked daily. At the end
of wk 3 and wk 6, 2 birds per cage were euthanized via asphyxiation with carbon dioxide. Blood was drawn from

heart puncture by using heparinized needles to prepare plasma samples that were stored at — 20°C until analysis.

Liver, breast, thigh, and tibia samples were removed and stored at -20°C for later analyses.

Laboratory Analyses

Concentrations of non-esterified fatty acids (NEFAs), total cholesterol (TC), triglycerides (TGs), and phospholipids
(PL) in plasma, liver, breast, and thigh samples were determined using commercially available kits (Wako
Chemicals, Richmond, VA) as described in previous studies [13, 14]. In Experiment 1, tibia bone (wk 6)
characteristics were determined using an Instron machine following the protocol described previously by Manor et
al. [15]. Briefly, before measuring tibia bone strength, the soft tissues were removed manually, and bone strength
was measured at the center of the shaft for both tibias and averaged for each bird. Bone strength was measured on
the right tibia with the use of an Instron 5965 (Instron Corp.) equipped with a 5-kN load cell and a cross-head speed
of 20 mm/min. Bluehill 3 Testing Software (Instron Corp.) was used to perform a flexure test with a 38-mm
supported length. Maximum slope, maximum load, and energy to maximum load were recorded for each tibia. In
Experiment 2, characteristics of tibia (wk 6) bone were determined using Micro-CT as per the method described by
Sharma et al. [16]. Briefly, tibia bones were thawed at 4°C and cleaned of all tissues, and analyzed by Skyscan X-ray
microtomography (Bruker MicroCT, Billerica, MA). The X-ray source was set at 75 kV and 133 pA. The pixel size was
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fixed at 25 pm, the rotation angle of 0.4° was applied at each step, and 4 images per rotation were captured. A
series of 2D images were captured, which were later used to reconstruct a 3D image using N-Recon (Brucker
MicroCT, Billerica, MA). Microtomography was performed on the distal epiphyses of the tibia, and a part of the distal
supracondylar region was selected as a volume of interest wherein all bone sections (cortical bone and trabecular
bone) were present. Percentage bone volume and bone mineral density (BMD) were measured from the whole total
volume of interest, cortical bone, and trabecular bone sections. From trabecula bone, trabecular thickness,
trabecular separation, and degree of anisotropy were also measured.

Statistical analysis

Data from Experiments 1 and 2 were analyzed by two-way (2 by 2 factorial arrangement of treatments) and one-
way analysis of variance (ANOVA) using a completely randomized design, respectively. Data were presented as
mean + SEM and P< 0.05 was assumed to be statistically significant. The means of different experimental groups
were compared using Duncan’s multiple range test. Pen served as an experimental unit (n = 6).

Results
Growth performance

In Experiment 1, there was no difference in the body weight gain (BWG) or feed intake of chicks among the 4
treatment diets at wk 3 (Supplemental Table 5). Compared with those fed the BD, birds fed the BD + Cal diet had
11% higher (P<0.05) BWG, and 7% higher (P< 0.05) gain: feed ratio at wk 6 (Table 1). Birds fed BD + DHA had 6%
higher BWG and 8% higher feed intake (8%) compared to those fed the BD alone, but the differences were not
statistically significant. Moreover, birds fed BD + Cal + DHA also showed non-significantly higher BWG (9%) and feed
intake (12%) compared with birds fed BD alone at wk 6 (Table 1).

In Experiment 2, birds fed BD + DHA + EPA had 17-27% higher BWG and 6—25% higher gain: feed ratio than those
fed the other diets at wk 3, but the differences were not statistically significant (Supplemental Table 5). Compared
with birds fed the BD, birds fed the BD + DHA + EPA diet had 10% higher (P< 0.05) BWG and 14% higher (P<0.05)
feed intake at wk 6 (Table 1). Birds fed the BD + DHA diet had 3% higher BWG and gain: feed ratio, compared to
birds fed BD alone, but the differences were not statistically significant (Table 1). Moreover, birds fed BD + DHA +
EPA + Cal had 3% higher (P>0.05) BWG and 15% higher (P< 0.05) feed intake, compared with those fed BD. Further,
no difference in the BWG, feed intake, or gain: feed ratio was shown in birds fed BD + DHA + Cal, compared with
those fed BD (Table 1).

Tibia Bone Health

In Experiment 1, tibia from birds fed BD + Cal had 8—24% greater (P< 0.05) breaking strength (energy) than that of
birds fed the other diets at wk 6 (Table 5). However, there was no difference in other measured variables among the
4 treatment diets. In Experiment 2, birds fed BD + DHA + Cal had 3-19% higher (P<0.05) BMD and 2-13% higher
total bone volume compared with birds fed the other diets at wk 6 (Table 6). Diets produced no significant effects
on other measured variables including cortical BMD, cortical percentage bone volume, trabecular BMD, trabecular
percentage bone volume, trabecular thickness, trabecular separation, or degree of anisotropy.
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Discussion

In Experiment 1, broilers fed the BD + Cal diet had a higher BWG and gain: feed ratio compared with birds fed the BD
at wk 6. This result is consistent with previous studies in which supplemented calcidiol improved BWG and feed
efficiency [17, 18]. Supplemental cholecalciferol in broiler diets also increased BWG [19]. However, we supplemented
the broiler diet with a much higher level of calcidiol i.e. 10000 1U/kg compared with the NRC recommendation of
200 IU/kg. The supplementation-resultant improvements in the growth and feed efficiency indicate that a higher
level of calcidiol was not only well tolerated by the broilers but also beneficial to their metabolism and growth of
chickens. In contrast, Chou et al. [20] reported that calcidiol as a source of cholecalciferol did not improve BWG or
feed efficiency in broilers. Furthermore, combined doses of calcidiol and DHA-rich microalgae biomass did not
produce any negative effects on growth performance of chickens.

In Experiment 2, birds fed BD + DHA + EPA had better BWG, and feed intake compared with birds fed BD. These
results agreed with Long et al. [5] and Ribeiro et al. [21] who found no negative effect but improved BWG and feed
conversion ratio in broiler chickens after feeding them with a high dose of DHA-rich microalgae biomass. The
positive growth performance in birds fed BD + DHA + EPA could be associated with the positive effect of EPA and
DHA on feed consumption and muscle protein synthesis [22, 23]. Moreover, DHA-rich microalgal oil in a singular
dose level orin a combined dose with calcidiol did not produce any negative effect on body weight gain or feed
efficiency of broilers.

In this study, we observed metabolic effects of supplemental microalgal DHA and calcidiol on lipid profiles of
plasma and tissues of broiler chickens. In Experiment 1, birds fed BD + Cal showed lower plasma cholesterol levels
at wk 6 than those fed BD. Decreased cholesterol level was in the accordance with previous studies where calcidiol
supplementation reduced plasma cholesterol levels by inhibiting activity of HMG-CoA reductase enzyme [24, 25]. In
addition, DHA-rich microalgae biomass either fed alone or in combination with calcidiol did not produce any
negative effect on bird's plasma lipid profile. In Experiment 2, the addition of DHA-rich microalgal oil did not cause
any negative effect on plasma and tissue lipid profile. Instead, a combined supplementation of DHA and EPA
reduced TC, TG, and (or) NEFAs in the plasma liver, breast, and(or) thigh tissues. These results are consistent with
previous findings where DHA supplementation reduced cholesterol biosynthesis and TGs levels by inhibiting
squalene epoxidase enzyme [26, 27] and by reducing very low-density lipoprotein (VLDL) synthesis and secretion [5,
28, 29], respectively.

In Experiment 1, birds fed BD + Cal diet, showed high energy at maximum load for tibia bone, which indicated
greater tibia bone strength. These results are consistent with earlier reports where higher doses of calcidiol in the
poultry diet had a positive effect on tibia bone development and integrity in birds [3, 30]. In addition, DHA-rich
microalgae biomass either fed alone or in combination with calcidiol did not negatively affect tibia bone
parameters. These results are consistent with previous reports in which DHA supplementation did not cause any
change in bone structural integrity and strength [31-33]. Likewise, in Experiment 2, a high level of DHA-rich
microalgal oil did not cause any negative effects on bone measures. Instead, the combined supplementation of
DHA and calcidiol increased total bone volume and total BMD in birds. A larger bone volume would allow more
space for mineral deposition and a low BMD is usually associated with a high risk of bone fracture [34]. The
improvement in the bone volume and BMD with a combined supplementation of DHA and calcidiol may imply
synergistic effects of DHA and calcidiol on calcium and bone metabolism [35, 36]. Fast-growing broiler chickens are
susceptible to tibial dyschondroplasia (TD) which reduces the stability of leg bones and deteriorates the quality of
meat from the legs [3]. Dietary supplementation of calcidiol as a source of cholecalciferol may be effective in

Page 5/15



reducing the severity of TD. This is because the high dose of calcidiol in our study improved tibia bone strength, but
did not produce any negative effects on growth performance.

Conclusions

In the present study, we determined singular and combined effects of super highly levels of supplemental DHA and
calcidiol on growth performance, plasma and tissue lipid profiles, and biophysical characteristics of tibia in broiler
chickens. Feeding chickens with supernutritional levels of these supplements, much beyond nutrient requirements
of broiler chickens, led to no negative effects on growth performance, tissue lipid profile, or bone health. Instead,
some of the supplementations resulted in moderate beneficial responses of the measures, suggesting that it is safe
to use high levels of dietary DHA and calcidiol supplementation for biofortifying chicken with these bioactive
nutrients.

Abbreviations

BD, basal diet; BMD, bone mineral density; BW, body weight; DHA, docosahexaenoic acid; EPA, eicosapentaenoic
acid; NEFA, non-esterified fatty acid; PL, phospholipids; TC, total cholesterol; TD, tibial dyschondroplasia; TGs,
triglyceride.
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Experiment 1

Parameters
BW 0 day
(g/chick)

BW 0-6 wk
(g/chick)

BWG 0-6
wk
(g/chick)

Fl 0-6 wk
(g/chick)

Gain: Feed

Experiment 2

BW 0 day
(g/chick)

BW 0-6 wk
(g/chick)

BWG 0-6
wk
(g/chick)

Fl1 0-6 wk
(g/chick)

Gain: Feed

BD

41.85

2913.202

2871.342

4860.10°

0.592

BD

42.25

2522.332

2480.082

3875.522

0.642P

BD+Cal

41.77

3232.62P

3190.84P

5050.362P

0.63P

BD+DHA

42.32

2598.922ab

2556.602P

3867.97°

0.66P

BD+DHA

41.80

3084.552b

3042.7582b

5240.202b

0.58?

BD+DHA+EPA

42.39

2774.17°

2731.78P

4413.40P

0.622P

BD+Cal+DHA

41.65

3160.822b

3119.172b

5450.56°

0.572

BD+DHA

+Cal

42.43

2533.252b

2490.822b

4075.902P

0.612b

SEM

0.17

51.20

57.25

115.4

0.008

BD+DHA+EPA+Cal

42.36

2592.92ab

2550.5623P

4474.10b

0.572

value

0.85

<0.01

<0.01

<0.01

<0.01

SEM

0.07

62.82

62.84

121.8

0.02

value

0.64

0.04

0.04

<0.01

0.02

BW: Body weight; BWG: Body weight gain; Fl: Feed intake.

Experiment 1; BD = Corn-soybean basal diet; BD+Cal = BD + 10000 IU calcidiol/Kg of diet; BD+DHA = BD + 1%
microalgal biomass; BD+Cal+DHA = BD+Cal + 1% microalgal biomass.

Experiment 2; 0-3 Wk: BD = Corn-soybean basal diet; BD+DHA= BD + 1.5 g/kg DHA oil; BD+DHA+EPA = BD+DHA +
0.3 g/kg Nannochloropsis sp CO18; BD+DHA+Cal = BD+DHA + 6000 1U/kg calcidiol; BD+DHA+EPA+Cal =
BD+DHA+EPA + 6000 IU/kg calcidiol.

4-6 Wk: BD = Corn-soybean basal diet; BD+DHA= BD + 3.0 g/kg DHA oil; BD+DHA+EPA = BD+DHA + 0.6 g/kg

Nannochloropsis sp CO18; BD+DHA+Cal = BD+DHA + 12000 IU/kg calcidiol; BD+DHA+EPA+Cal = BD+DHA+EPA +
12000 1U/kg calcidiol.

Means bearing the different superscripts (2P) in a row differ significantly (P<0.05).

Data are expressed as means (n = 6 cages and 6 birds/cage) and were analyzed by one-way ANOVA.
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Table 2 Effects of supplementation of calcidiol and DHA-rich microalgal biomass on plasma lipid profile of broiler
chickens in Experiment 1

BD BD+Cal BD+DHA BD+Cal+DHA SEM P-value

Wk 3

TG (mg/dL) 22.48 22.21 25.27 28.07 3.24 0.65
TC (mg/dL) 13317  136.11 13929  129.68 503 0.62
NEFA (umol/mL)  0.21 0.18 0.17 0.16 0.02 0.27
Wk 6

TG (mg/dL) 20.26 2349  21.84 22.52 197 055
TC (mg/dL) 101.16>  77.96  97.76° 100.53° 442 <0.01
NEFA (umol/mL)  0.24 0.24 0.24 0.28 0.03  0.69

NEFA: Non-esterified fatty acid; TC: Total cholesterol; TG: Triglyceride.

BD = Corn-soybean basal diet; BD+Cal = BD + 10000 IU calcidiol/kg of diet; BD+DHA = BD + 1% microalgal biomass;
BD+Cal+DHA = BD+Cal + 1% microalgal biomass.

Means bearing the different superscripts (2P) in a row differ significantly (P<0.05).
Values are expressed as means of 6 birds/treatment and data were analyzed using one-way ANOVA.

Table 3 Effects of supplementation of DHA-rich microalgal oil, EPA-rich microalgal biomass, and calcidiol on
plasma and tissue lipid profile of broiler chickens at wk 3 in Experiment 2
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BD BD+DHA BD+DHA BD+DHA BD+DHA SEM  Pvalue
+EPA +Cal +EPA+Cal

Plasma
PL (mg/dL) 102.28 90.22 91.54 100.57 104.44 6.26 0.48
TG (mg/dL) 31.64 25.51 33.74 25.23 34.95 2.88 0.08
TC (mg/dL) 100.3 103.29 90.64 105.5 106.76 2.50 0.41
NEFA (umol/mL) 219.42  203.65 202.14 229.52 212.39 15.60 0.72
Liver
PL (mg/g tissue) 16.72 14.74 15.20 16.14 15.80 2.42 0.16
TG (mg/g protein) 66.76 70.12 64.81 65.08 70.04 5.17 0.95
TC (mg/g protein) 15.28 14.12 15.02 14.80 14.61 1.14 0.81
NEFA (umol/g protein)  45.34 46.80 4112 41.95 43.44 3.80 0.65
Breast
PL (mg/g tissue) 6.01 4.16 6.12 5.76 6.09 0.44  0.06
TG (mg/g protein) 21.44 21.16 19.30 21.05 20.82 1.36 0.73
TC (mg/g protein) 6.36 6.10 6.53 6.69 6.80 124  0.80
NEFA (umol/g protein)  5.27 512 4.85 4.96 4.79 0.70 0.56
Thigh
PL (mg/g tissue) 3.75 3.25 3.43 3.64 4.34 0.52 0.64
TG (mg/g protein) 23.50 22.14 21.60 23.44 22.40 1.22 0.87
TC (mg/g protein) 4.56 4.60 4.53 4.37 4.32 0.51 0.64
NEFA (umol/g protein)  5.50 5.33 5.06 5.53 5.24 0.83 0.71

BD = Corn-soybean basal diet; BD+DHA= BD + 1.5 g/kg DHA oil; BD+DHA+EPA= BD+DHA + 0.3 g/kg
Nannochloropsis sp CO18; BD+DHA+Cal = BD+DHA + 6000 1U/kg calcidiol; BD+DHA+EPA+Cal = BD+DHA+EPA +
6000 1U/kg calcidiol.

Means bearing no superscripts did not differ significantly (P>0.05).
Values are expressed as means of 6 birds/treatment and data were analyzed using one-way ANOVA.

Table 4 Effects of supplementation of DHA-rich microalgal oil, EPA-rich microalgal biomass, and calcidiol on
plasma and tissue lipid profile of broiler chickens at wk 6 in Experiment 2
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BD BD+DHA BD+DHA BD+DHA BD+DHA SEM Pvalue
+EPA +Cal +EPA+Cal

Plasma
PL (mg/dL) 7892  61.70 67.09 76.26 70.74 450 0.08
TG (mg/dL) 40.37°  27.84% 18722 39.23P 28.77%0 3.76  <0.01
TC (mg/dL) 101.78> 89.57  83.762 90.29%0  79.842 3.53 <001
NEFA (umol/mL) 87.31°  62.017  76.642> 85620 78772 421 <0.01
Liver
PL (mg/g tissue) 14.60 12.31 12.48 14.66 13.65 174 022
TG (mg/g protein) 71.40°  68.16° 58722  70.85°  66.10%  6.12  <0.01
TC (mg/g protein) 14.70 13.30 13.55 14.06 13.57 137 095
NEFA (umol/g protein) ~ 45.98  41.51 34.05 42.14 38.82 310 0.15
Breast
PL (mg/g tissue) 3.60 2.89 3.09 3.38 2.76 019 032
TG (mg/g protein) 23.77°  22.92P 18.07° 23.06°  22.88P 211 0.04
TC (mg/g protein) 5.82 4.61 4.69 5.41 5.59 0.30 0.05
NEFA (umol/g protein)  50gb  467ab 3782 4502 4.443b 091 003
Thigh
PL (mg/g tissue) 3.34 2.47 2.92 2.83 2.56 032 0.12
TG (mg/g protein) 26.62>  24.47%b 21522 24163 239620 216 0.0
TC (mg/g protein) 4.00 3.93 3.63 3.88 3.78 0.11  0.21
NEFA (umol/g protein)  5.18 4.99 4.58 5.07 4.53 1.01  0.90

BD = Corn-soybean basal diet; BD+DHA= BD + 3.0 g/kg DHA oil; BD+DHA+EPA = BD+DHA + 0.6 g/kg
Nannochloropsis sp CO18; BD+DHA+Cal = BD+DHA + 12000 IU/kg calcidiol; BD+DHA+EPA+Cal = BD+DHA+EPA +
12000 1U/kg calcidiol.

Means bearing the different superscripts (2P) in a row differ significantly (P<0.05).
Values are expressed as means of 6 birds/treatment and data were analyzed using one-way ANOVA.

Table 5 Effects of supplementation of calcidiol and DHA-rich microalgal biomass on tibia bone properties of broiler
chickens at wk 6 in Experiment 1
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BD BD+Cal BD+DHA BD+Cal+DHA SEM  Pwvalue
Extension at Maximum Load (mm)  2.13 212 2.06 2.21 0.10 0.79
Energy at Maximum Load (J) 0.472 0.56° 0.442 0.492b 0.04 0.02
Maximum Slope (mm/N) 0.09 0.05 0.05 0.04 0.01 0.06
Maximum Load (N) 500.19 51546  514.46 519.89 31.48 0.97
Maximum Extension (mm) 2.37 2.49 2.44 2.30 0.17 0.14

BD = Corn-soybean basal diet; BD+Cal = BD + 10000 IU calcidiol/kg of diet; BD+DHA = BD + 1% microalgal biomass;
BD+Cal+DHA = BD+Cal + 1% microalgal biomass.

Means bearing the different superscripts (2P) in a row differ significantly (P<0.05).
Values are expressed as means of 6 birds/treatment and data were analyzed using one-way ANOVA.

Table 6 Effects of supplementation of DHA-rich microalgal oil, EPA-rich microalgal biomass, and calcidiol on tibia
bone properties of broiler chickens at wk 6 in Experiment 2
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BD BD+DHA BD+DHA BD+DHA BD+DHA SEM Pvalue
+EPA +Cal +EPA+Cal

Total BMD (g/cm?®)
0.273b  0.262 0.293b 0.31P 0.302b 0.01 0.04

Total Bone Volume (%)
34.09° 33.75° 37.40%>  38.21P 36.172P 1.50 0.04

Cortical BMD (g/cm?®)

0.60 0.58 0.61 0.66 0.65 0.03 0.38
Cortical Bone Volume (%)

99.999 99.999 100.000  99.992 99.999 0.0014 0.20
Trabecular

BMD (g/cm?) 0.10 0.10 0.12 0.10 0.10 0.02 0.94

Trabecular Bone Volume (%)

9.97 10.11 11.36 10.40 9.99 1.44 0.97
Trabecular Thickness (mm)

0.14 0.14 0.15 0.16 0.15 0.01 0.19
Trabecular Separation (mm)

1.20 1.31 1.22 1.24 1.36 0.11 0.52
Degree of Anisotropy

1.70 1.72 1.65 1.66 1.63 0.05 0.72

BD = Corn-soybean basal diet; BD+DHA= BD + 3.0 g/kg DHA oil; BD+DHA+EPA = BD+DHA + 0.6 g/kg
Nannochloropsis sp CO18; BD+DHA+Cal = BD+DHA + 12000 IU/kg calcidiol; BD+DHA+EPA+Cal = BD+DHA+EPA +
12000 1U/kg calcidiol.

BMD = Bone mineral density.

Means bearing the different superscripts (2°) in a row differ significantly (P<0.05).

Values are expressed as means of 6 birds/treatment and data were analyzed using one-way ANOVA.
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