1. Nakabonge G, Matovu B (2021) Variation in susceptibility of Eucalyptus grandis and selected hybrid clones to two termite species Macrotermes bellicosus and M. subhyalinus in Uganda. All Life 14(1):120-126. https://doi.org/10.1080/26895293.2021.1883126
2. Raj A, Jhariya MK, Bargali SS (2016) Bund Based Agroforestry Using Eucalyptus Species: A Review. Curr Agric Res J 4:148–158. doi: https://dx.doi.org/10.12944/carj.4.2.04
3. Xiao MZ, Chen WJ, Cao XF, Chen YY et al (2020) Unmasking the heterogeneity of carbohydrates in heartwood, sapwood, and bark of Eucalyptus. Carbohydr Polym 238:116212. doi: https://doi.org/10.1016/j.carbpol.2020.116212
4. Yu X, Zhou C, Li F, Weng Q, Li M, Yang H et al 2016 A novel set of EST-InDel markers in Eucalyptus L’Hérit.: polymorphisms, cross-species amplification, physical positions and genetic mapping. Mol Breed 36:104. doi: https://doi.org/10.1007/s11032-016-0523-6
5. Sá LCR, Loureiro LMEF, Nunes LJR, Mendes AMM 2020 Torrefaction as a pretreatment technology for chlorine elimination from biomass: A case study using Eucalyptus globulus labill. Resources 9(5):54. doi: https://doi.org/10.3390/RESOURCES9050054
6. Romaní A, Larramendi A, Yáñez R, Cancela Á, Sánchez Á, Teixeira JA et al 2019 Valorization of Eucalyptus nitens bark by organosolv pretreatment for the production of advanced biofuels. Ind Crops Prod 132:327–335. doi: https://doi.org/10.1016/j.indcrop.2019.02.040
7. Silva MFD, Lima PAF, Novaes E, Sette Jr CR, Do Vale AT 2022 Wood energy quality of Eucalyptus spp. Clones established under different soil types in the brazilian cerrado. Canadian Journal of Forest Research 52(5):743-750. doi: https://doi.org/10.1139/cjfr-2021-0234
8. Magalhães WLE, Degenhardt J 2020 New formulation of alcohol gel (MicroCelol) with microfibrillated cellulose (MFC): evaluation in Escherichia coli. Embrapa Florests Technical Communication Embrapa (INFOTECA-E).
9. Mascarenhas ARP, Scatolino MV, dos Santos ADA, Norcino LB, Duarte PJ, de Melo RR, Tonoli GHD 2022 Hydroxypropyl methylcellulose films reinforced with cellulose micro/nanofibrils: study of physical, optical, surface, barrier and mechanical properties. Nordic Pulp & Paper Research Journal 37(2):366-384. doi: https://doi.org/10.1515/npprj-2022-0006
10. Paine TD, Millar JG, Daane KM 2010 Accumulation of pest insects on eucalyptus in California: Random process or smoking gun. J Econ Entomol 103:1943–1949. doi: https://doi.org/10.1603/EC10214
11. Mansfield S 2016 New Communities on Eucalypts Grown Outside Australia. Front Plant Sci 7:1812. doi: https://doi.org/10.3389/fpls.2016.01812
12. Huang ZY, Liu ZJ, Wang XY, Zhang ZL, Lu W, Zheng XL 2022 Electroantennographic and olfactory responses of Quadrastichus mendeli to eucalyptus volatiles induced by the gall‐forming insect Leptocybe invasa. Pest Management Science. doi: https://doi.org/10.1002/ps.6869
13. Rinaldi DAMF, Barbosa LR, Wilcken CF, Zaché B, Araújo MM, Carvalho RCZ 2013 Ocorrência de Leptocybe invasa (Hymenoptera: Eulophidae) em mudas de eucalipto no estado do Paraná. Pesqui Florest Bras 33:327–330. doi: https://doi.org/10.4336/2013.pfb.33.75.400
14. Javaregowda J, Prabhu ST 2010 Susceptibility of eucalyptus species and clones to gall wasp, Leptocybe invasa Fisher and La Salle (Eulophidae: Hymenoptera) in Karnataka. Karnataka J Agric Sci 23:220–221.
15. Chang RL, Arnold RJ, Zhou XD 2012 Association between enzyme activity levels in Eucalyptus clones and their susceptibility to the gall wasp, Leptocybe invasa, in South China. J Trop For Sci 24:256–264. http://www.jstor.org/stable/23617082. Accessed 2 Oct. 2022.
16. Martins FB, Benassi RB, Torres RR, Brito Neto FA 2022 Impacts of 1.5° C and 2° C global warming on Eucalyptus plantations in South America. Science of The Total Environment 825:153820. doi: https://doi.org/10.1016/j.scitotenv.2022.153820
17. Mendel Z, Protasov A, Fisher N, Salle JLa 2004 Eulophidae an invasive gall inducer on Eucalyptus. Aust J Entomol 43:101–113. doi: https://doi.org/10.1111/j.1440-6055.2003.00393.x
18. Thu PQ, Dell B, Burgess TI 2009 Susceptibility of 18 eucalypt species to the gall wasp Leptocybe invasa in the nursery and young plantations in Vietnam. Science Asia 35:113–117. doi: https://doi.org/10.2306/scienceasial513-1874.2009.35.113
19. Eskiviski ER, Schapovaloff ME, Dummel DM, Fernandez MM, Aguirre FL 2018 Susceptibility of eucalyptus species and hybrids to the gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) in northern Misiones, Argentina. For Syst 27. doi: https://doi.org/10.5424/fs/2018271-11573
20. Silva PHM, Junqueira LR, Araujo MJ, Wilcken CF, Moraes MLT, Paula RC 2020 Susceptibility of eucalypt taxa to a natural infestation by Leptocybe invasa. New For 51:753–763. doi: https://doi.org/10.1007/s11056-019-09758-1
21. Oliveira PI, Sarmento MI, Martins AO, Rocha JPL, Pinto G, Araújo WL, Sarmento RA 2022 Cell death and changes in primary metabolism: The onset of defence in Eucalyptus in the war against Leptocybe invasa. Pest Management Science 78(4):1721-1728. doi: https://doi.org/10.1002/ps.6791
22. Carvalho GMA, Carvalho CR 2016 The Eucalypt Karyogram Resolved Botany 94(5):411-416. doi: https://doi.org/10.1139/cjb-2015-0221
23. Gougherty AV, Davies TJ 2022 A global analysis of tree pests and emerging pest threats. Proceedings of the National Academy of Sciences 119(13):e2113298119. doi: https://doi.org/10.1073/pnas.211329811
24. Belkhadir Y, Subramaniam R, Dangl JL 2004 Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr Opin Plant Biol 7:391–399. doi: https://doi.org/10.1016/j.pbi.2004.05.009
25. Rockwood DL, Huber DA, Crawford MA, Rucks PC, Lamb E, Fabbro KW et al 2022 Eucalyptus amplifolia and Corymbia torelliana in the Southeastern USA: Genetic Improvement and Potential Uses. Forests 13(1):75. https://doi.org/10.3390/f13010075
26. Bernoux M, Ve T, Williams S, Warren C, Hatters D, Valkov E et al 2011 Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host Microbe 9:200–211. doi: https://doi.org/10.1016/j.chom.2011.02.009
27. Ellis J, Jones D 1998 Structure and function of proteins controlling strain-specific pathogen resistance in plants. Curr Opin Plant Biol 1:288–293. doi: https://doi.org/10.1016/1369-5266(88)80048-7
28. Barbosa-da-Silva A, Wanderley-Nogueira AC, Silva RRM, Berlarmino LC, Soares-Cavalcanti NM, Benko-Iseppon AM 2005 In silico of resistance (R) genes in Eucalyptus transcriptome. Genet Mol Biol 28:562–574. doi: https://doi.org/10.1590/s1415-47572005000400011
29. Hou S, Liu Z, Shen H, Wu D 2019 Damage-associated molecular pattern-triggered immunity in plants. Frontiers in plant science 10:646. doi: https://doi.org/10.3389/fpls.2019.00646
30. Zipfel C 2014 Plant pattern-recognition receptors. Trends in immunology 35(7):345-351. doi: https://doi.org/10.1016/j.it.2014.05.004
31. Boutrot F, Zipfel C 2017 Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annual review of phytopathology 55:257-286. doi: https://doi.org/10.1146/annurev-phyto-080614-120106. Accessed 2 Oct. 2022.
32. Chakrabarti S 2015 Studies on efficacy of some insecticidal molecules against blue gum chalcid, Leptocybe invasa Fisher & La Salle (Hymenoptera: Eulophidae) in Eucalyptus. Current Biotica 8(4):428-431.
33. Mafuwe K 2017 Distribution modelling of Leptocybe Invasa (Hymenoptera: Eulophidae), and an assessment of host susceptibility and relative efficacies of systemic insecticides for gum seedling protection in Zimbabwe. (Master's thesis). University of Zimbabwe. http://hdl.handle.net/10646/3889
34. Chen HY, Yao JM, Huang SB, Pang H 2021 Ophelimus bipolaris sp. n. (Hymenoptera, Eulophidae), a New Invasive Eucalyptus Pest and Its Host Plants in China. Insects 12(9):778. doi: https://doi.org/10.3390/insects12090778
35. Huang ZY, Liu ZJ, Wang XY, Zhang ZL, Lu W, Zheng XL 2022 Electroantennographic and olfactory responses of Quadrastichus mendeli to eucalyptus volatiles induced by the gall‐forming insect Leptocybe invasa. Pest Management Science. doi: https://doi.org/10.1002/ps.6869
36. Zhang M, Zhou C, Song Z, Weng Q, Li M, Ji H, Gan S 2018 The first identification of genomic loci in plants associated with resistance to galling insects: a case study in Eucalyptus L'Hér.(Myrtaceae). Scientific reports 8(1):1-10. doi: https://doi.org/10.1038/s41598-018-20780-9
37. Maraolo AE 2021 Una bussola per le revisioni sistematiche: la versione italiana della nuova edizione del PRISMA statement BMJ 372:71.
38. R Core Team 2020 R: A Language and environment for statistical computing. Vienna: R Foundation on Statistical Computing.
39. RStudio Team 2016 RStudio: Integrated Development for R. Available at: http://www.rstudio.com/.
40. Aria M, Cuccurullo C 2017 Bibliometrix: An R-tool for Comprehensive Science Mapping Analysis J Informetr 11:959–975. doi: https://doi.org/10.1016/j.joi.2017.08.007
41. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P et al 2010 The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38:214–220. doi: https://doi.org/10.1093/nar/gkq537
42. Naithani S, Preece J, D’Eustachio P, Gupta P, AmarasingheV, Dharmawardhana PD, Wu G, Fabregat A, Elser JL, Weiser J et al 2017 Plant Reactome: a resource for plant pathways and comparative analysis. Nucleic Acids Res 45:D1029–D1039. doi: https://doi.org/10.1093/nar/gkw932
43. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE 2019 PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49(D1):D1388–D1395. doi: https://doi.org/10.1093/nar/gkaa971
44. Questel 2020 Orbit IP Business Intelligence. Available at: https://www.questel.com/
45. Rikap C 2022 Becoming an intellectual monopoly by relying on the national innovation system: the State Grid Corporation of China's experience. Research Policy 51(4):104472. doi: https://doi.org/10.1016/j.respol.2021.104472
46. Keet JH, Richardson DM 2022 A rapid survey of naturalized and invasive eucalypt species in southwestern Limpopo, South Africa. South African Journal of Botany 144:339-346.doi: https://doi.org/10.1016/j.sajb.2021.09.008
47. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Von Mering C 2021 The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic acids research 49(D1):D605-D612. doi: https://doi.org/10.1093/nar/gkaa1074
48. String 2022 Database dersion 11.5. Available at:https://string-db.org
49. GeneMANIA 2022 GeneMANIA prediction server. Available at: https://genemania.org/
50. NCBI - National Center for Biotechnology Information. 2022. Available at: https://www.ncbi.nlm.nih.gov/
51. Bhagavan NV, Ha CE 2011 Enzymes and enzyme regulation. Essentials of Medical Biochemistry 47-58.
52. Cavalcante VRA, Araújo FSD, Teixeira DG, Marinho P 2020 Tiorredoxinas de Eucalyptus grandis, diversidade e expressão gênica. Revista Árvore 43. doi: https://doi.org/10.1590/1806-90882019000600002
53. Rotam 2021 Crop Protection. Available at: https://www.rotam.com/
54. Basf 2019 Capital Market. Available at: https://www.basf.com/global/en/investors/calendar-and-publications/calendar/2019/capital-markets-day.html
55. Gros D, Alcidi C 2013 The global economy in 2030: Trends and strategies for Europe. CEPS (Paperbacks), European Union.
56. NIPPON SODA CO 2018 Fields and products. Available at: https://www.nippon-soda.co.jp/e/fields_and_products/en_chem.html
57. WIPO 2018 Guide to the International Patent Classification. World Intelelctual Prop Organ 47.
58. Christie N, Tobias PA, Naidoo S, Külheim C 2016 The Eucalyptus grandis NBS-LRR gene family: Physical clustering and expression hotspots. Front Plant Sci 6:1–16. doi: https://doi.org/10.3389/fpls.2015.01238
59. Sikuljak T, Gewehr M 2014 Insecticidal active mixtures comprising carboxamide compound. EP3057418B1. European Patent Office, DC: BASF Agrochemical Products BV.
60. James LC, Bristol T 2016 A kind of Pesticidal combination. CN107318863A. China, DC: James, L., C., and Bristol, T.
61. Bristol JT 2018 The composition for killing harmful organism comprising thiodicarb and imidacloprid. CN109924210A. China DC: Bristol JT
62. James LC, Bristol T 2015 Insecticidal composition containing spirotetramat and ivermectin. CN110612982A. China DC: Jiangsu Longdeng Chemical Co. Ltd.
63. Yizhen L, Lifei Z, Chunlei C, Xiujun W, Xingcui Y, Meng Z 2012 Leptocybe invasa fisher attractant. CN 103875660A. China DC: Yizhen L, Lifei Z, Chunlei C, Xiujun W, Xingcui Y, Meng Z.
64. Avisar D, Stein H, Shani Z, Siegel D 2013 Gall wasp contro agents. US Patent No 9970022B2. United States, DC: FuturaGene Israel Ltd.
65. Mhoswa L, O’Neill MM, Mphahlele MM, Oates CN, Payn KG, Slippers B et al 2020 A genome-wide association study for resistance to the insect pest Leptocybe invasa in Eucalyptus grandis reveals genomic regions and positional candidate defense genes. Plant Cell Physiol 61:1286–1296. doi: https://doi.org/10.1093/PCP/PCAA057
66. Ve T, Williams SJ, Kobe B 2015 Structure and function of Toll/interleukin-1 receptor/resistance protein (TIR) domains. Apoptosis 20(2):250-261. doi: https://doi.org/10.1007/s10495-014-1064-2
67. Shan YS, Chen LT, Wu JS, Chang YF, Lee CT, Wu CH et al 2020 Validation of genome-wide association study-identified single nucleotide polymorphisms in a case-control study of pancreatic cancer from Taiwan. J Biomed Sci 27:1–14. doi: https://doi.org/10.1186/s12929-020-00664-9
68. Gupta SK, Rai AK, Kanwar SS, Sharma TR 2012 Comparative analysis of zinc finger proteins involved in plant disease resistance. Plos One. doi: https://doi.org/10.1371/journal.pone.0042578
69. Yan A, Wu M, Zhao Y, Zhang A, Liu B, Schiefelbein J, Gan Y 2014 Involvement of C2H2 zinc finger proteins in the regulation of epidermal cell fate determination in Arabidopsis. Journal of Integrative Plant Biology 56(12):1112-1117. doi: https://doi.org/10.1111/jipb.12221
70. Han G, Lu C, Guo J, Qiao Z, Sui N, Qiu N, Wang B 2020 C2H2 zinc finger proteins: master regulators of abiotic stress responses in plants. Frontiers in plant science 11:115. doi: https://doi.org/10.3389/fpls.2020.00115
71. Zhang S, Liu J, Zhong G, Wang B 2021 Genome-Wide Identification and Expression Patterns of the C2H2-Zinc Finger Gene Family Related to Stress Responses and Catechins Accumulation in Camellia sinensis [L.] O. Kuntze. Int J Mol Sci 22:4197. https://doi.org/10.3390/ijms22084197
72. Noman A, Aqeel M, Khalid N, Islam W, Sanaullah T, Anwar M, Lou Y 2019 Zinc finger protein transcription factors: Integrated line of action for plant antimicrobial activity. Microbial pathogenesis 132:141-149. doi: https://doi.org/10.1016/j.micpath.2019.04.042
73. Carianopol CS, Chan AL, Dong S, Provart NJ, Lumba S, Gazzarrini S 2020 An abscisic acid-responsive protein interaction network for sucrose non-fermenting related kinase1 in abiotic stress response. Communications biology 3(1):1-15. doi: https://doi.org/10.1038/s42003-020-0866-8
74. Smakowska-Luzan E, Mott GA, Parys K, Stegmann M, Howton TC, Layeghifard M, Belkhadir Y 2018 An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature 553(7688):342-346. doi: https://doi.org/10.1038/nature25184
75. Kimura-Kuroda J, Komuta Y, Kuroda Y, Hayashi M, Kawano H 2012 Nicotine-like effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats. PLoS One 7(2):e32432. doi: https://doi.org/10.1371/journal.pone.0032432
76. Zheng Z, Yang Z 2000 The Rop GTPase: an emerging signaling switch in plants. Plant molecular biology 44 (1):1-9. doi: https://doi.org/10.1023/A:1006402628948
77. Yang Z 2002 Small GTPases: versatile signaling switches in plants. Plant Cell 14Suppl:S375-388. Doi: https://doi.org/10.1105/tpc.001065
78. Kawano Y, Kaneko-Kawano T, Shimamoto K 2014 Rho family GTPase-dependent immunity in plants and animals. Frontiers in plant science 5:522. doi: https://doi.org/10.3389/fpls.2014.00522