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Abstract
BACKGROUND: Biomarkers provide a framework for a biological diagnosis of Alzheimer’s disease (AD) whereas polygenic
risk scores (PRS) provide method to estimate genetic risk. We derive biomarker-based PRS by incorporating endophenotype
genetic risk relevant to amyloid, tau, neurodegeneration and cerebrovascular (A/T/N/V) pathology.

METHODS: Endophenotype-PRSs (PRSA, PRST, PRSN, PRSV) and combined-PRSs (PRSAT, PRSATNV) were generated using the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data. Prediction performance of the PRSs was assessed in terms of
dementia risk, age at onset (AAO) and longitudinal change of 14 important AD biomarkers.

RESULTS: PRSA and PRST explained more amyloid and tau variability than combined PRSs (CSF-amyloid: R2
PRSA = 9.22%;

CSF-tau: R2
PRST = 6.37%; CSF-ptau: R2

PRST = 7.10%). Combined-PRSs explained more neurodegeneration-related variability

(R2
PRSATNV range: 1.22%-4.20%) and were strong predictors of dementia risk (HR and OR p-value<8.3e-03) and AAO

(AAO(predicted_vs_observed): rAT=0.76).

CONCLUSIONS: PRSA and PRST are AD-speci�c, while combined-PRSs are linked to neurodegeneration in general. Biomarker-
derived PRSs provide mechanistic insights beyond aggregate disease susceptibility, supporting development of precision
medicine for dementia.

1. Background
According to the multifactorial etiology (1) for complex diseases, the phenotypic variability can be explained by the additive
effect of multiple genetic factors. A PRS is the mathematical formulation of this hypothesis, being a single combinatorial
measure of multiple individual genetic effects that express an individual’s overall genetic liability (2, 3). In Alzheimer’s disease
(AD), PRS studies have focused primarily on risk and prognosis (3–11), with the majority focusing on late onset Alzheimer’s
disease (LOAD) based on large case-control genome wide association studies (GWAS). However, the increased phenotypic
and genetic heterogeneity among LOAD patients calls for more personalized solutions and thus, for approaches that integrate
biologically relevant genetic information (5, 8, 10, 12–14). Here we employed AD endophenotype-speci�c GWAS to develop
individual and combined endophenotype-PRSs. Our goal was to investigate the potential of endophenotype-PRSs for
prediction of biomarker progression and prognosis in dementia.

2. Materials And Methods
Brie�y, in this work we �rst studied whether the individual endophenotype and combined endophenotype-PRSs can capture
the risk of dementia (expressed as both odds ratio and hazard ratio) as well as the age of dementia onset. Next, we tested the
potential of endophenotype-PRS to capture the genetic risk beyond APOE by studying the differences in the dementia risk and
median survival among ε3/ε3 participants. Finally, we computed linear mixed models to determine the relationship with
longitudinal trajectories of known AD endophenotypes.

2.1 Study population
Data used in the preparation of this work were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu) (15). The ADNI was launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive impairment (MCI) and early AD. For the purpose of developing
endophenotype-PRSs, we focused on 11 biomarkers from ADNI1,GO/2, each biomarker representing either amyloid, tau,
neuronal or vascular pathology (Fig. 1). From the 1,550 individuals available, only 585 participants had complete baseline
information on all 11 biomarkers of interest. Of these 585 participants, 80% were used for training, 20% for validation, and the
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remaining 965 participants were used for testing (Table 1). Diagnosis was based on clinical criteria and consisted of �ve
different categories: cognitively normal (CN), signi�cant memory concerns (SMC), early mild cognitive impairment (EMCI),
late mild cognitive impairment (LMCI) and demented (Dem), with demented being characterized as participants whose
diagnosis was based on clinical rather than pathological evidence (16).

Table 1
Data description

Characteristic Full Training Validation Testing

Count 1550 468 117 965

Age        

Mean

Range

73.4

47–91

72.2

47–91

71.6

55–88

74.4

54–90

Gender (%)        

Male

Female

59.3

40.7

53.5

46.5

50.0

50.0

58.8

41.2

Diagnosis
(%)

Baseline

Diagnosis

Final

Diagnosis

Baseline

Diagnosis

Final

Diagnosis

Baseline

Diagnosis

Final

Diagnosis

Baseline

Diagnosis

Final

Diagnosis

CN

SMC

EMCI

LMCI

Dem

23.7

6.0

18.0

33.1

19.2

22.1

5.7

17.5

20.0

34.7

21.8

12.0

29.8

18.6

17.8

22.1

11.6

26.6

10.9

28.9

19.5

11.9

32.3

18.6

17.8

22.0

11.9

26.3

11.0

28.8

24.2

2.4

10.4

41.5

21.5

21.5

2.2

11.9

25.8

38.7

2.2 Biomarker PCA
We focused on integrating information from 11 biomarkers that fall under the A/T/N/V framework (16). This is an expansion
of the A/T/N framework (17), which was developed to re�ect the pathophysiology progress of the disease and thus, provide a
better understanding of its clinical stages. The set of biomarkers that we selected for PRS development is presented in Fig. 1.
These include CSF and PET amyloid (A), CSF tau (T), MRI and FDG-PET (N) from selected regions of interest (ROI), as well as
white matter hyperintensity (V). To summarize the information from these biomarkers, we performed principal components
analysis (PCA) simultaneously on the residuals of all 11 biomarkers that were �rst pre-adjusted for age, sex, years of
education, and the �rst two genetic PCs that controlled for population strati�cation. PCA was applied on the 585 individuals
with full baseline biomarker data (Fig. 1). For each participant, the baseline was de�ned as the �rst time point with available
measurements for all 11 biomarkers. The analysis returned 4 components, each representing one biomarker group (A, T, N,
and V).

2.3 Single Nucleotide Polymorphism (SNP) �ltering
For each of the 4 obtained endophenotype components, we ran GWASs on the same 585 participants that had been used for
the PCA step (Fig. 1). The genotype data were HRC imputed, with a total number of 5,406,481 SNPs. The GWASs results have
been �ltered based on a range of p-value cut-offs (5e-05, 8e-05, 1e-04, 8e-04, 1e-03, 5e-03, 1e-02). To address the linkage
disequilibrium problem (LD), we performed clumping using PLINK on SNPs with MAF 5%, r2 = 0.1 and window=1K kb. From
the APOE region (de�ned as 1Mb up and downstream of the gene position, 44,409,039 to 46,412,650) only rs429358 and
rs7412 were retained.

≥
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2.4 Further SNP �ltering and SNP weight calculation
In addition to p-thresholding, we further �ltered the SNPs by applying Lasso (18), a type of penalized regression. At each p-
threshold and for each biomarker component, Lasso returned a list of SNPs and their corresponding weights. The Lasso
penalty was determined by tuning the lambda parameter using 10-fold cross-validation. The criterion for optimal lambda
selection was minimization of the mean square error (MSE). While shrinkage was applied to SNPs, the baseline age, sex,
years of education, as well as the two APOE SNPs, rs429358 and rs7412, were not subject to penalization. To increase the
stability of the result, Lasso was bootstrapped 100 times on the training set, returning at each iteration a list of SNPs and
SNP weights. The �nal SNP list was obtained by retaining the most frequently selected SNPs (selection frequency  80%,
Fig. 1).

According to the literature, re-weighted SNP coe�cients may achieve improved PRS performance (5, 19) compared to the
traditional case/control GWAS SNP effects. Because Lasso estimates tend to be biased (20), we followed a two-step
procedure by re�tting a linear regression model on the Lasso selected SNPs. The regression model was adjusted for the
covariates, age, sex, and years of education and was performed separately for each of the four endophenotype components.
The process was bootstrapped 100 times on the training set, and the �nal PRS SNP weight was calculated by averaging the
corresponding regression coe�cient over the 100 bootstrap iterations, as described in Eq. (1). Here,  is the new weight for
SNP s,  is the bootstrap iteration index,  is the total number of bootstrap iterations (in this case ), and  is
the regression coe�cient for the SNP s at the th iteration.

1

2.5 Individual and Combined Biomarker-PRS
At each p-threshold and for every participant , we calculated four individual endophenotype-PRSs (PRSA, PRST, PRSN, PRSV)

based on Eq. (2). The PRS was expressed as the sum over the weighted number of alleles per SNPs. Speci�cally, for the 
individual, the endophenotype  PRS  was obtained by multiplying the minor allele count  of the SNP s by the

SNP weight  (described in Eq. 1).

2

Finally, we generated two combined endophenotype-PRSs (PRSATNV, PRSAT) for each individual. The PRSATNV was expressed
as the weighted sum of the individual biomarker-PRSs as shown in (3). In Eq. (3),  is the individual endophenotype-PRS
as described in Eq. (2). To obtain the weights , we used the training set to regress each of the four endophenotype
components on the corresponding  while controlling for the age, sex and years of education. The �nal weight  for
each  was the average coe�cient over 100 bootstrap iterations. A similar approach was followed for generating the
PRSAT.

3

2.6 Best PRS threshold selection
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To select the optimal p-threshold and thus the �nal PRS for the remainder of the analysis, we assessed the prediction
performance of the biomarker PRSs on the validation set for each of the seven p-thresholds. Speci�cally, we obtained the
adjusted variance explained (Adj.R2) by regressing each biomarker component on the corresponding biomarker-PRS while
controlling for baseline age, sex and years of education. The average Adj.R2 over 100 bootstrap iterations indicated the best
overall p-threshold.

2.7 Odds of AD in relation to PRS
To study the association between the six PRSs and the risk of dementia, we ran a logistic regression model, treating the PRS
as predictor while adjusting for the centered covariates of age, sex, and years of education. In the model described here, age
was de�ned as either the age of clinical diagnosis of dementia or the age at the last clinical visit for the non-demented
participants. To simplify the interpretation, the PRSs, originally ranging from 0 to 1 with values closer to 1 indicating higher
risk, were multiplied by 10. Among the 585 participants of the training set, 367 individuals that were either CN, SMC or Dem
were used for model training. Having estimated the odds of AD for each PRS, we replicated the results on 712 individuals
from the testing set, after excluding MCI patients. As an additional step, to assess the predictive ability of SNPs beyond APOE,
we obtained the risk of developing dementia among  participants.

2.8 AD hazard and time to AD onset in relation to PRS
Other statistical measures of interest in AD research include the hazard of dementia and the age of dementia onset. To
assess the strength of the relationship between these measures and the biomarker PRSs, we ran a Cox proportional hazard
(PH) model, which was trained using 367 individuals from the training set. As “event” we considered the onset of dementia
(clinical manifestation), and we treated the age at dementia diagnosis as the survival time in the model. PRS was used as a
predictor in the model, while adjusting for the years of education and sex. To simplify interpretation, the PRSs were multiplied
by 10 and education was centered. The PH assumption was tested using the cox.zph() function in R. To get predictions of the
age to dementia onset among the Dem cases, we predicted the survival curves using the Cox model that was previously
applied on the training data. The actual and the predicted age to dementia were divided into deciles. The relationship between
the predicted age and actual age of dementia onset was assessed using Pearson correlation (r). The analysis was replicated
on 712 non-MCI individuals from the test set as well as on the  participants.

2.9 PRS for baseline levels and longitudinal trajectories of responses of
interest
In addition to dementia risk prediction, which may be useful at the prevention stage, information about disease progression
and key outcomes are also important. Here, we assessed the baseline and longitudinal effects of PRSs on 14 responses of
interest. These included three cognitive measures (ADNI-MEM, ADNI-EF and FAQ), as well as 11 biomarkers that were
described earlier (Fig. 1). For each of the 14 responses, we applied a random intercept linear mixed model to account for the
correlation between repeated measurements. The data were aligned for all participants, with time 0 representing the �rst visit
when a measurement was available for each biomarker. All biomarkers were transformed to range between 0 to 1, while MRI
biomarkers were pre-adjusted for intracranial volume (ICV). Whenever necessary, the biomarkers were log10 transformed. The
model adjusted for sex and centered covariates, including years of education and baseline age. Fixed effects included years
since baseline, as well as the PRS and their interaction. To simplify interpretation, the PRSs were multiplied by 10. The
random intercept term allowed for varying intercepts among the participants. The performance was assessed by the
Nakagawa’s marginal pseudo-R2 on the testing set. The signi�cance of the increase in the pseudo-R2 was assessed by
ANOVA, which compared the (full) model, PRS and its interaction with time, to the (base) model, which contained covariates
only. The p-values of the main PRS effect (baseline effect) and the interaction effect (longitudinal change), were corrected for
multiple comparisons. Speci�cally, for each endophenotype, a Bonferroni correction was applied to account for testing
against six PRSs (Bonferroni p-value = 8.3e-03).

3. Results

ϵ3/ϵ3

ϵ3/ϵ3
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3.1 PRS Calculation
The best PRS performance was achieved for the GWAS p-value threshold of 8e-04, based on the average Adj.R2 over 100
bootstrap iterations. Because that was the best threshold for all biomarkers, except for vascular, we considered it to be the
overall optimal p-threshold. At this optimal threshold, the number of PRS SNPs (including the APOE SNPs rs429358 and
rs7412) was 145 for PRSA, 166 for PRST, 160 for PRSN and 159 for PRSV. The PRSs calculated at the speci�c threshold were
used in steps for the remaining analysis.

3.2 Odds of AD in relation to PRS
On the training set, the strongest association between clinically diagnosed dementia and PRS was observed for PRSN

followed by PRSATNV. For the former, a 0.1 unit increase in the PRSN increased the odds of dementia by 4.5 times (OR = 4.5, p 
= 1.28e-20), whereas for the latter, the OR of Dem was 3.38 (p = 9.96e-24). The results were validated on the testing set
including all APOE groups (PRSN: OR = 1.29, p = 4.8e-04; PRSATNV: OR = 1.52, p = 1.03e-07). To demonstrate the information
provided by the SNPs beyond APOE, we examined the strength of the association among  carriers, observing a
signi�cant OR of 4.7 (p = 1.45e-08) for PRSN and 2.76 for PRSATNV (p = 7.58e-10). On the  testing group, neither PRSN

nor PRSATNV effects were signi�cant (PRSN: OR = 1.13, p > 0.1; PRSATNV: OR = 1.19, p > 0.1).

3.3 AD hazard and time to AD onset in relation to PRS
On the training set, the strongest association between dementia onset and PRS was observed for PRSAT followed by PRSATNV.
For the former, the rate of being clinically diagnosed with dementia at any time point was increased by 67% for each 0.1 unit
increase of the PRSAT (p = 3.52e-26), whereas for the latter, the hazard ratio (HR)of AD was 1.62 (p = 2.04e-25). Both
associations were replicated on the test set (PRSAT: HR = 1.24, p = 5.97e-07; PRSATNV: HR = 1.20, p = 2.08e-05). Among 
carriers of the training set, both PRS effects were signi�cant (PRSAT: HR = 1.53, p = 4.74e-06; PRSATNV: HR = 1.58, p = 3.49e-
08). We additionally obtained a 10-year difference in the median AAO between the extreme PRSAT quartiles (PRSAT,Q1 0.29,
PRSAT,Q4 0.60) of the  in the training set (Fig. 2.A; AAO: 76 for Q4 and 86 for Q1). For PRSATNV the median AAO was
86 in Q1 and 74 in Q4 (PRSATNV, Q1 0.33, PRSATNV, Q4  0.63) (Fig. 2.B). For all the results reported here, the proportional
hazard (PH) assumption was met. Finally, we evaluated the scores’ performance in predicting the AAO by observing its
association with the actual AAO. The association was observed among deciles of the predicted and observed AAO. For the
training set, the Pearson correlations were rAT = 0.83 (p = 2.7e-03) and rATNV = 0.78 (p = 7.4e-03). For the testing set, the
correlations were rAT = 0.76 (p = 1.2e-02) and rATNV = 0.64 (p = 4.6e-02).

3.4 PRS and longitudinal trajectories of cognitional and biomarker
responses
We compared the percentage variance explained for the mixed model with and without PRS and assessed the change using
ANOVA to test between the two models. The results on the test set are presented in Table 2. For CSF- amyloid, tau, and p-tau,
the individual endophenotype-PRSs for amyloid, and tau (PRSA, PRST) resulted in the highest improvement of the explained
variance for the corresponding biomarkers. This improvement was statistically signi�cant after correcting for multiple
comparisons (Table 2).

ϵ3/ϵ3
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Table 2
Overall marginal R2 increase due to PRS. Results on ADNI1,GO/2 test*

Endophenotype Base model PRSA PRST PRSN PRSV PRSAT PRSATNV

ATNV-related endophenotypes              

Roche CSF Abeta

AV45

Roche CSF Tau

Roche CSF pTau

Mean Lat. Temp. (Thx Avg)

Mean Med. Temp

Hippocampus Vol.

FDG Temp. Lobe

FDG Ang. Gyrus

FDG Cingulate

0.93%

0.70%

2.06%

1.23%

11.19%

12.30%

13.72%

3.10%

3.62%

6.00%

9.22%

11.25%

1.55%

2.40%

0.26%

0.77%

1.86%

1.65%

1.41%

1.41%

1.98%

4.08%

6.37%

7.10%

0.68%

1.29%

1.48%

2.82%

2.21%

1.74%

1.12%

2.48%

--

--

0.74%

1.18%

0.52%

1.11%

0.82%

1.19%

--

0.58%

0.09%

0.07%

0.09%

0.11%

0.20%

--

--

0.54%

8.82%

12.38%

5.47%

7.00%

0.69%

1.57%

2.78%

3.51%

2.88%

2.57%

7.96%

12.76%

4.50%

5.41%

1.22%

1.78%

2.17%

4.20%

3.58%

3.90%

WMHI 5.84% 0.30% -- 0.13% 0.40% 0.28% 0.40%

Not ATNV-related endophenotypes              

ADNI MEM

ADNI EF

FAQ

8.14%

8.62%

4.52%

1.71%

--

1.12%

--

0.65%

1.35%

1.08%

--

0.95%

--

--

--

1.79%

0.40%

2.02%

2.29%

0.51%

2.28%

* Longitudinal analysis results. The table presents the overall marginal R2 increase compared to the base model

Base mixed model 

Full mixed model 

Overall increase represents the increase due to inclusion of PRS and its interaction with time all together

Dashes indicate that the overall R2 increase compared to the base model (covariates only) was not signi�cant (ANOVA p-
value > 0.05)

By examining the signi�cance of the PRS terms in these models, we noticed signi�cant main effects for the PRS, but the
interaction terms were insigni�cant for all three biomarkers (Table 3). Signi�cant interaction for both tau biomarkers was
achieved by PRSATNV although this was not the optimal score in terms of variance explained (Table 2, CSF-tau: =

4.50%; CSF-ptau: = 5.41%). When studied individually, PRSA and PRSV showed a negative relation to both tau
measures (CSF-tau: Time PRSA: p = 6.5e-03; Time PRSV: p = 5.5e-03; CSF-ptau: Time PRSV: p = 2.3e-03; Time PRSATNV:
p = 5.9e-02). On the other hand, PET-amyloid, MRI and FDG-PET biomarkers, as well as memory and FAQ had stronger
associations to combined-PRSs (Table 2).

Y = β0 + β1t + covar + (1| ID)

Y = β0 + β1t + β2PRS + β3 (PRS ∗ t) + covar + (1| ID)

R2
PRSATNV

R2
PRSATNV

× × × ×
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Table 3
Main and interaction PRS effects. Results on ADNI1,GO/2 test *

ATNV-related endophenotypes Best PRS
Main effect ( ) Interaction effect ( )

Roche CSF Abeta

AV45

Roche CSF Tau

Roche CSF pTau

Mean Lat. Temp. (Thx Avg)

Mean Med. Temp

Hippocampus Vol.

FDG Temp. Lobe

FDG Ang. Gyrus

FDG Cingulate

A

ATNV

T

T

ATNV

ATNV

AT

ATNV

ATNV

ATNV

-0.04**

0.05**

0.04**

0.05**

-0.01**

-0.02**

-0.01**

-0.03**

-0.02**

-0.02**

--

--

--

--

-1.8e-03**

-3.3e-03**

-1.2e-03**

-4.1e-03**

-2.4e-03**

-2.7e-03**

WMHI V 0.01** --

Not ATNV-related endophenotypes      

ADNI MEM

ADNI EF

FAQ

ATNV

T

ATNV

-0.02**

-0.01*

0.05**

--

--

4.1e-03**

* Longitudinal analysis results. The table presents the main and interaction with time PRS effects (APOE included in the
PRS)

Mixed model 

Dashes indicate insigni�cant result (p-value > 0.05)

**p < 8.3e-03 (Bonferroni correction was done by biomarker (p-value: 0.05/6= 8.3e-03)

* p-value < 0.05

This is with the exception of PET-amyloid and MEM, where levels were strongly linked to the combined PRS levels both at the
baseline and longitudinally (Table 3), even after correcting for multiple comparisons (Table 3). Overall, most of the
associations studied here remained signi�cant within the ε3/ε3 training set (Supplementary Table 1), but none of the
neurodegeneration markers reached signi�cance on the ε3/ε3 testing set (Supplementary Table 2). FAQ was the only
cognition measure that remained signi�cant, even among the ε3/ε3 individuals of the test set.

4. Discussion
We developed individual and combined endophenotype-PRSs and evaluated their association with dementia risk, age at
dementia onset, and biomarker trajectories. Combined endophenotype-PRSs led to signi�cantly higher dementia hazard and
speci�cally accelerated the median AAO among  participants up to 12 years. Finally, PRSA and PRST were AD-speci�c,
as they were better predictors of amyloid and tau biomarkers, while combined endophenotype-PRSs were better predictors of
neurodegeneration.

β2 β3

Y = β0 + β1t + β2PRS + β3 (PRS ∗ t) + covar + (1| ID)

ϵ3/ϵ3
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We showed that PRSs based on speci�c AD biomarkers can be used to assess dementia risk and prediction of biomarker
trajectory (21). In addition, we found that the progression of pathophysiological biomarkers and cognitive decline have a
stronger association with the combined-PRSs, compared to the more biologically restricted individual endophenotype-PRSs. A
possible explanation is that the combined-PRSs accounts for the effect of SNPs related to multiple endophenotypes and thus,
better captures the multiple biological mechanisms implicated in these biomarkers. The insigni�cant interaction effects of
time with PRSA and PRST, when modeling the CSF amyloid and tau trajectories respectively (Table 3), may indicate that the
observed increase in explained variance was likely driven by the strong association of these scores with the corresponding
baseline biomarker levels. The signi�cant  interaction for CSF-tau and CSF-ptau on the other hand,
possibly emanates from the amyloid and vascular terms integrated in PRSATNV, which seem to have a negative association to
both tau trajectories. This could support the idea that different PRSs may be preferred, depending on whether we are
interested in predicting cross-sectional differences or differences in the rate of change. Lastly, we provided signi�cant
evidence for genetic risk beyond APOE by replicating the previously observed differences in the age of dementia onset among

 participants (5).

In this study, we found that PRS accounts for biologically relevant information that may elucidate the level of genetic
complexity of AD endophenotypes and related outcomes. Superiority in performance of combined-PRSs compared to
individual-PRSs may indicate greater complexity in the underlying biological mechanisms of the response of interest, which
may be indicative of the additional genetic information incorporated in the combined-PRS. While the development of
endophenotype-PRS was aimed at improving PRS interpretation, other scores with the same goal have been developed.
Pathway-PRS is one such score, which attempts to increase interpretability by inclusion of SNPs that are part of a speci�c
biological pathway (10, 12, 21). Despite the seemingly similar rationale between the proposed individual endophenotype-PRS
and pathway-PRS (10, 12, 21), there are also major differences. For example, pathway-PRS are developed based on existing
case/control GWA studies that may fail to identify SNPs related to important biomarkers (22), particularly if the disease
endophenotypes are closer to the molecular mechanism than the disease status, in which case endophenotype-GWASs may
have greater utility in identifying biomarker-related SNPs (22). Pathway-PRS also requires apriori knowledge about the
disease pathways and the SNPs belonging to that pathway, which may be problematic, as literature has shown that the
number of informative SNPs in the PRS can signi�cantly affect the results of the analysis (2). In contrast, the endophenotype-
PRS identi�es biomarker-related SNPs through endophenotype-GWAS, allowing multiple biological pathways associated with
that biomarker to enter the score at the same time.

In this work, we provided a comprehensive comparison between individual and combined endophenotype-PRSs based on
ADNI data. Despite the interesting �ndings, our work also has limitations. First, there was a limited sample size for PRS
development, as ADNI is the only publicly available study that offers such an extensive collection of AD-related biomarkers.
Limited sample size is also a barrier because the data had to be further split into training and testing conditions. However, as
more participants are recruited, the power of the analysis will improve. The limited discovery sample may also explain our
failure to observe a signi�cant AAO difference among the  participants in the testing set. Second, although part of the
ADNI1,GO2 was kept apart and used solely for replication, it is still a part of the same cohort that was used for PRS
development. Replication of these results in completely independent data sets is necessary and should be pursued when data
availability permit. Third, ADNI is not ideal for building vascular-PRSs because individuals with more severe cerebrovascular
disease are typically excluded. A better vascular-PRS should be derived using a more appropriate data set enriched for
cerebrovascular disease.

To conclude, our study suggests that PRSA and PRST are AD-speci�c as they have the best performance in predicting amyloid
and tau biomarkers, whereas the combined PRSs are more generic and preferred for predicting neurodegeneration. Also,
further analysis of the endophenotype-PRSs could offer functional insights and promote treatment development. Speci�cally,
in the context of precision medicine, endophenotype-PRSs could be used for generating more speci�c genetic risk pro�les for
prospective trial enrollees that are speci�cally aligned with measurable biomarkers thought to re�ect disease status. In the
future, individual endophenotype scores could be utilized to study the genetic heterogeneity among individuals at risk for

PRSATNV × Time

ϵ3/ϵ3

ϵ3/ϵ3
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dementia, which could potentially provide useful information about the observed variability in the disease’s clinical
manifestation and further support the necessity for individualized treatment.
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Figure 1

PRS calculation steps

Figure 2
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Survival curves among ε3/ε3 individuals in the training set. Dashed lines represent the median age to dementia. (A)  Results
by PRSAT quartiles. (B) Results by PRSATNV quartiles.
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