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Abstract

Advanced planning and scheduling (APS) systems aim at helping pro-
duction and operation managers in organizing the manufacturing process
of biotech products, finding near-optimal schedules meeting the demand,
while taking operational resources and raw materials into account. We
introduce an extension to APS, called Robust Advanced Modeling and

Scheduling (RAMS), and present the first RAMS system: Rombio. Unlike
existing APS systems, Rombio allows to (i) visually model the opera-
tional problem and context entirely (ii) generate and optimize schedules
while taking uncertainty into account, and (iii) deal with a combina-
tion of various key performance indicators (KPIs). Probability theory
enables us to cope with uncertainty, computing schedules that are
robust to temporal deviations. Depending on the pursued KPIs, the
resulting schedules optimize a combination of the following terms: the
probability of satisfying the process constraints, the expected return/-
efficiency/quality, and even the operators’ wellness by minimizing its
expected extra-hours. This introduces a new risk-aversion paradigm,
replacing the well-known what-if and sensitivity analysis frameworks.
Initially developed in collaboration with Nasa for space exploration,
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this versatile tool is applied to real-world biotechnology manufactur-
ing in three different contexts: diagnostics, medicines and stem cells.

Keywords: biomanufacturing, bioprocess engineering, industrial processes,
scheduling, modeling

1 Introduction

Project management is the cornerstone of efficiency in modern business. It is
also one of the most challenging problems to solve, in particular when it comes
to human project management, that is, human scheduling. Yet, most of the
existing studies have only been done in the context of machine scheduling [1].
According to [2], project management, which also refers to human scheduling,
accounts for about a third of the world’s gross product.

In this paper, we introduce a visual tool, Rombio1 (Robust Operations
Management for Biotechs), and show how it has been successfully applied to
three different case studies of real world human operations management, in
three Belgian biotech companies: Zentech, Takeda and Celläıon. Zentech is
active in the manufacturing of screening and diagnostic kits. Takeda is a multi-
national pharmaceutical company, active in drug design and manufacturing.
Celläıon is active in stem cell manufacturing. Altogether, these three compa-
nies thus form a well diversified sample, in terms of product types and hence,
manufacturing processes.

The system is novel in different aspects. First, it generates and optimizes
schedules while taking uncertainty into account. Second, it allows the end-user
to express the problem at stake directly in the graphical interface, using a
visual modeling formalism. Third, it deals with a combination of various key
performance indicators (KPIs), including the success probability of the opti-
mized schedules. The technology embedded in Rombio is based and validated
on extensive theoretical (as well as empirical) results in the domain of planning
and scheduling under uncertainty (see Section 1.2).

Results

The results obtained from our three case studies convey three very impor-
tant messages: (a) Even for very complicated and various different operational
contexts, a common modeling framework exists, being user friendly, visual,
and rigorous at the same time; (b) Even for real sized problems, computer-
optimized solutions outperform the schedules hand-crafted by field experts
in general, and serve as a strong basis for decision making, as the deciders
can always adapt and reuse these depending on external factors; (c) Sched-
ules obtained while taking uncertainty into account systematically outperform
those obtained from deterministic assumptions in terms of reliability and

1Also known as Romie in the literature, when applied to space exploration.
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expected KPIs, while preserving most of the solutions quality; the latter result
remains valid even when provided very bad representation of the uncertainty.

1.1 Scheduling tools, APS and (R)AMS systems

As mentioned in our introduction, (planning and) scheduling problems con-
stitute a very common challenge in the modern industry. As a consequence,
several concepts and tools have been proposed. [3] present some of the most
common ones (MS Project, Primavera, Artemis, etc).

There is a fundamental difference between software systems under the
very large denomination of ”scheduling (or planning) tools”, and so-called
”advanced planning and scheduling” (APS) tools [4]. Whereas classical tools
somehow solely offer the ability to visualize and manipulate schedules, an
APS comes with an optimization engine that automatically generates and
improves schedules based on predefined generic constraints. In other words, the
vast majority of non-APS tools, such as MS Project, are just complex Gantt
chart visualization and edition systems. However, a Gantt chart implies hav-
ing designed a schedule (i.e. ordered sequences of tasks scheduled in time and
assigned to resources)! And the user is still left with that problem. Only an
APS system, or a more elaborated one (such as RAMS we describe hereafter),
is actually able to solve the underlying constrained combinatorial problem: the
scheduling problem.

[5] already provides a comprehensive summary of the related frameworks
and software systems, in space as well as in the industry. In particular, [6–8],
among others, showed the limits of human self-scheduling in the context of
space missions. The main differences between an APS and a (R)AMS comes
from the limitations of APS systems, which can be summarized as follows.
Any APS system either falls into a) being specifically designed for a particular
application or operational context or b) not being able to generate robust
schedules in light of uncertainty. This motivates a (robust) advanced modeling
and scheduling (RAMS) system, and in particular the one presented in this
paper being the first RAMS, having the following technological innovations :

1. A domain-independent graphical modeling interface, allowing the user to
graphically draw the structure and constraints of its scheduling problem.

2. Thanks to recent results in probability theory, Rombio’s optimization engine
allows the end-user to rapidly generate schedules that are reliable, robust
to temporal deviations.

We often put the R in RAMS between parentheses, to highlight the fact that
the robustness aspect of the problem is actually not the most central concept
here. Unlike (R)AMS systems, existing APS tools do not allow the end-user
to express complex requirements and constraints, and thus fail at meeting the
resource and constraint structure involved in problems as complex as bioman-
ufacturing. The only exceptions come from APS systems that are tailored for
some problems, or in other words, in which these constraints are hard-coded.



4 RAMS: from Space Exploration to Real-World Biomanufacturing

Fig. 1 Our illustrative example. There are only four tasks: A, B, C, D, to be scheduled on
the same line. Each task has a processing time of 1 or 2 hours, and a time window spanning
either the entire work day (9am to 2pm) or part of it (9am to 12am). Starting tasks B and
C both require A to be completed, and D requires B as well as C to be completed. Task
C must wait at least one hour after the end of A to begin, and should be completed during
the same day.

Yet, such dedicated systems are terribly expensive. Most stakeholders can’t
afford it, especially when their constraints frequently evolve.

1.2 Theoretical Foundations

In stochastic contexts such as space missions or biomanufacturing, comput-
ing optimal schedules becomes significantly less attractive as problem data,
such as the manipulation time of the modelled activities, are different from
their predicted nominal values. This is what we refer to as uncertainty. In a
constrained environment with shared resources and devices, when they arise
such temporal deviations can propagate to the remaining operations, eventu-
ally leading to global infeasibility, that is, a project failure. Given a schedule, a
central question is then the following: considering temporal uncertainty, what
is the actual probability of success of the project?

Illustrative example

Consider the simple project depicted in Figure 1 (left). Suppose all tasks have
to be scheduled on the resource, then one must necessarily begin with A and
end with activity D. There are only two valid schedules, shown in Figure 1
(right). In fact, schedule (A,B,C,D) looks much more efficient, as all tasks
are completed on the first day. On the contrary, schedule (A,C,B,D) requires
an additional day. However, this is only true on the paper, when everything
is predictable. If you account for (temporal) uncertainty, then the story is
different. If operation A lasts for more than 1 hour, schedule (A,B,C,D) is
not valid anymore: B will have to be resumed or rescheduled at day 2 (an
additional day, that was not expected!). When starting C, we realize the worst:
it actually requires to be processed the same day as A. Mission failed. Remark
that if the true average processing time of A is 1 hour, then this scenario
happens with at least 50% probability. On the contrary, (almost) whatever
happens to A, under schedule (A,C,B,D) everything goes fine. This schedule
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is said to be robust. Its success probability is simply 1 minus the probability
that A exceeds four hours (which we assume to be fairly unlikely).

Project management is hard

The problem scheduling a set of operations under constraints should be seen
as a generalization of the well-known NP -complete job-shop scheduling prob-
lem [9], which has the reputation of being one of the most computationally
demanding [10]. When taking uncertainty into account, the problem then
becomes strongly NP -hard, an even harder family of problems. In a nutshell,
NP -complete means that, no matter the available computational resources, the
problem is conjectured as impossible to solve in practice, for realistic instance
sizes, such as the number of activities and resources. In fact, whereas the prob-
lem depicted in Figure 1 admits only two solutions, in practice the number of
possible schedules grows exponentially with the number of tasks and resources.

Previous researches

Based on the real case study of a Mars analogue mission in 2018, in [11] we pro-
posed a first (incomplete) probabilistic formulation, as well as solution method,
for the problem of scheduling a set of various human operated projects. In fact,
the problem of scheduling a set of operations in a constrained context such
as the Mars Desert Research Station (MDRS, Fig. 2) is not trivial, even in
its classical deterministic version. We hence measured the gains and costs, on
a priori mission planning, of robust schedules (optimized under uncertainty)
compared to schedules optimized under classical deterministic assumptions.

In [12], the theoretical insights obtained from the former study were
successfully extended to probabilistic simple temporal networks (PSTNs), a
formalism able to mathematically describe operational problems in general,
such as scheduling a space mission or a biomanufacturing campaign. In this
paper written with the Jet Propulsion Lab (NASA), our probabilistic model is
applied to the operation management of Mars 2020 planetary rover. We also
formally define some of the most important theoretical concepts for describ-
ing schedule robustness to uncertainty, we introduce new ones, and give proofs
for theoretical bounds. This contributed to filling the theoretical gap between
specific mission planning and general operations management.

In [5] we proposed a very first version of the RAMS system, in which the
user interface (in particular, the graphical modeling interface) was at a very
preliminary stage, and showed how we successfully used the system to solve
operational scheduling problems in three very different contexts: an analogue
human space mission, a robots parameterization problem for cave exploration,
and a first application to biotechnology manufacturing.

On novice self-scheduling

These previous studies mainly aimed at evaluating and demonstrating, both
empirically and theoretically, the need and the advantages of using probabilis-
tic assumptions (i.e. optimizing under uncertainty) in the context of operations
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Fig. 2 Left: the Mars Desert Research Station in Utah. Right: extra-vehicular field opera-
tions.

management. In the context of space exploration, past missions (e.g. UCL to
Mars 2018 [11]) have shown the importance of online reoptimization and, in
particular, the need for the crew to autonomously adapt their science projects
to unforeseen events. In [13] the scientific focus has been rather put on the user
experience. More specifically, using techniques from human computer interac-
tion (HCI), we measured how well a team of novice users succeeded (or not)
at using our system to schedule, and reschedule online, their own activities.
We obtained positive and encouraging results. Our RAMS system has demon-
strated its applicability on a simulated mission in a Mars analogue habitat,
during which a team of 8 analogue astronauts evaluated the Rombio system on
their ability of self-schedule their own mission (both a priori and on-the-fly).

A new risk-aversion paradigm

What if analysis and sensitivity analysis are classical, well-known techniques
for coping with uncertainty in operations management. In fact, [14] and [15]
both argue for the importance, biomanufacturing, of simulation and the ability
of performing what-if and/or sensitivity analysis in addition to optimization.
What if analysis consists of optimizing several solutions (usually a few num-
bers), each solving a predefined scenario, such as best-case, average-case and
worst-case scenarios. In [12] we formally prove2 that the well known what-if
analysis technique is fundamentally flawed, as it arbitrarily underestimates a
schedule’s risk. On the contrary, Rombio’s optimization engine is proven to
never underestimate it. Provided a schedule3, sensitivity analysis approximates
its average quality under uncertainty, how sensible (brittle) it is to stochastic
variations. In that sens, the solutions computed by Rombio directly optimize
their response to a sensitivity analysis. The proposed RAMS framework intro-
duces a new paradigm, in which both what-if analysis as well as sensitivity
analysis are turned deprecated.

2In [12], the degree of weak controllability (DWC) can be interpreted as a perfect what-if
analysis, that is, when not only considering best, middle and worst cases, but all the possible
scenarios. The demonstration is then reached at inequality (11), with the result DDC(N) ≤

DWC(N), where DDC is the true robustness of the schedule N .
3This however does not help at finding the right schedule in the first place!
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Fig. 3 Principal functionalities of Rombio tool.

1.3 Paper Contributions and Organization

In this paper, we present an innovative general tool, which can be configured
to meet a large range of operational contexts, from space missions to vari-
ous biomanufacturing domains, without domain-specific developments. This
tool falls into the newly proposed category of Robust Advanced Modeling
and Scheduling (RAMS) systems. This category aims at extending that of
advanced planning and scheduling (APS), by enabling the end-users to model
the operational problem at stake, and by computing schedules that are robust
to uncertainties. The proposed RAMS system, Rombio, is described in Section
2.

Initially developed for scheduling the daily activities of a team of astro-
nauts, in the context of a Mars analog mission, and later improved in
collaboration with Nasa, and experimentally applied to Perseverance plan-
etary rover’s operations management under uncertainty, the technology has
eventually been further extended to cope with operations management in
biomanufacturing processes. Most of this paper is dedicated to the description
made in Section 3 of the application case studies, conducted with three dif-
ferent Belgian companies involved in biomanufacturing: diagnostics, medicines
and stem cells.

All three use cases are conducted using the same system. This is made
possible thanks to both the uncertainty management and, above all, the graph-
ical process modeling interface, which are at the core of the proposed new
framework.

2 Overview of Rombio

Rombio is a web-based software (SaaS) system aiming at supporting the deci-
sion makers in their operations management and task scheduling. The key
functionalities are depicted in Figure 3:

• User friendly, visual modeling of the problem at stake, in its own opera-
tional context: human and physical resources, operational constraints, key
performance indicators (KPIs), execution uncertainties.
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Fig. 4 The graphical modeling interface. An example of a model is shown, representing a
manufacturing process involving 12 activities. Each activity is fully parameterizable: name,
(random) processing time, resource usage, allowed types of operators/lines, etc.

• Robust scheduling : the optimization engine takes the time uncertainty on
each task’s duration into consideration, using modified-PERT distributions,
yielding schedules with high probability of success.

• KPI-guided scheduling : The schedules are optimized while pursuing (a com-
bination of) various KPIs, including success probability, expected cost,
expected quality, and even operator wellness.

In a research domain in constant evolution, Rombio integrates state-of-the-
art advances in robust scheduling under uncertainty [12]. Future versions will
enable online monitoring of the operations, keeping the schedule and the under-
lying model consistent with the current state of the system, allowing the user
to adapt and reoptimize future decisions based on past outcomes.

The Modeling Interface

Depicted in Figure 4, it provides to the user the ability to create, edit and
manipulate process models. Operations can be added, deleted, moved around,
etc. Arrows are used to denote constraints between pairs of activities. The
classical basic constraint A → B is a dependency (or precedence) constraint,
stating that activity B may only be scheduled after the completion of A,
however more elaborated constraints can be added to the model, including
stochastic delays between activities. In fact, both operations and constraints
are fully parameterizable, as explained in Figure 4. Each random duration is
characterized by 4 parameters: minimum duration, most probable duration
(mode), maximum duration and variability ranging from 1 to 5. Together,
these four parameters define a modified-PERT distribution, a probability dis-
tribution widely used in risk analysis [16], which has the advantage of enabling
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Fig. 5 The scheduling interface. Here for instance, 5 different manufacturing campaigns are
scheduled; the first 4 come from the same model (“Example Product 1”, Fig. 4), whereas the
last project “Order Prod 2” has been inserted following a different model (“Example Product
2”, not displayed in Fig. 4). The probabilistic (resp. deterministic) KPIs of the current
schedule are listed at the centre (resp. right) of the bottom area, such as the probability of
success (here: 98.2%).

asymmetric bounded probability distributions. More specific aspects of the
modeling interface will be presented during the application cases of Section 3.

The Scheduling Interface

Depicted in Figure 5, it permits to visualize the existing schedules, but
also create and optimize new ones, potentially based on different operational
assumptions (such as resources, as extensively applied in Section 3.2) and/or
models. Schedules can be duplicated, and the user may have an arbitrary num-
ber of different schedules, which allows for manual experiments. Starting from
either an existing or an empty schedule, the user may modify it in 4 ways:
add a project, remove a project, manual edition or optimize. Adding a project
means inserting, in addition to already planned projects, all the activities cor-
responding to a particular model. In practice, a schedule will typically contain
several occurrences of the same model: in fact, a model usually stands for a
particular product, and several manufacturing campaigns (i.e. projects) may
be planned for a given product. In fact, adding a new project to an existing
schedule usually ends up in an infeasible solution, that is, a schedule in which
some of the constraints, deadlines or resource usage are not respected. Whereas
the interface allows for a manual edition of the schedule, the user may also
ask the optimization engine (which runs on remote computation clusters) to
“Solve” the problem, resolving the violations whenever they are, and eventu-
ally optimize the predefined KPIs. The displayed schedule is interactive: by
clicking on any element on the chart, additional information is displayed, and
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possible further actions are proposed. The interface also shows both the deter-
ministic and probabilistic KPI values, such as for instance, the overall success
probability of the schedule. Finally, the user may also share a given sched-
ule, by generating an URL that can be used by someone else to visualize the
schedule in read-only mode (without accessing anything else), while enjoying
the interactive functionalities. Other aspects of the scheduling interface will
be presented during the application cases of Section 3.

3 Real-World Application Cases

This study presents a novel scheduling tool through three different case stud-
ies, involving three different biotech companies. Each case study happened
sequentially, following and further validating different stages of the tool’s
development.

At the time of the first case study (Section 3.1), conducted in collaboration
with Zentech company in 2019 and 2020, the graphical user interface (GUI)
was not developed yet. The tool only consisted of a theoretical background,
a modeling formalism and a versatile scheduling engine. The main research
questions were then to: (a) empirically assess, on field, the ability of our collab-
orators to understand, reuse and further modify the proposed visual modeling
formalism; and (b) determine the actual impact of uncertainty on their spe-
cific modelled manufacturing process, that is, the gain of schedules optimized
in light of uncertainty over schedules obtained based on classical deterministic
assumptions.

Section 3.2 describes the second case study, in collaboration with a
biomanufacturing plant based in Belgium, and belonging to the multinational
Japanese company Takeda. The study took place in 2021. Rombio is now given
a brand new GUI prototype, allowing (for the first time) an end-user to model
the problem using a user-friendly visual interface, run optimization processes
and visualize optimized schedules. As the modeling framework and the technol-
ogy were validated by the Zentech use case, the concerns were again two-folds:
(a) the applicability of proposed technology to a completely different company
and operational context; and (b) the practical utility of such technology in a
provisional scheduling and forecasting context.

Finally, in Section 3.3 we eventually address one of the most important
remaining questions: the ability of the end user to control and use our tool,
through the provided GUI, including the understanding and use of the graph-
ical modeling interface. In addition, this case study permitted us to confront
our technology to another, significantly different operational context: the com-
plex manufacturing process of living stem cells. This use case took place in
2021, with the Belgian biotech company Celläıon.
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Fig. 6 A visual model that fully describes the tasks and constraints involved in one pro-
duction campaign, for Zentech’s most popular product. Such a campaign involves around
85 activities, the most of these being subject to uncertain processing times. There are many
dependencies between the activities, some with temporal constraints of the form “activity

B should be operated at most 36 hours after the actual completion time of A”, which are
naturally particularly problematic under temporal uncertainty.

3.1 Diagnostic Kits at Zentech: the modeling quest, and
the price of robustness

Starting from the study conducted at the Mars Desert Research Station by
[11], and as the day humans will live on Mars is still far ahead, we wanted
to extend our tool as well as the underlying technology to tackle significantly
different operational context, others than human space missions. The study
was conducted with the Belgian company Zentech, specialized in the manu-
facturing of screening and diagnostic kits. They agreed to collaborate on the
concrete project of modeling the scheduling problem involved in the manu-
facturing of one of their most popular products, and eventually solving this
scheduling problem, at different scales. As observed and discussed further in
this section, the impact of uncertainty tends to naturally increase with the
problem size. From a development point of view, our collaboration permit-
ted us to extend our scheduling formalism and technology and reach a higher
stage of applicability, in the complex real world industrial context. Eventually,
it also provided the very first occasion to confront the stakeholders, who were
not planning experts, to our visual modeling formalism.

3.1.1 Modeling in the Industrial Real World Contexts

Figure 6 shows how their production problem was modelled, using the exact
same visual formalism that is currently implemented in Rombio’s GUI. At the
time of this use case however, the model was drafted by hand and further trans-
lated in a formal language, specific to our technology. Nowadays however, the
GUI includes a modeling part, and the translation is automatic. The model
depicted in Figure 6 only represents one single production campaign, involv-
ing around 85 tasks. The company would usually run up to three production
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Fig. 7 A possible optimized solution to the problem described by the model depicted in
Fig. 6 when three production campaigns are scheduled in parallel. The visualization includes
the operators’ task sequences as well as the resource (machines) usages. We see how the
campaigns overlap at the bottom with the blue, green and purple bars: each denotes a
campaign.

campaigns in parallel, whereas the operational human and physical resources
remain fixed.

Figure 6 in fact shows the graphical language used in order to describe
the activities and constraints involved in one manufacturing campaign of
their product. It relies on simple diagrams that are easily understandable by
our collaborators from the biotech company. In practice, the time needed by
our collaborators, being novice schedulers, to master the proposed modeling
formalism and reuse it revealed to be of five to ten one-hour meetings only.

3.1.2 Computing Robust Schedules

Experiments have been conducted by asking the Rombio system to gener-
ate and optimize schedules, for various problems involving from one to three
production campaigns. Each time, 10 schedules were optimized under uncer-
tainty, and 10 other schedules were optimized under classical deterministic
assumptions. In fact, the artificial intelligence behind the optimization engine
is actually quite likely to output different schedules each time at each run. An
example of a schedule, involving three campaigns, is shown in Fig. 7.

Uncertainty on the Uncertainty

Unlike many other applications, project management (and especially human
operations) suffers from the lack of historical observations. There is no “big
data”. As a consequence, the real probability distributions that describe our
uncertainty (here, the activity durations) remain hidden, and difficult to esti-
mate in practice. Our experiments hence take the uncertainty on this stochastic
knowledge itself into account. Figure 8 illustrates how we proceeded. Three
hypothetical couples of both estimator and real distributions are drawn. The
estimator distribution is simply the distribution used to describe the duration
of an activity. The estimator (blue) represents the current knowledge one has
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Fig. 8 Varying the quality of the stochastic knowledge, leading to three different experimen-
tal assumptions. Blue: estimated distribution, used at optimization stage. Red: real hidden
distributions, revealed at execution stage. Assumptions: a) the estimators are of good qual-
ity, their means coincide with that of the real distributions; b) all activity processing times
are globally underestimated; c) processing times are globally overestimated.

about the activity’s uncertainty (red, hidden). A schedule is therefore opti-
mized provided estimators only, whereas it is further evaluated by simulation
on the real distributions. Note that case c) corresponds to a somewhat usual
situation, in which the project manager tries to mitigate the risk by system-
atically overestimating the durations. We will soon see that one can do much
better.

Optimizing Wellness: Stress Aversion

Classical KPIs, at least those considered in optimization, are usually cost-based
(e.g. minimizing total production time). In human scheduling, stress aversion
and wellness in general are key KPIs to consider as well, especially in the long
term. The biotech company indicated that situations in which the employees
are forced to do extra-time work, in order to stick with operational constraints
and deadlines, necessarily result in an increased stress level. Therefore, we
decided to consider the expected total number of extra-hours as one of our KPIs.

3.1.3 Deterministic VS probabilistic schedules

The average results of our experiments are given in Table 1. It is not surpris-
ing to see that the average reliability of deterministic schedules significantly
decreases as the size of the problem increases. Here we only describe the con-
text in which we make the (optimistic) assumption that all the durations have
been globally over-estimated, because this is usually what people intend to do.
When optimizing the efficiency (makespan) first (MS), moving from one to
three campaigns decreases success rate from 17.1% to 2.5% for deterministic
solutions, whereas probabilistic ones decrease from 98% to 96%.

A better robustness is globally reached when optimizing the extra-time
first (EH), instead of makespan (MS). In fact, the less planned extra-time, the
most likely the schedule is to be able to absorb unexpected deviations, and
therefore the more flexible it is in the end.

Given three manufacturing campaigns and while minimizing the extra-
time first (EH), deterministic solutions reveal an average of 11.3 extra hours
(whereas only 1 hour was initially planned!). Probabilistic ones pass the sim-
ulations with only 3.8 extra hours on average, which is by the way very close
to the amount of extra time initially planned (3.0). Therefore, the actual aver-
age amount of unexpected extra-time can be divided by more than 3, when
optimizing under probabilistic assumptions.
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% Success Extra-Hours Makespan (days)

Exa. Und. Over Plan Exa. Und. Over Plan Exa. Und. Over

1C MS 6.6 0.9 17.1 9.9 9.7 11.3 10.0 15.1 15.7 16.6 15.4
Det. EH 60.9 37.5 40.2 0.0 4.6 5.9 4.3 17.2 19.8 20.7 18.5

1C MS 98.4 83.7 98.0 1.4 4.1 6.1 3.1 17.2 17.2 17.3 17.2
Prob. EH 99.9 99.6 100.0 1.0 1.9 2.7 1.0 26.9 27.1 27.4 27.0

3C MS 0.5 0.0 2.5 16.6 29.1 34.6 26.7 38.1 41.9 42.5 40.1

Det. EH 14.2 2.2 12.5 1.0 15.7 23.6 11.3 45.5 46.4 46.8 45.9

3C MS 96.2 61.1 96.0 6.2 13.0 20.0 10.3 43.2 43.2 43.3 43.2

Prob. EH 99.4 97.7 98.7 3.0 6.4 9.9 3.8 58.9 58.9 58.9 58.9
Table 1 Zentech case study: one (1C) and three (3C) manufacturing campaigns, optimized under either deterministic (Det.) or probabilistic
assumptions (Prob.). Three different assumptions on a priori stochastic knowledge: exact mean, 10% under-estimations and 10% over-estimations.
Results indicate the percentages of simulations (% Success) in which the optimized schedules respect all the problem constraints, when simulated
using the “hidden” probability distributions. The Plan columns indicate the KPI values as predicted by the a priori schedule. Other columns show the
average KPI values observed during simulations. MS : minimizing the cost KPI (makespan) first, extra-time second. EH : extra-time first, cost second.
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The price of robustness

The difference of efficiency between probabilistic and deterministic solutions,
when not taking the success rate into account, is what we call the price of
robustness. Here for instance, when optimizing makespan first (MS), deter-
ministic solutions to three campaigns are found with schedules of 40.1 days
on average (no matter whether these schedules eventually succeed), whereas
probabilistic solutions involve schedules lasting 43.2 days on average. In other
words, the probabilistic approach suggests to sacrifice 8% of the theoretical
efficiency, in order to obtain schedules that are 38 times more reliable in prac-
tice (2.5 to 96), and that even when all the processing times are globally
over-estimated in the first place. Interestingly, a similar result was obtained in
[11], in which the price of robustness was on 7% on average in the context of
a space mission.

3.1.4 Conclusions and insights from the Zentech use case

This use case marked the very first proof of concept, in the industrial world, of
the applicability of our technology. Empirical evidence showed that, without
many historical observations and even provided a very bad a priori knowl-
edge of the uncertainty, the optimized schedules significantly outperform those
obtained using classical deterministic assumptions, while preserving most of
the solution’s quality. This is also true when all processing times are con-
sciously overestimated. Moreover, we showed that using a probabilistic model
enables us to optimize the operators’ stress wellness, by minimizing their
expected amount of extra-time. This validates the concept of RAMS over clas-
sical APS systems, namely by providing empirical evidences on the fact that
a) a simple graphical formalism suffices to model a problem as complex as a
real world biotech manufacturing process; and b) an optimization engine that
takes uncertainty into account while generating solutions is clearly preferable
to classical optimization techniques. Remark that these two conclusions were
already obtained by [11] in the context of an human space mission, but not
for biomanufacturing. In the next use cases, we will see that they also apply
in other, slightly different, industrial contexts.

3.2 Pharmaceuticals Manufacturing at Takeda: capacity
analysis and investments

The general purpose of this study is to optimize Takeda Lessines supply long-
term plan (LRP), towards a higher manufacturing capacity while taking into
consideration manufacturing constraints, as well as operation lines specificities
and equipment capacities.

Takeda Lessines is a pharmaceutical company producing life-saving
medicines for patients around the globe. The manufacturing plant, located in
Lessines (Walloon Region, Belgium), operates 24h/7d and is dedicated to the
purification, filling and packaging operations of plasma-derived products.
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Fig. 9 The modeling of the GLA manufacturing process. All four operations have uncertain
durations, represented by the probability PERT distributions, drawn from the user inputs:
minimum, mode, maximum duration. Each operation is assigned to a specific operation line,
and linked to its predecessor by temporal constraints. The model is structurally correct, yet
the true operational and constraint values have been modified for confidentiality matters.

GLA is a sterile, ready-to-use, liquid preparation of purified human Alpha-1
Antitrypsin (AAT). GLA is indicated for chronic augmentation and main-
tenance therapy in adults with clinically evident emphysema due to severe
congenital deficiency of AAT. The purification process consists of several chro-
matography and ultrafiltration systems to achieve a high-quality & highly
purified intermediate, followed by filling operations using Restricted Access
Barrier System (RABS) technology & final inspection and packaging with
semi-automated lines.

3.2.1 Modeling and Scheduling

The model of the GLA manufacturing process, depicted in Figure 9, is quite
simple: four activities (DSa, DSb, DP, Filling) linked by temporal constraints.
Each of the tasks has several properties, in addition to its temporal uncertainty.
For instance, the DP activity is carried out on a specific operating line Ligne
5 DP. Its processing time ranges from 12 to 24 hours, with a most probable
duration (mode) of 16 hours. Furthermore, DP has two different temporal
constraints with its predecessor DSb. The first one states that between DSb
and DP the product uses one unit of space in the fridge, and that its maximum
duration in the fridge is 4 months. The second temporal constraint is stochastic
and represents the time required for releasing the unit of product, which may
take from 15 days to 65 days, with a most probable duration (mode) of 25 days,
leading to the asymmetric temporal distribution depicted in the top center of
Figure 9.

The DS activities are modelled into two distinct subtasks DSa and DSb,
in order to represent the fact that, whereas they both use the same production
line Ligne 5, the first part (DSa) of the DS activity may not be processing
in parallel of other activities on the same line, whereas the second part (DSb)
may share the line (with DSb operations from different campaigns). A special
temporal constraint between DSa and DSb states that there cannot be any
waiting time between these two phases. Under this configuration, at most two
distinct DS can be ran in parallel during the same week, with an offset that
depends on DSa, as shown on Figure 10.
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Fig. 10 A possible scheduling of three couples DSa + DSb, given that the operation line
is closed from Saturday 6am to Monday 8am.

Fig. 11 An example of a schedule involving 8 manufacturing campaigns of Takeda’s GLA
product, with a planned shutdown period (the four long red activities). Provided the starting
date of each campaign (yellow arrows), the system accurately predicted the ending dates
(green) expected by the company’s field expert.

First schedules validating the model

In order to obtain first meaningful schedules, we have been provided a list of 8
manufacturing campaigns to be scheduled, together with the planned starting
times (yellow arrows in Figure 11) of each of them. We were also given an
interval of time during which all the production lines are closed (shutdown).
Eventually, provided only the model presented in Figure 9 and the starting
dates, the system was able to accurately predict the theoretical ending dates
(green arrows) of each campaign, as planned by the field experts.

3.2.2 Robustness versus efficiency

In a second time, the same set of campaigns were considered again, but without
imposing specific starting times. As a consequence, the optimization engine
became free to schedule some campaigns sooner, eventually maximizing the
overall efficiency. The produced schedules, such as shown in Figure 12, were
in fact approximately 20% more efficient (25% if we don’t take the shutdown
into account) with total manufacturing time of one month instead of five.
Unfortunately, these schedules were also very brittle, with a success probability
of approx. 26%.

Detecting bottlenecks

Eventually, the system permitted us to detect the source of brittleness: the
main bottleneck was due to the limited number of emplacements in the fridge.
Because the manufacturing process uses part of these emplacements during
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Fig. 12 By letting the system free to schedule all the campaigns, without imposing starting
times, the optimized schedules are approximately 20% more efficient. Although being totally
feasible on the paper, when taking uncertainty into account they however reveal very brittle.
In particular, the system indicates that 68% of the potential issues are due to a conflict on
a particular resource: the limited emplacements in the fridge.

the delay imposed by the release phase between DS and DP, delays in the
other operations may propagate on the line and one may eventually run out
of space in the fridge. In fact, the system indicated that 68% of the potential
problems were due to a conflict of the fridge resource, rather than the violation
of a temporal constraint.

Risk aversion

A possible solution would be to buy more space in the fridge; this will be
addressed later. For the moment, we used the fact that Rombio allows us
to parameterize a maximum level of risk, when computing the schedules. By
imposing an acceptable level (according to field experts), the system produced
optimized schedules while mitigating the risk to uncertainty, eventually inte-
grating slack times in the planning to avoid conflicts on the fridge resource, as
shown in Figure 13. While the new schedules were hence of reasonable robust-
ness, it is interesting to note that their efficiency, in terms of total production
time, revealed to be equivalent to that of the initial schedules, those optimized
whereas the starting times of the campaigns were suggested by the company’s
field expert.

3.2.3 Improving the manufacturing process

One of Takeda’s concerns is the limited number of DS that can be launched
in parallel in the same week. As shown on Figure 10, only two of them may
cohabit during the same week. It appears however that, if the process (i.e. the
model) could be adapted in order to decrease of 10 hours the time required by
DSa, hence transferring this amount time to DSb, then a second DS could be



RAMS: from Space Exploration to Real-World Biomanufacturing 19

Fig. 13 When asking the system to orient the computation in order to obtain more reli-
able schedules (i.e. with higher success probability), the fridge emplacements bottleneck is
compensated by introducing slack times (dotted circles).

started sooner, and eventually a third one on the same week. This is depicted
in Figure 14.

Determining the appropriate investments

In order to fully exploit the potential of such adaptation of the model, which
could significantly increase the efficiency (50%), it clearly appears that addi-
tional fridge emplacements are required. Indeed, we saw that even the current
process was lacking some emplacements in order to be fully functional. In fact,
in the current process, the system indicates that no more than 5 additional
emplacements suffice to reach the maximum efficiency. Similarly, once the new
process has been modelled, is it not difficult to simulate investments, by ask-
ing the system to optimize schedules provided a defined number of additional
resources, such as the fridge emplacements. Eventually, repeating the opera-
tion with different numbers of emplacements indicated that 12 additional ones
are enough to reach the maximum manufacturing efficiency. Interestingly, it
appeared later one that this predicted number coincided precisely with the
investment decided by the management.

Finding the right compromise between robustness versus efficiency

Recall that in Section 3.2.2, we applied a risk aversion strategy in order to
reach an acceptable level of risk in the computed schedules. This is possible
thanks to a feature of Rombio, which allows the user to define a maximum
level of risk, a threshold that the system would try not to exceed while opti-
mizing the solutions. The higher the threshold is, the more brittle will be the
solutions, but also the more the engine will be able to focus on other KPIs
such as efficiency by minimizing the total manufacturing time. Again, it is
in fact easy to repeat the optimization process, while varying the predefined
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Fig. 14 By adapting the manufacturing process (the model) in order to transfer 10 hours
of the DSa phase to DSb, we are eventually able to schedule three DS in parallel on the
same week.

Fig. 15 A Pareto front obtained by plotting the different schedules, in terms of efficiency
(Expected Makespan) and risk (Expected violations), obtained by optimizing while setting
each time a different acceptable level of risk. Recall that all the solutions are feasible on
the paper, but when considering the temporal uncertainty, they each come with different
levels of risk. The levels of risk are expressed as an expected number of constraint violations
(not only temporal, a conflict on a resource is also a violation). For instance, a conservative
solution, with a risk of 1.6 would complete all the planned manufacturing campaigns in 208
days on average. On the other hand, the makespan could be ultimately decreased to 162
days by accepting a risk level of 3.7 violations on average. In the end, the manager decides
by considering the expected cost of dealing with the constraint violations, compared to the
savings provided by a shorter makespan.

threshold, hence producing different schedules, from the most dangerous to the
most conservative. This is a common approach in bi-objective optimization, in
particular when the objectives are contradictory. Here the two objectives are
robustness and efficiency, and they are naturally contradictory. By plotting
the results, we obtain in Figure 15 a so-called Pareto front (see e.g. [17]), a
curve that describes all possible compromises between solution robustness and
expected efficiency. For instance, we observe that by sacrificing only 4% of the
theoretical maximal efficiency (169 days instead of 162), the risk is decreased
by 32% (2.5 instead of 3.7).
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3.2.4 Conclusions and insights from the Takeda use case

In this use case we successfully modelled and solved the problem of managing
the operations along a real life production line, in a multinational pharma-
ceutical company. The previous use case of Section 3.1 was centered on the
modeling complexity and the efficiency of the computed schedules. In this proof
of concept in collaboration with Takeda, we saw that even provided very lim-
ited inputs (a few working times and a simple model), the system is able to
accurately predict not only the actual provisional schedules, but also detect the
major bottlenecks in terms of resources. In addition to the current state of the
manufacturing process, the system also enabled us to consider an alternative,
more efficient, process (i.e. a different model). The system eventually accu-
rately predicted the investments, in terms of a particular resource, that were
actually planned by the management in order to switch on the new process
in the near future. Finally, by playing around with the risk threshold param-
eter of Rombio, we were able to compute a set of different solutions, from the
most dangerous solution to the most conservative one. We hence obtained a so-
called Pareto front, a curve that describes the set of all possible compromises
between robustness and expected efficiency.

3.3 Stem Cells Production Celläıon: scheduling with the
living

Celläıon develops a pipeline of second-generation products in systemic inflam-
matory space to repair and regenerate tissues and organs. The growing of stem
cells represents a significantly different problem from that of manufacturing
medicines or screening kits. In fact, working with the living imposes a higher
level of uncertainty. The operations, conducted by human beings in sterile
zones generate uncertainties of course, but the most of the uncertainties actu-
ally lie in the cell maturation times. In other words, the waiting times between
the operations are more uncertain than the operations themselves.

Furthermore, in cell therapy one does not necessarily seek for raw efficiency.
Naturally, the company is interested in being operationally able to maximize
the number of cell batches that can be produced within, let’s say, a year. Yet,
producing even just one batch of stem cells at the time is so complex, that in
practice, a marginal decrease in the natural variation costs could be much more
profitable than producing a second batch. As a consequence, the company is
more interested in the ability of forecasting the risks and natural variations,
eventually finding how to reach better reliability, rather than designing a way
of producing more.

We conducted this use case in collaboration with the Belgian company
Celläıon in 2021. In what follows, we present how the Rombio system has been
used in order to address some fundamental questions the company faces, at a
time when this company is completely rethinking and redesigning its activities.
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Fig. 16 The modeling of the activities, temporal constraints, and resources involved in
the processing of one batch of stem cells. Because the maturation times of the cells are
unpredictable by nature, all the constraints (dotted arrows) are stochastic, in the sense
that the operators do not known in advance how long they will have to wait between two
activities. Resources, such as incubators or human operators (expressed in % occupation),
are exploited during these waiting times. Right after P4, the process is split in two parallel
branches, each requiring a growing number of incubators. The model is structurally correct,
yet the true operational and constraint values have been modified for confidentiality matters.

Fig. 17 An example of a schedule combining six stem cell production campaigns, spanning
four months.

3.3.1 Modeling specificities

The modeling of a stem cell manufacturing process is depicted in Figure 16.
The model has been constructed directly in the Rombio system, using the
graphical modeling interface. In the depicted model, we see that all the tempo-
ral constraints are uncertain. In fact, each constraint represents a maturation
time between the different phases of the process, which is stochastic. In fact,
operators do not know in advance how long they need to wait between activ-
ities. Resources (both human and material) are exploited during the waiting
times between the process steps. Actually, there are, however, strict constraints
on the moments at which, for instance Pn task, can be operated depending
on both the completion time of Pn−1 and the time required to the cells to
mature enough to be processed in Pn. If x days are required, then Pn must be
operated between x − 1 and x + 1 days after Pn−1. Whereas this maturation
time remains variable, yet the evolution of the cells can be monitored, which
explains that the (a priori) unknown duration can actually be predicted (i.e.
observed) a couple of days ahead.
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Fig. 18 Capacity analysis study at Celläıon: how the quality of the schedules evolves
with the demand (number of cell batches) and the available resources. The values inside a
table cell represent the quality of the best schedule found by the optimization engine. It is
expressed in terms of average number of constraint violations, and percentage of problematic
activities. A black cell indicates that no deterministic feasible schedule could be found.

3.3.2 Capacity and investments analysis

In the process of rethinking their activities, the company was interested in
determining how the manufacturing conditions evolve with the number of
stem cell batches that are processed in parallel. A batch of cells is processed
in approximately 2.3 months. Provided the company’s human and material
resources, it should however be possible to produce concurrently, for instance,
two or more batches in less than 4 months. While limiting the time horizon to
4 months, Rombio has been asked to find optimized schedules that combine
from 1 and up to 6 production campaigns. Figure 17 shows an example of a
schedule with 6 campaigns in parallel, organized over 4 months.

The company is however not accustomed to process six campaigns in par-
allel. In fact, the current resources do not allow it. Using our RAMS system
Rombio, we were able to determine how the quality of the optimized schedules,
in terms of reliability, evolves depending on the number of campaigns in par-
allel. Then, we repeated the computations while providing different resource
configurations to the company (e.g. having 2 zones, 12 incubators, 10 oper-
ators, instead of 1 zone, 6 incubators, 5 operators). This eventually resulted
in the four tables depicted in Figure 18, showing how the production capacity
evolves with both the imposed demand and the available operational resources.

The results obtained in the capacity analysis study, in Figure 18, consti-
tute key insights for the company to consider future investments. For instance,
we see that solely increasing the number of human operators (top left table)
is useless. Whereas it does not significantly improve the quality of the sched-
ules, it does not allow to find deterministic feasible (i.e. fulfilling all the



24 RAMS: from Space Exploration to Real-World Biomanufacturing

Fig. 19 An optimized long term schedule (7 months), involving five cell batches and three
other productions. Here the Rombio interface spots the activities that are the most likely to
generate extra-hours. Whereas the schedule involves 28.5 extra-hours in order to be feasible
(i.e. zero violations on the paper), in practice when taking uncertainty into account this
number is 66.5 extra-hours on average, with an expected 3.9 violations.

constraints under deterministic assumptions) schedules for 4 batches. Further-
more, increasing the number of incubators as well as operators do not provide
a significant improvement, whereas some improvements are perceptible on 3
and 4 batches, when also moving from 1 to 2 zones. Eventually, we observe
that only a combination of all investments (namely a second sterile zone, an
increased number of incubators, and 12+ operators) permits to increase the
production up to 5 or 6 parallel batches. But even with two parallel batches
only, more reliable solutions can only be obtained by combining investments
in all of these three resources (bottom right table of Figure 18).

3.3.3 Compromises in the long term

The company’s expert provided an example of a forecast of the demand in stem
cells. Five cell batches, as well as three independent productions, will have to
be scheduled in 7 months. Given the resources of the company, still in terms
of human operators, machines and production areas, the Rombio system has
been solicited to solve this problem, producing optimized schedules.

An example of a schedule is shown in Figure 19. For the company, the
principal quality criterion of a schedule, and therefore the first KPI to be opti-
mized, is the expected number of constraint violations. It is however important
to note that, in many cases, a constraint violation could be resolved by asking
operators to work when they are not supposed to, that is, doing extra-hours.
For example, an activity planned on a Friday may not necessarily be postponed
to Monday, thus requiring a couple of operators to work on the weekend. In
Figure 19, the system shows which are the activities that are the most likely
to require extra-hours.
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Fig. 20 Pareto front obtained by plotting the different schedules, according to their
expected amount of extra-hours and their risk (expected violations). As for Fig 15, these
compromises are obtained by optimizing with different risk limits.

Since extra-hours contribute to resolve constraint violations, increasing the
allowed amount of it is likely to increase the success probability. Unfortunately,
it also contributes negatively to the operators’ wellness, inducing stress and,
eventually, increases the amount of medical leaves. However, similarly increas-
ing the acceptable level of risk results in a decrease of the expected amount of
extra-hours. Similarly to the previous study of Section 3.2.3, we face a prob-
lem in which two contradictory objectives must be optimized. Many possible
compromises actually exist, forming a so-called Pareto front (see e.g. [17]), a
curve that describes all possible compromises between solution robustness and
operators’ wellness.

A Pareto front in the context of this study is shown in Figure 20. The
minimum risk achieved by the optimization engine is 3.9, which would generate
66.5 extra-hours on average. Yet, by allowing the engine to consider slightly
more risky schedules, the optimization process could focus on the second KPI,
namely minimizing the expected extra-hours. For instance, there exists an
alternative schedule, having 10% more risk, but reducing the extra-hours by
17%. Eventually, the adequate compromise will be selected by the company.

3.3.4 Conclusions and insights from the Celläıon use case

In this use case, the principal operations in a stem cells manufacturing com-
pany have been modelled and scheduled, while considering both the process
reliability and the operators’ wellness. The reliability is again expressed in
terms of probability of success, or expected number of constraint violations
during the manufacturing process.

However, contrary to the two previous use cases (Zentech, Takeda), here
Nature imposes its uncertainty between the actual operations, namely in the
waiting times during cell maturation phases, in addition to the operations
themselves. The resulting schedules are therefore highly brittle, and are likely
to generate a huge amount of extra-hours. On the other hand, extra-hours
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are only manageable under a certain quantity. As Rombio’s engine is able to
optimize while pursuing several KPIs, such as the risk and the expected extra-
hours, the system demonstrated its ability of providing solutions for different
levels of compromises between risk and operators’ wellness.

4 Conclusions

In this paper, we introduce a new (manufacturing) operations management
framework, called (robust) advanced modeling and scheduling (RAMS). Unlike
classical tools, called APS (advanced planning and scheduling), with an AMS
the user directly (and graphically) models the operational problem at stake,
which allows for a wide range of potential applications. The R in RAMS
stands for robust, as the system is not only able to generate optimized solu-
tions (schedules), but these solutions are designed while taking uncertainty
into account.

We described Rombio, a new software carrying these properties, hence
being the first RAMS system. We apply Rombio’s technology to three differ-
ent biomanufacturing use cases, in three different Belgian biotech companies,
despite the different operational contexts: diagnostics (Zentech company),
medicines (Takeda company) and stem cells (Cellaion company). These use
cases show the benefits of using a probabilistic modeling approach, taking the
time uncertainty of activities durations into account at optimization stage,
which are clearly confirmed by the empirical average gains compared to clas-
sical (risk-aversion) approaches. Schedules obtained using our probabilistic
optimization engine, at the expense of sacrificing only 8% of the theoretical
efficiency, are 38 times more reliable on average than those obtained when
not taking uncertainty into account. Use cases also show how an RAMS can
be used to not only schedule operations, but also conduct capacity analysis
studies, simulate investments and assess alternative manufacturing processes.
Using our RAMS system, we were able to correctly predict the exact future
investments already planned in a multinational pharmaceutical manufacturing
company, in a few hours only. The system also permitted us to suggest new
strategic (combinations of) investments, in all the three considered companies.

Future work includes the integration and assessment, in real conditions
(biomanufacturing, space missions), of online management capabilities: online
monitoring and rescheduling. Online monitoring aims at updating the schedule,
as well as the underlying model, keeping them consistent according to past
events and current state of the operations. This eventually allows for adapting
and rescheduling future decisions, in light of past decisions and outcomes.
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