1.
Routh JC, Grundy PE, Anderson JR, Retik AB, Kurek KC. B7-h1 as a biomarker for therapy
failure in patients with favorable histology Wilms tumor. J Urol. 2013;189(4):1487-1492.
2.
Malogolowkin M, Cotton CA, Green DM, et al. Treatment of Wilms tumor relapsing after
initial treatment with vincristine, actinomycin D, and doxorubicin. A report from
the National Wilms Tumor Study Group. Pediatr Blood Cancer. 2008;50(2):236-241.
3.
Cone EB, Dalton SS, Van Noord M, Tracy ET, Rice HE, Routh JC. Biomarkers for Wilms
Tumor: A Systematic Review. J Urol. 2016;196(5):1530-1535.
4.
Zhu S, Fu W, Zhang L, et al. LINC00473 antagonizes the tumour suppressor miR-195 to
mediate the pathogenesis of Wilms tumour via IKKalpha. Cell proliferation. 2018;51(1).
5.
Liu K, He B, Xu J, et al. miR-483-5p Targets MKNK1 to Suppress Wilms' Tumor Cell Proliferation
and Apoptosis In Vitro and In Vivo. Medical science monitor : international medical journal of experimental and clinical
research. 2019;25:1459-1468.
6.
Jia W, Deng Z, Zhu J, et al. Association Between HACE1 Gene Polymorphisms and Wilms'
Tumor Risk in a Chinese Population. Cancer investigation. 2017;35(10):633-638.
7.
Schwartz MH, Wang H, Pan JN, et al. Microbiome characterization by high-throughput
transfer RNA sequencing and modification analysis. Nature communications. 2018;9(1):5353.
8.
Xu Y, Chen J, Yang Z, Xu L. Identification of RNA Expression Profiles in Thyroid Cancer
to Construct a Competing Endogenous RNA (ceRNA) Network of mRNAs, Long Noncoding RNAs
(lncRNAs), and microRNAs (miRNAs). Medical science monitor : international medical journal of experimental and clinical
research. 2019;25:1140-1154.
9.
Liu Q, Deng J, Wei X, Yuan W, Ma J. Integrated analysis of competing endogenous RNA
networks revealing five prognostic biomarkers associated with colorectal cancer. Journal of cellular biochemistry. 2019.
10.
A J, DS M, E L. miRcode: a map of putative microRNA target sites in the long non-coding
transcriptome. Bioinformatics (Oxford, England). 2012;28(15):2062-2063.
11.
CH C, S S, CD Y, et al. miRTarBase update 2018: a resource for experimentally validated
microRNA-target interactions. Nucleic acids research. 2018;46(null):D296-D302.
12.
N W, X W. miRDB: an online resource for microRNA target prediction and functional
annotations. Nucleic acids research. 2015;43(null):D146-152.
13.
K P, KB K. miRTar Hunter: a prediction system for identifying human microRNA target
sites. Molecules and cells. 2013;35(3):195-201.
14.
S Z, L D, X L, H F. Identification of biomarkers associated with the recurrence of
osteosarcoma using ceRNA regulatory network analysis. International journal of molecular medicine. 2019;undefined(undefined):undefined.
15.
W T, C J, Z H, D X, S Z. Comprehensive analysis of dysregulated lncRNAs, miRNAs and
mRNAs with associated ceRNA network in esophageal squamous cell carcinoma. Gene. 2019;undefined(undefined):undefined.
16.
Bhan A, Soleimani M, Mandal SS. Long Noncoding RNA and Cancer: A New Paradigm. Cancer research. 2017;77(15):3965-3981.
17.
Slaby O, Laga R, Sedlacek O. Therapeutic targeting of non-coding RNAs in cancer. The Biochemical journal. 2017;474(24):4219-4251.
18.
Sun W, Yang Y, Xu C, Guo J. Regulatory mechanisms of long noncoding RNAs on gene expression
in cancers. Cancer genetics. 2017;216-217:105-110.
19.
S Z, W F, L Z, et al. LINC00473 antagonizes the tumour suppressor miR-195 to mediate
the pathogenesis of Wilms tumour via IKKα. Cell proliferation. 2018;51(1):undefined.
20.
L W, D L, X W, et al. Long non-coding RNA (LncRNA) RMST in triple-negative breast
cancer (TNBC): Expression analysis and biological roles research. Journal of cellular physiology. 2018;233(10):6603-6612.
21.
X Z, K R, Y W, et al. Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid:
isoform structure, expression, and functions. Endocrinology. 2010;151(3):939-947.
22.
Y L, J L, Y Y, et al. Dysfunction of the WT1-MEG3 signaling promotes AML leukemogenesis
via p53-dependent and -independent pathways. Leukemia. 2017;31(12):2543-2551.
23.
ZZ X, ZC X, YX S, W L, GL T. Long non-coding RNA Dleu2 affects proliferation, migration
and invasion ability of laryngeal carcinoma cells through triggering miR-16-1 pathway.
European review for medical and pharmacological sciences. 2018;22(7):1963-1970.
24.
CN F, L M, N L. Systematic analysis of lncRNA-miRNA-mRNA competing endogenous RNA
network identifies four-lncRNA signature as a prognostic biomarker for breast cancer.
Journal of translational medicine. 2018;16(1):264.
25.
N Z, J H, Y W, et al. Integrated analysis of a competing endogenous RNA network reveals
key lncRNAs as potential prognostic biomarkers for human bladder cancer. Medicine. 2018;97(35):e11887.
26.
Y X, Z Z, Y Z, L Z, A Z, D P. Comprehensive analysis of differential expression profiles
of mRNAs and lncRNAs and identification of a 14-lncRNA prognostic signature for patients
with colon adenocarcinoma. Oncology reports. 2018;39(5):2365-2375.
27.
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management
of cancer and other diseases. Nature reviews Drug discovery. 2017;16(3):203-222.
28.
H G, Z Y, C W, et al. MicroRNA-200a suppresses prostate cancer progression through
BRD4/AR signaling pathway. Cancer medicine. 2019;undefined(undefined):undefined.
29.
X C, K L, P Y, et al. microRNA-200a functions as a tumor suppressor by targeting FOXA1
in glioma. Experimental and therapeutic medicine. 2019;17(1):221-229.
30.
Y Z, Y T, B W, X J. miR-200a-3p promotes the proliferation of human esophageal cancer
cells by post-transcriptionally regulating cytoplasmic collapsin response mediator
protein-1. International journal of molecular medicine. 2016;38(5):1558-1564.
31.
Q W, RL L, JX L, LJ R. MiR-200a and miR-200b target PTEN to regulate the endometrial
cancer cell growth in vitro. Asian Pacific journal of tropical medicine. 2017;10(5):498-502.
32.
E T, J W, DE F, E A, C W. miR-200a inhibits migration of triple-negative breast cancer
cells through direct repression of the EPHA2 oncogene. Carcinogenesis. 2015;36(9):1051-1060.
33.
M Z, E X, W S. Andrographolide promotes vincristine-induced SK-NEP-1 tumor cell death
via PI3K-AKT-p53 signaling pathway. Drug design, development and therapy. 2016;10(undefined):3143-3152.
34.
XS Z, B H, JX Z, N T, CY D. MiR-155-5p affects Wilms' tumor cell proliferation and
apoptosis via targeting CREB1. European review for medical and pharmacological sciences. 2019;23(3):1030-1037.
35.
H L, D H, S H. Salidroside inhibits the growth, migration and invasion of Wilms' tumor
cells through down-regulation of miR-891b. Life sciences. 2019;undefined(undefined):undefined.
36.
K T, J K, J K, et al. Senescence Process in Primary Wilms' Tumor Cell Culture Induced
by p53 Independent p21 Expression. Journal of Cancer. 2016;7(13):1867-1876.