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Abstract
Background

Postoperative cognitive dysfunction (POCD) is a debilitating neurological complication in surgical
patients. Current studies mainly focus on microglia activation, however, less is known about the
mechanism underlying neuronal synaptic changes involved in microglia activation. Recent studies
indicate that silent information regulator 1 (SIRT1) plays critical roles in different neurological disorders,
and is involved in microglia activation. Herein, we evaluated the effects of SIRT1 activation on POCD.

Methods

Exploratory laparotomy were employed on mice (12-14 month) under sevo�urane anesthesia to establish
model of POCD. Transcriptional changes in hippocampus after anesthesia and surgery were evaluated by
RNA sequencing. SIRT1 expression were veri�ed by Western Blot. Mice were treated with SIRT1 agonist
SRT1720 or vehicle after surgery. Changes in microglia morphology, microglial phagocytosis, as well as
dystrophic neurites and dendritic spine density were determined. Cognitive functions were evaluated by Y
maze and Morris water maze.

Results

SIRT1 expression levels were downregulated in anesthesia and surgery group. Anesthesia and surgery
lead to microglia morphology alteration, enhanced synaptic engulfment, dendritic spine loss, and
cognitive de�cits in our mice model, all of which were alleviated by SRT1720 administration.

Conclusion

Our study unveils one of the roles of SIRT1 in POCD pathogenesis. SIRT1 activation may represent a
therapeutic strategy for prevention and treatment of POCD.

Introduction
Postoperative cognitive dysfunction (POCD) is a frequent complication of the central nervous system in
surgical patients, which is typically characterized by memory decline, inattention, and impaired
orientation following surgery [1]. The clinical symptoms can last for months or even years, resulting in
adverse conditions (including delayed postoperative recovery, prolonged hospitalization and increased
mortality) [2]. Although it is thought that neuroin�ammation, oxidative stress, amyloid beta deposition
and hyperphosphorylation of tau protein may involve in POCD pathogenesis [2,3], mechanisms of POCD
remain largely obscure.

The vast majority of research focused at alleviating neuroin�ammation in POCD, and the common
feature among these studies is microglia activation [4-6]. Microglia originate in the yolk sac and migrate
in the brain during embryonic stage [7]. Microglia are considered as brain-resident macrophages, which
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are isolated from the rest of body by blood brain barrier [8]. In brain development, homeostatic microglia
are key regulator of synaptic pruning and synaptic re�nement [9]. Besides, microglia serve a surveillance
role in eliminating apoptotic debris and invading pathogens in the mature brain [10]. However, abnormal
microglia activation has detrimental effect on synaptic connectivity and synaptic functions in various
neurological disorders [11]. From our previous study, microglia activation and synapse lose are observed
in the hippocampus of POCD mouse model [12].

Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent class III
histone deacetylase of the sirtuin family, presented in a wide range of tissues including the brain [13].
SIRT1 binds to and deacetylases various targets such as nuclear factor-kappa B (NF-κB), p65, forkhead
box O (FOXO), peroxisome proliferator-activated receptor alpha (PPARα) and PPAR-gamma co-activator 1-
alpha (PGC-1α), modulating a variety of cellular processes [14]. SIRT1 is recognized to have
neuroprotective properties in neurodegenerative diseases and psychiatric disorders [15,16]. However, far
less is known regarding the molecular roles of SIRT1 in the development of POCD.

In current study, we demonstrate that anesthesia and surgery induces SIRT1 dysfunction and microglia
activation in hippocampus. SIRT1 agonist SRT1720 protected against synaptic engulfment by microglia.
Together, our data provide evidence that abnormal microglia activation mediates synaptic engulfment in
POCD. SIRT1 activation may become a promising therapeutic approach to prevent synapse loss and
preserve cognitive function in POCD.

Materials And Methods
Animals

Wild-type C57BL/6 mice (12-14 month of age) were used for all experiment. Mice were purchased from
Vital River Laboratory Animal Technologies (Beijing, China) at 9 month-old. All mice were housed on a 12-
hour light/dark cycle with ad libitum access to water and food. All experimental procedures were
approved by Institutional Animal Care and Use Committee at Capital Medical University (protocol AEEI-
2020-117). The schematic of the experimental design is presented in Fig.1

Establishment of POCD mice model

Mice received exploratory laparotomy as previous described [17]. Mice were anesthetized by 5%
sevo�urane for three minutes in a chamber. After induction, we moved mice out of chamber and
performed surgical procedure under 2% sevo�urane. A midline abdominal incision approximately 3cm
was made to expose surgical �eld. Liver, stomach, spleen, kidney, intestine and bladder were explored in
sequence. The muscle fascia and skin were closed with 5-0 nylon sutures. Procedure lasted around 15
min. 0.2% ropivacaine was injected on incision subcutaneously for postoperative analgesia. Sevo�urane
anesthesia were terminated after the operation, and mice were returned to their cages. Temperature was
maintained at 37°C during surgery using a heating pad. Mice that served as control, did not underwent
any anesthesia or surgery.
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RNA-seq and bioinformatic analysis

Total RNA was extracted from hippocampi using Trizol (Tiangen, Beijing, China). Complementary DNA
was synthesized with DNA polymerase I and RNaseH. Products were puri�ed by polymerase chain
reaction to conduct the library, and then were quanti�ed using Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA). Sequencing were performed using Illumina HiSeq sequencer
(Illumina).

Data were aligned using HISAT2 (Johns Hopkins University) with default parameters [18]. HTseq was
used for quanti�cation and R (version 5.2.0) was used for bioinformatics analysis. DESeq2 (version
1.30.0) was used for differential expression analysis. ClusterPro�le (version 3.10) was used for Gene
Ontology (GO) and network analysis. Gene set enrichment analysis (GSEA) was performed using MSigDB
(version 7.0).

Drug administration

SRT1720 (S1129, Selleck, Houston, TX, USA), a SIRT1 agonist, was dissolved in dimethyl sulfoxide
(DMSO) at a concentration of 40mg/ml and stored at -20 °C. SRT1720 was further diluted by saline
solution in use. Mice were injected intraperitoneally (i.p.) with SRT1720 at 20mg/kg immediately
following exploratory laparotomy and then once daily for subsequent 2 days. The selected dose was
based on previous study [19]. Vehicle-treated mice received 5%DMSO in saline solution.

Western blot

Hippocampal tissues were dissected on ice. Then dissected tissues were lysed on ice for 30min in RIPA
lysis buffer (Beyotime, Jiangsu, China) with protease and phosphatase inhibitors (Roche, Manheim,
Germany). Protein concentration was quanti�ed by BCA protein assay (Thermo Fisher Scienti�c,
Waltham, MA, USA). Protein samples were run on SDS-PAGE gels and then transferred to polyvinylidene
�uoride membranes (Millipore, Billerica, MA, USA). Membranes were blocked with 5% skim milk (Cell
Signaling Technology, Beverly, MA, USA) for 1h at room temperature, and subsequently incubated with
mouse anti-SIRT1 (#8469, 1:1000, Cell Signaling Technology, Beverly, MA, USA) at 4°C overnight.
Appropriate DyLight �uorescent dyes secondary antibodies were used (EarthOx, San Francisco, CA, USA).
ChemiDoc MP Imaging System (Bio-Rad, Hercules, CA, USA) was used to detect and quanti�ed target
bands.

Immunohistochemistry

Mice were anesthetized and perfused with saline solution and 4% paraformaldehyde (PFA) sequentially.
Harvested brains were post-�xed in 4% PFA for 24h, and then cryoprotected in 30% sucrose for 48h at
4°C. Coronal brain sections (30-μM thickness) were cut using a cryostat microtome. Brain sections were
blocked with 5% bovine serum albumin for 1h at room temperature, then incubated with goat anti-ionized
calcium binding adapter molecule 1 (Iba1) (#ab5076, 1:200, abcam, Cambridge, MA, USA), rabbit anti-glia
�brillary acidic protein (GFAP) (#ab7260, 1:1000, abcam, Cambridge, MA, USA), rabbit anti-Synaptophysin
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(#A6344, 1:100, abclonal, Wuhan, China), and rabbit anti-lysosomal associated membrane protein 1
(LAMP1) (#ab24170, 1:200, abcam, Cambridge, MA, USA) at 4°C overnight. After washing, brain sections
were incubated with �uorophore-conjugated secondary antibodies (1:500, abcam, Cambridge, MA, USA)
for 1h at room temperature. Laser power and gain were consistent across different experiments. Images
were visualized using Leica TCS SP8 STED 3X confocal microscope (Leica, Wetzlar, Germany).
Quantitative analyses were performed using Fiji software.

Three-dimensional reconstruction of microglia and engulfment analysis

Brain sections were imaged with the 100x oil immersion objective /NA1.4 using Leica TCS SP8 STED 3X
confocal microscope (Leica, Wetzlar, Germany) with the 0.2mm step. Images were acquired under
identical settings across all experimental groups. Deconvolution was performed using Huygens
Professional software (SVI, Scienti�c Volume Imaging, Hilversum, the Netherlands). To quantify
microglial engulfment of synaptophysin, images were processed using Imaris software (version 9.5.0,
Bitplane, Switzerland) based on the protocol from Schafer et al [20]. Microglia and synaptophysin 3D
surface rendering were created separately with a threshold. Synaptophysin volume embedded in Iba1+
structures were considered to be engulfed by microglia.

Golgi staining

Dendrites of hippocampus were visualized using Golgi-Cox staining kit (#HTKNS1125, Hitobiotec,
Kingsport, TN, USA). Mouse brain were harvested and immersed in impregnation solution for 2 weeks at
room temperature, and then transferred to solution for 3 days at 4°C. Brains were sectioned at a thickness
of 150 μM using a cryostat microtome, and mounted on gelatinized slides. The slides were further
stained in accordance with the manufacturer’s instructions. Images were observed with the 100x oil
immersion objective /NA1.4 using Leica TCS SP8 STED 3X confocal microscope (Leica, Wetzlar,
Germany). Secondary and third dendrites were sampled for spine density quanti�cation. The counting
was conducted by two experimenters independently.

Morris water maze

Morris water maze has been widely used for assessing spatial learning and memory depending on
hippocampal lesions [21]. A round (diameter: 120cm) was �lled with 30cm depth water at 23 ± 2°C. The
pool was divided into four quadrants. And the platform was placed 1cm underwater at one of quadrants,
which was considered as the target quadrants. Non-toxic titanium dioxide powder was premixed into
water ensuring platform invisible. Mice were allowed to swim freely for 60s without the platform to
promote familiarity with the testing condition. In the training trials, mice were placed in the pool facing
towards the wall at one of releasing points. Mice were given 60s to �nd the hidden platform. If not, they
were guided to the platform. When mice reached the platform, they were allowed to stay there for 10s.
Training trials were repeated four times per day for 5 consecutive days before surgery, and the releasing
points was different for each trial. The probe trial was conducted on the �rst, third and seventh days after
surgery. Mice were released at the opposite quadrant of the hidden platform and swam for 60s without
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the platform. The escape latency, percentage of time spent in the target quadrant and crossing platform
times were analyzed using video-tracking software (ZS Dichuang Techology, Beijing, China).

Y maze

Spontaneous alternation behavior in Y maze was recorded to assess working memory [22]. The
apparatus consists of three arms with an angel of 120 to each other. Mice were placed at the end of one
arm and explored arms freely for 5 min. Arms were labeled A, B and C, the sequence of arm entries were
recorded. Successful alternation was de�ned as the exploration of three arms in sequence. The percent
alternation was calculated based on the following equation: %Alternation = [Number of successful
alternations/ (Total arm entries−2)] × 100 [23].

Statistical analysis

Statistical analyses were performed with GraphPad Prism (version 7). Comparisons between two groups
were applied using Unpaired Student’s t-test. One-way analysis of variance (ANOVA) was used for
multiple comparisons. Statistical signi�cance was set at p < 0.05.

Results
Anesthesia andsurgery resultschanges in gene expression in mice hippocampus

To investigate the landscape of gene expression after anesthesia and surgery, we performed RNA
sequencing in hippocampus from control and surgery group at 72 hours after exploratory laparotomy.
Total 29037 genes were identi�ed, among which 844 genes were signi�cant downregulated and 714
genes were signi�cant up-regulated in POCD compared to control group (Fig. 2a). Further, we performed
Gene ontology (GO) analysis for signi�cant downregulated genes. Interestingly, the top 22 signi�cant GO
terms were enriched in four major aspects of biological processes: (i) calcium ion homeostasis and cell
communication; (ii) synapse and dendritic dynamic; (iii) response to cytokines; (iv) learning and memory
(Fig. 2b). We next conducted a network analysis of different gene ontology, and found SIRT1, an
important deacetylase, not only had a high network score with the most signi�cant GO term (i.e. response
to transforming growth factor beta), but also was one of key hubs connecting several signi�cant
biological processes (Fig. 2c). These results place SIRT1 as a crucial regulator of biological processes in
response to anesthesia and surgery.

Anesthesia and surgery induces SIRT1 downregulation and microglia activation in hippocampus

To investigate the expression of SIRT1 in hippocampus, we examined protein levels of SIRT1 at 6h, 24h,
and 72h after anesthesia and surgery. SIRT1 expression were signi�cantly declined at 24h and 72h
postoperatively (p < 0.01; Fig. 3a, b). To elucidate the modulatory mechanisms of SIRT1 in POCD, we then
identi�ed cellular targets of SIRT1 by immunohistochemistry. We found that SIRT1 co-localized with
microglia marker Iba1, but not astrocyte marker GFAP (Fig. 3c).
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Microglia are competent to respond to SIRT1 signaling [24]. We next sought to investigate the impact of
anesthesia and surgery on microglia in the hippocampus. Iba1 immunohistochemistry revealed that
anesthesia and surgery induced a signi�cant expansion of hippocampal microglia marker in CA1 region
(control vs surgery: p < 0.0001; Fig. 3d, e). Gene set enrichment analyses (GSEA) of our RNA sequencing
also showed biological processes of phagosome acidi�cation and phagosome maturation were
upregulated in surgery group when compared with control group (Fig. 3f, g).

SIRT1 activation prevents alteration in microglia morphology after anesthesia and surgery

Microglia activation is correlated with speci�c morphologic alteration [25]. To investigate whether SIRT1
activation could affect microglia activation after anesthesia and surgery, we administrated SRT1720, an
agonist of SIRT1, intraperitoneally in mice of surgery group. Quantitative morphometric 3D
measurements of microglia found no signi�cant difference in surface area (p = 0.8811; Fig. 4a, b) and
microglia size (p = 0.3919; Fig. 4a, c) among three groups. We further calculated soma size and occupied
area of microglia. Compared with control, anesthesia and surgery increased soma size of microglia in
hippocampus (control vs surgery-vehicle, p < 0.0001; Fig. 4d, e), and decreased the occupied area (control
vs surgery-vehicle, p < 0.0001; Fig. 4f, g). Notably, alteration in microglia morphology after anesthesia and
surgery was reversed by SIRT1 agonist, with decreased soma size (surgery-vehicle vs surgery-SRT1720, p
< 0.0001; Fig. 4d, e) and increased occupied area (surgery-vehicle vs surgery-SRT1720, p < 0.0001; Fig. 4f,
g).

SIRT1 activation ameliorates microglia mediated synaptic engulfment after anesthesia and surgery

Microglia are implicated in synaptic engulfment, which contributes to cognitive impairment [26].
Interestingly, genes related with synaptic protein were downregulated in our surgery group (Fig. 5a). Thus,
we evaluated synapse engulfment by measuring presynaptic marker synaptophysin in microglia. 3D
surface reconstruction and rendering showed that the volume of synaptophysin within microglia were
signi�cantly increased in mice after anesthesia and surgery (control vs surgery-vehicle, p < 0.0001; Fig.
5b, c), which were ameliorated by SIRT1 activation (surgery-vehicle vs surgery-SRT1720, p < 0.0001; Fig.
5b, c).

We next detected lysosomal marker LAMP1 enriched in dystrophic neurites. There was a signi�cant
elevation of LAMP1 in dentate gyrus (DG) of hippocampus in surgery group (control vs surgery-vehicle, p
< 0.0001; Fig. 5d, e). Surgery induced LAMP1 elevation were reversed by SIRT1 activation (surgery-vehicle
vs surgery-SRT1720, p < 0.0001; Fig. 5d, e).

SIRT1 activation restores anesthesia and surgery-induced spine loss

To further assess the impact of microglia engulfment on synaptic structures, we performed Golgi staining
on hippocampus. We found that surgery induced spine loss of neurons in CA1 region (control vs surgery-
vehicle, p < 0.0001; Figure 6a, b, d), which were alleviated were rescued by SRT1720 treatment (surgery-
vehicle vs surgery-SRT1720, p < 0.0001; Figure 6a, b, d). We also found reduced spine density in neurons
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of DG (control vs surgery-vehicle, p < 0.05; Figure 6b, c) and CA3 region (control vs surgery-vehicle, p <
0.0001; Figure 6b, e) after anesthesia and surgery. Besides, SIRT1 activation partially restore the spine
loss (surgery-vehicle vs surgery-SRT1720, p < 0.0001; Fig. 6b, c, e).

SIRT1 activation alleviate cognitive de�cit after anesthesia and surgery

To further study the effects of SIRT1 on cognitive performance, tests of Y maze were performed to
evaluate working memory. We found similar performance on percentage of spontaneous alteration
among groups (p = 0.9343; Fig. 7a). In addition, we assess reference spatial memory using Morris water
maze. Escape latency decreased across training days (p < 0.0001; Fig. 7b), and no signi�cant difference
among groups (p = 0.9988; Fig. 7b). Probe trials were conducted postoperative day (POD) 1 and 3.
Compare to control group, a statistically signi�cant reduction in percentage of time spent in target
quadrant was observed in mice after anesthesia and surgery on POD1 (control vs surgery-vehicle, p =
0.0044; Fig. 7c). Mice in surgery-vehicle group also displayed a fewer crossing times of the platform on
POD1 (control vs surgery-vehicle, p = 0.0014) and POD3 (control vs surgery-vehicle, p = 0.0278; Fig. 7d).
We found that SRT1720 treated group exhibited improve percentage of time spent in target quadrant on
POD1 and POD3 (surgery-vehicle vs surgery-SRT1720, p < 0.05; Fig. 7c)

Discussion
In this study, we found that anesthesia and surgery induced SIRT1 downregulation in hippocampus.
Microglia abnormal activation after anesthesia and surgery led to synaptic engulfment and spine loss,
resulting in cognitive impairment, all of which were alleviated by SRT1720 treatment. Thus, our data
suggest the important roles of increasing SIRT1 function on protection against postoperative cognitive
dysfunction.

Postoperative cognitive dysfunction is a common neurological complication for surgical patients,
especially for the elderly [27]. Microglia activation and neuroin�ammation are long thought as the
underlying mechanisms of POCD [2]. Microglia serve as the innate immune cells in brain, surveilling and
maintaining the central nervous system homeostasis [8]. Proliferation and activation of microglia is a key
feature in neurodegenerative disease settings [28]. Our data showing microglia activation following
anesthesia and surgery are in line with several studies [29-31]. Leakage of peripheral cytokines through
blood-brain barrier breakdown might be the main trigger [2]. Work in animal models of other
neurodegenerative or neurological disease have shown alteration in microglia morphology during
activation [32,33]. Rami�ed microglia convert to amoeboid subtype, which is characterized by expanded
cell bodies and retracted branches [34]. Although no notable changes were observed in surface area and
microglia size, we found decreased occupied area and increased soma size of microglia in hippocampus
after anesthesia and surgery.

A strong correlation has been demonstrated between morphologic alteration and microglia functional
plasticity [35]. Exacerbated phagocytic activity could shape dendrites and engulf synaptic terminals,
which then leads to cognitive impairments in Alzheimer's disease [28], epilepsy [36] and demyelinating
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disease [33]. RNA sequencing and GSEA of surgery versus control mice in our study revealed progressive
increases in phagosome acidi�cation and phagosome maturation genes, as well as downregulation of
synaptic protein genes. We previously demonstrated that loss of synaptic protein correlated with
microglial phagocytosis [12]. Using 3D reconstruction in current study, we directly observed microglia in
mice after anesthesia and surgery contained a higher amount of engulfed synaptophysin than those in
control group. In concert with microglial phagocytosis, the lysosome marker LAMP1, which is enriched in
dystrophic neurites, was also accumulated after anesthesia and surgery. Together, our data enforce the
picture that microglia mediated synaptic engulfment may be a key question of POCD.

As a consequence of excessive synaptic engulfment, reduction of dendritic spines is pathogenic in
schizophrenia [37], associated with forgetting of memory [26]. In our study, anesthesia and surgery
signi�cantly reduced the spine density in various area of hippocampus, as detected by Golgi staining. Our
data are consistent with previous work showing dendritic spine loss in POCD [38]. In our study, anesthesia
and surgery did not lead to de�cits in working memory, but it produced long-term spatial memory
impairment. In agreement with the key role of hippocampus for long-term memory.

In our study, Gene Ontology and network analysis indicated that SIRT1 were downregulated upon
anesthesia and surgery, and was a hub gene of enriched pathways. SIRT1 is one of (NAD+)-dependent
deacetylases that modulate multiple cellular processes [14]. SIRT1 was reported to be protective in
different neurodegenerative diseases [16] and psychiatric disorders [15]. We observed a decreased SIRT1
expression in the hippocampus 1 and 3 days after anesthesia and surgery. Our results are in keeping with
recent works [39,40]. SIRT1 is enriched in the nuclei and cytoplasm of microglia, implicating microglia as
the target of SIRT1 in hippocampus. Here, we found SIRT1 activation dampens alteration in microglia
morphology induced by anesthesia and surgery. The ameliorative microglia engulfment of synaptic
protein detected in POCD mice with additional SRT1720 administration is paralleled by the restored spine
loss. In line with changes determined in the hippocampus, SRT1720 administration was bene�cial for
behavioral defects in mice after anesthesia and surgery. Consistent with this protective effects, SRT1720
signi�cantly reduced plasma in�ammatory cytokine levels in mice after cardiac surgery [41], which can
trigger microglia activation.

There are some limitations in our study. The sample size for RNA sequencing is small. Besides, we did
not demonstrate the engulfment on postsynaptic elements. We did not demonstrate the signaling
mechanisms by which SIRT1 overexpression prevents microglia activation. Previous study revealed a
potential link between SIRT1 activation and inhibition of nuclear factor-kappa B (NF-κB) in vitro [42]. To
addressing these issues, further investigation is needed.

Conclusions
In summary, abnormal microglia activation mediates synaptic engulfment could be responsible for
postoperative cognitive dysfunction. SIRT1 activation after anesthesia and surgery alleviates microglia
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activation, inhibits the engulfment of synapse elements, reduces spine loss and improves cognitive
performance. Increasing SIRT1 function may be a promising therapeutic strategy for POCD.
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Figure 1

Schematic of the experimental design. a. Mice were assigned to control and surgery group. Tissue were
harvested at 6h, 1 and 3 days after surgery. b. POCD mice were treated with either SRT1720 or IgG. Tissue
were harvested at postoperative day 3. Training trials of Morris water maze were performed 5 consecutive
days before surgery. Probe trials were performed postoperative day 1 and 3. Y maze were conducted on
postoperative day 3. MWM, Morris water maze.
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Figure 2

Panorama of RNA changes when compared POCD to control group. a. Volcano plot representation of
differentially expressed gene distribution (p < 0.05). b. Dot plot of top 22 Gene oncology terms for
downregulated biological processes. c. Network analysis of top 22 downregulated biological processes
among the gene interaction networks.
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Figure 3

Anesthesia and surgery induces microglia activation in the hippocampus. a. Time course of SIRT1
expression. One-way ANOVA with Dunnett post-hoc test. b. Quali�cation of (a). c. Representative images
of SIRT1 co-labled with antibodies to cell-type-speci�c markers, n = 5. Upper panel scale bar, 50µm; lower
panel scale bar, 10µm. d. Representative images of Iba1 (Red) labeling in the CA1. Scale bar, 50µm. Pyr,
pyramidal cell layer. e. Quali�cation of (d), n = 5 per group. Two sided t-test. f. Gene set enrichment
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analyses (GSEA) of phagosome acidi�cation (left) and phagosome maturation (right) in surgery versus
control group. NES: normalized enrichment score; FDR: false discovery rate. g. Heatmap representation of
differential expression for phagosome acidi�cation and phagosome maturation genes. Data are shown
as mean ± SD.**p < 0.01; ****p < 0.0001.

Figure 4
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SIRT1 activation prevents alteration in microglia morphology after anesthesia and surgery. a.
Representative 3D reconstruction and rendering of microglia. Scale bar,10µm. b. Quanti�cation of surface
area of microglia, n = 5 per group; 10 cells per mouse were quanti�ed. c. Quanti�cation of microglia size,
n = 5 per group; 10 cells per mouse were quanti�ed. d. Representative images of microglial (Iba1, red) and
showing measurement of soma size (outlined by yellow line). Scale bar,10µm. e. Showing measurement
of occupied area (outlined by yellow line). Scale bar,10µm. f. Quanti�cation of (d), n = 5 per group; 14-18
cells per mouse were quanti�ed. g. Quanti�cation of (e), n = 5 per group; 14-18 cells per mouse were
quanti�ed. One-way ANOVA with Tukey post-hoc test. All data are shown as mean ± SD. n.s. not
signi�cant; ****p < 0.0001.
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Figure 5

SIRT1 overexpression ameliorates microglia engulfment of presynaptic inputs after surgery. a. Heatmap
of synaptic protein related gene expression. b. Representative 3D reconstruction and rendering of Syp
signals inside Iba1+microglia from each experimental group. Scale bar, 5µm. c. Quanti�cation of (b), n =
5 per group; 10-15 cells per mouse were quanti�ed. d. Maximum z projections showing LAMP1 in the
dentate gyrus of hippocampus from each experimental group. Scale bar, 50µm. e. Quanti�cation of (d), n
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= 5 per group. One-way ANOVA with Tukey post-hoc test. Data are shown as mean ± SD. ****p < 0.0001.
Syp, synaptophysin.

Figure 6

SIRT1 activation restores surgery-induced spine loss. a. Representative images of Golgi staining of
hippocampus. b. High-magni�cation representative images of dendritic spine from each experimental
group. Scale bar, 5µm. c. Spine density of DG neurons. n = 80-84 spines from 4 mice per group. d. Spine
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density in apical and basal dendrites of CA1 neurons, n = 78-80 spines from 4 mice per group. e. Spine
density in apical and basal dendrites of CA3 neurons. n = 74-80 spines from 4 mice per group. One-way
ANOVA with Tukey post-hoc test. All data are shown as mean ± SD. *p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001.

Figure 7
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SIRT1 activation overcomes loss of cognitive performance after surgery and anesthesia. a. Y-maze
performance on the third day after surgery. n = 11 for Control, n = 6 for Surgery-Vehicle, n = 7 for Surgery-
SRT1720. One-way ANOVA with Tukey post-hoc test. b. Escape latency in training trials of Morris water
maze. n = 12 for Control and Surgery-Vehicle, n = 9 for Surgery-SRT1720. Two-way ANOVA with Tukey
post-hoc test. c. Percentage of time spent in target quadrant in probe trials on the �rst and third after
surgery. n = 12 for Control and Surgery-Vehicle, n = 9 for Surgery-SRT1720. Two-way ANOVA with Tukey
post-hoc test d. Crossing times of the platform area in probe trials on the �rst and third after surgery. n =
12 for Control and Surgery-Vehicle, n = 9 for Surgery-SRT1720. Two-way ANOVA with Bonferroni post-hoc
test. All data are shown as mean ± SEM. n.s. not signi�cant; *p < 0.05; **p < 0.01. POD, postoperative day.


