Epidemiological profile
This study included 5765 imported malaria cases (743 in Anhui, 1284 in Zhejiang, 832 in Hubei, 1643 in Guangxi, and 1263 in Henan), and the annual number of cases from 2014 to 2021 ranged from 139 to 1035. The number of infections peaked in 2016 at 1035 (17.95%). Only 139 cases were reported in 2021 because of travel restrictions due to the COVID-19 pandemic. The mean age of all patients was 41.11±9.92 years, and 5532 (95.96%) patients were males. Migrant laborers comprised 81.53% (4700/5765) of the patients. Most infections (5536, 96.03%) originated in Africa, especially Ghana (854, 14.81%), Nigeria (699, 12.12%), Cameroon (565, 9.80%), Angola (553, 9.59%), and the Democratic Republic of the Congo (446, 7.74%). The predominant species was Plasmodium falciparum (3996 cases, 69.31%), followed by P. ovale (1067, 18.51%), P. vivax (416, 7.22%), P. malariae (203, 3.52%), and P. knowlesi (1, 0.02%). There were 82 mixed-species infections (1.42%). During the study period, 297 patients (5.15%) developed severe malaria, leading to 20 deaths (four in Anhui, eight in Henan, three in Hubei, three in Guangxi, and two in Zhejiang), with a fatality rate of 0.35%. Table 2 summarizes the epidemiological characteristics of imported malaria cases.
[Table 1 here]
Healthcare seeking
At the first consultation, the number of patients who received care in province, city, county, township, and private/village health centers was 627 (10.88%), 1314 (22.79%), 2724 (47.25%), 278 (4.82%), and 697 (12.09%), respectively. One hundred and twenty-five patients (2.17%) sought other health services (overseas hospitals, inspection, and quarantine institutions). In addition, 1478 patients (25.64%) were misdiagnosed during their first visit. Misdiagnosis rates in private/village and township health centers were 91.68% (639/697) and 49.64% (138/278), respectively (Figure 3). Supplemental Appendix 2 presents the detailed results of the first healthcare seeking among patients with imported malaria in the five provinces.
[Figure 3 here]
DC, DD, and overall delay
The median number of days from the date of arrival in China to symptom onset was 9 d (IQR: 3–29 d). Among 4795 cases with information on the date of arrival in China, 3648 (76.08%) experienced symptoms within 30 d. The median interval between symptom onset and the first visit was 1 d (IQR: 0–3 d), and 5084 (88.19%) patients sought medical care within 3 d. The median time between the first visit and diagnosis was 1 d (IQR: 0–2 d), and 4031 (69.92%) cases were correctly diagnosed within 1 d of the first visit. The median time between symptom onset and diagnosis was 2 d (IQR: 1–5 d), and 4228 cases were diagnosed within 4 d after symptom onset. During the study period, the proportions of DC (χ2=36.099, P < 0.001) and DD (χ2=11.395, P= 0.001) decreased (Figure 4).
[Figure 4 here]
The proportion of DC among imported patients in Anhui, Guangxi, Zhejiang, Hubei, and Henan provinces was 13.06%, 10.59%, 12.46%, 13.10%, and 12.19%, respectively. For DD, the proportions were 37.28%, 13.02%, 27.08%, 39.42%, and 35.47%, respectively. For the overall delay, the proportions were 34.05%, 15.52%, 24.38%, 35.82%, and 33.10%, respectively. Post-hoc multiple comparison tests were performed to confirm the differences between provinces. The results revealed that Guangxi had a lower proportion of DC than Zhejiang, Hubei, Anhui, and Henan. However, Guangxi had a lower proportion of DD than Anhui, Zhejiang, Hubei, and Henan, which is consistent with the overall delay situation. Table 2 presents additional details.
[Table 2 here]
DC and DD were experienced by 11.81% (681 cases) and 30.08% (1734 cases) of the patients, respectively. Univariate analysis was performed to explore the potential contributors to these delays. The factors associated with DC included age, travel region, malaria species, level of healthcare facilities for the initial medical visit, and time between arrival in China and symptom onset. The purpose of travel, travel region, malaria species, level of healthcare facilities for the initial medical visit, diagnostic result in the first visit, and history of malaria infection were statistically associated with DD (Table 3).
[Table 3 here]
Considering the differences between provinces, multivariate hierarchical logistic regression was used to identify the factors influencing DC and DD. The results indicated that the independent risk factors associated with DC were provinces (Zhejiang, Hubei, Anhui, and Henan vs. Guangxi), older age, infections with non-falciparum species, and consultations in high-level facilities for the first medical visit. Conversely, compared to other regions, patients returning from Africa seek medical care more promptly. Provinces (Zhejiang, Hubei, Anhui, and Henan vs. Guangxi), the purpose of travel (official duties and business vs. labor), and infections with non-falciparum species increased the risk of DD. In contrast, consultations in high-level health facilities for the initial medical visit, correct diagnosis at the first visit, and history of infection were conducive to timely diagnosis. Figures 5 and 6 depict the results of the multivariate regression analysis.
[Figures 5 and 6 here]
Association between delays and severe malaria
The association between delays and severe malaria were also assessed. The crude ORs for the DC, DD, and overall delay associated with severe malaria were 1.59, 3.44, and 2.68, respectively. After adjusting for covariates, DC (adjusted OR=1.79, 95% CI: 1.29–2.50), DD (adjusted OR=1.62, 95% CI: 1.70–2.26), and overall delay (adjusted OR=1.89, 95% CI: 1.45–2.45) increased the risk of severe malaria (Table 4).
[Table 4 here]