Sporozoite invasion of hepatocytes is an essential step in the Plasmodium life-cycle and has similarities, at the cellular level, to merozoite invasion of erythrocytes. In the case of the Plasmodium blood-stage, efforts to identify host-pathogen protein-protein interactions have yielded important insights including vaccine candidates. In the case of sporozoite-hepatocyte invasion, the host-pathogen protein-protein interactions involved are poorly understood.
Here, we performed a systematic screen to identify such interactions. We substantially extended previous Plasmodium falciparum and human surface protein ectodomain libraries, creating new libraries containing 88 P. falciparum sporozoite protein coding sequences and 182 sequences encoding human hepatocyte surface proteins. Having expressed recombinant proteins from these sequences, we used a plate-based assay capable of detecting low affinity interactions between recombinant proteins, modified for enhanced throughput, to screen the proteins for interactions. We were able to test 7540 sporozoite-hepatocyte protein pairs under conditions capable of detecting interactions of at least 1.2µM KD.
We report and characterise an interaction between human fibroblast growth factor receptor 4 (FGFR4) and the P. falciparum protein Pf34, characterising its affinity and demonstrating blockade of the interaction by reagents including a monoclonal antibody. Furthermore, we identify further interactions between Pf34 and a second P. falciparum rhoptry neck protein, PfRON6, and between human low-density lipoprotein receptor (LDLR) and the P. falciparum protein PIESP15.
Conditional genetic deletion confirmed the essentiality of PfRON6 in the blood-stage, consistent with the important role of this protein in parasite lifecycle. Pf34 was refractory to attempted genetic modification. Antibodies to Pf34 abrogated the interaction and had a modest effect upon sporozoite invasion into primary human hepatocytes.
Pf34 and PfRON6 may be members of a functionally important invasion complex which could be a target for future interventions. The modified interaction screening assay, protein expression libraries and P. falciparum mutant parasites we report here may be a useful tool for protein interaction discovery and antigen candidate screening which could be of wider value to the scientific community.