Allen TR, Millar T, Berch SM, Berbee ML (2003) Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol 160:255–272. https://doi.org/10.1046/j.1469-8137.2003.00885.x
Baba T, Hirose D (2021) Slow-growing fungi belonging to the unnamed lineage in Chaetothyriomycetidae form hyphal coils in vital ericaceous rhizodermal cells in vitro. Fungal Biol 127248. https://doi.org/10.1016/j.funbio.2021.07.003
Baucher M, Monties B, Montagu M Van, Boerjan W (1998) Biosynthesis and Genetic Engineering of Lignin. CRC Crit Rev Plant Sci 17:125–197. https://doi.org/10.1080/07352689891304203
Bending GD, Read DJ (1997a) Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycol Res 101:1348–1354. https://doi.org/10.1017/S0953756297004140
Bending GD, Read DJ (1997b) Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycol Res 101:1348–1354. https://doi.org/10.1017/S0953756297004140
Boddy L, Watkinson SC (1995) Wood decomposition, higher fungi, and their role in nutrient redistribution. Can J Bot 73:1377–1383. https://doi.org/10.1139/b95-400
Bonfante-Fasolo P (1980) Occurrence of a basidiomycete in living cells of mycorrhizal hair roots of Calluna vulgaris. Trans Br Mycol Soc 75:320–325. https://doi.org/10.1016/S0007-1536(80)80097-0
Bougoure DS, Parkin PI, Cairney JWG, et al (2007) Diversity of fungi in hair roots of Ericaceae varies along a vegetation gradient. Mol Ecol 16:4624–4636. https://doi.org/10.1111/j.1365-294X.2007.03540.x
Bruzone MC, Fontenla SB, Vohník M (2015) Is the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae absent in the Southern Hemisphere’s Ericaceae? A case study on the diversity of root mycobionts in Gaultheria spp. from northwest Patagonia, Argentina. Mycorrhiza 25:25–40. https://doi.org/10.1007/s00572-014-0586-3
Chen C, Verkley GJM, Sun G, et al (2016) Redefining common endophytes and plant pathogens in Neofabraea, Pezicula, and related genera. Fungal Biol 120:1291–1322. https://doi.org/10.1016/j.funbio.2015.09.013
Daghino S, Martino E, Voyron S, Perotto S (2022) Metabarcoding of fungal assemblages in Vaccinium myrtillus endosphere suggests colonization of above-ground organs by some ericoid mycorrhizal and DSE fungi. Sci Rep 12:11013. https://doi.org/10.1038/s41598-022-15154-1
Duclos JL, Pépin R, Bruchet G (1983) Étude morphologique, anatomique et ultrastructurale d’endomycorhizes synthétiques d’ Erica carnea. Can J Bot 61:466–475. https://doi.org/10.1139/b83-054
Fehrer J, Réblová M, Bambasová V, Vohník M (2019) The root-symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha (Leotiomycetes) are congeneric: Phylogenetic and experimental evidence. Stud Mycol 92:195–225. https://doi.org/10.1016/j.simyco.2018.10.004
Fisher PJ, Anson AE, Petrini O (1984) Novel antibiotic activity of an endophytic Cryptosporiopsis sp. isolated from Vaccinium myrtillus. Trans Br Mycol Soc 83:145–148. https://doi.org/10.1016/S0007-1536(84)80254-5
Goodell B, Winandy JE, Morrell JJ (2020) Fungal Degradation of Wood: Emerging Data, New Insights and Changing Perceptions. Coatings 10:1210. https://doi.org/10.3390/coatings10121210
Gorzelak MA, Hambleton S, Massicotte HB (2012) Community structure of ericoid mycorrhizas and root-associated fungi of Vaccinium membranaceum across an elevation gradient in the Canadian Rocky Mountains. Fungal Ecol 5:36–45. https://doi.org/10.1016/j.funeco.2011.08.008
Gouy M, Guindon S, Gascuel O (2010) SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. Mol Biol Evol 27:221–224. https://doi.org/10.1093/molbev/msp259
Grelet GA, Ba R, Goeke DF, et al (2017) A plant growth-promoting symbiosis between Mycena galopus and Vaccinium corymbosum seedlings. Mycorrhiza 27:831–839. https://doi.org/10.1007/s00572-017-0797-5
Griffin A, Kernaghan G (2022) Ericoid mycorrhizal colonization and associated fungal communities along a wetland gradient in the Acadian forest of Eastern Canada. Fungal Ecol 56:101138. https://doi.org/10.1016/j.funeco.2021.101138
Grunewaldt-Stöcker G, von Alten H (2016) Is the root-colonizing endophyte Acremonium strictum an ericoid mycorrhizal fungus? Mycorrhiza 26:429–440. https://doi.org/10.1007/s00572-016-0682-7
Grünig CR, Queloz V, Sieber TN, Holdenrieder O (2008) Dark septate endophytes (DSE) of the Phialocephala fortinii s.l. - Acephala applanata species complex in tree roots: Classification, population biology, and ecology. Botany 86:1355–1369. https://doi.org/10.1139/B08-108
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
Hambleton S, Currah RS (1997) Fungal endophytes from the roots of alpine and boreal Ericaceae. Can J Bot 75:1570–1581. https://doi.org/10.1139/b97-869
Harder CB, Hesling E, Niskanen T, et al (2021) Mycena species can be opportunist-generalist plant root invaders. bioRxiv. https://doi.org/https://doi.org/10.1101/2021.03.23.436563
Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. https://doi.org/10.1093/bioinformatics/17.8.754
Janusz G, Pawlik A, Sulej J, et al (2017) Lignin degradation: Microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 41:941–962. https://doi.org/10.1093/femsre/fux049
Katoh K, Standley DM (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010
Kolařík M, Vohník M (2018) When the ribosomal DNA does not tell the truth: The case of the taxonomic position of Kurtia argillacea, an ericoid mycorrhizal fungus residing among Hymenochaetales. Fungal Biol 122:1–18. https://doi.org/10.1016/j.funbio.2017.09.006
Kosonen T, Huhtinen S, Hansen K (2021) Taxonomy and systematics of Hyaloscyphaceae and Arachnopezizaceae. Persoonia - Mol Phylogeny Evol Fungi 46:26–62. https://doi.org/10.3767/persoonia.2021.46.02
Kron KA, Luteyn JL (2005) Origins and biogeographic patterns in Ericaceae: New insights from recent phylogenetic analyses. Biol Skr (Plant Divers Complex patterns local Reg Glob Dimens Proc an Int Symp held R Danish Acad Sci 1:479–500
Leake JR, Read DJ (1991) 20 Experiments with Ericoid Mycorrhiza. In: Norris JR, Read DJ, Varma A.K. (eds) Methods in Microbiology 23. Academic Press, London, pp 435–459
Lee Y-I, Yang C-K, Gebauer G (2015) The importance of associations with saprotrophic non- Rhizoctonia fungi among fully mycoheterotrophic orchids is currently under-estimated: novel evidence from sub-tropical Asia. Ann Bot 116:423–435. https://doi.org/10.1093/aob/mcv085
Leopold DR (2016) Ericoid fungal diversity: Challenges and opportunities for mycorrhizal research. Fungal Ecol 24:114–123. https://doi.org/10.1016/j.funeco.2016.07.004
Leopold DR, Peay KG, Vitousek PM, Fukami T (2021) Diversity of putative ericoid mycorrhizal fungi increases with soil age and progressive phosphorus limitation across a 4.1-million-year chronosequence. FEMS Microbiol Ecol 97:fiab016. https://doi.org/10.1093/femsec/fiab016
Lorberau KE, Botnen SS, Mundra S, et al (2017) Does warming by open-top chambers induce change in the root-associated fungal community of the arctic dwarf shrub Cassiope tetragona (Ericaceae)? Mycorrhiza 27:513–524. https://doi.org/10.1007/s00572-017-0767-y
Lukešová T, Kohout P, Větrovský T, Vohník M (2015) The potential of dark septate endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle european forest plants. PLoS One 10:. https://doi.org/10.1371/journal.pone.0124752
Massicotte HB, Melville LH, Peterson RL (2005) Structural characteristics of root-fungal interactions for five ericaceous species in eastern Canada. Can J Bot 83:1057–1064. https://doi.org/10.1139/b05-046
Mayerhofer MS, Kernaghan G, Harper KA (2013) The effects of fungal root endophytes on plant growth: A meta-analysis. Mycorrhiza 23:119–128. https://doi.org/10.1007/s00572-012-0456-9
Midgley DJ, Rosewarne CP, Greenfield P, et al (2016) Genomic insights into the carbohydrate catabolism of Cairneyella variabilis gen. nov. sp. nov., the first reports from a genome of an ericoid mycorrhizal fungus from the southern hemisphere. Mycorrhiza 26:345–352. https://doi.org/10.1007/s00572-016-0683-6
Midgley DJ, Sutcliffe B, Greenfield P, Tran-Dinh N (2018) Gamarada debralockiae gen. nov. sp. nov.—the genome of the most widespread Australian ericoid mycorrhizal fungus. Mycorrhiza 28:379–389. https://doi.org/10.1007/s00572-018-0835-y
Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop (GCE). IEEE, pp 1–8
Molina R, Palmer JG (1982) Isolation, maintenance, and pure culture manipulation of ectomycorrhizal fungi. In: N.C. Schenck (ed) Methods and principles of mycorrhizal research. The American Phytopathological Society, St.Paul, Minnesota, pp 115–129
Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793. https://doi.org/10.1111/j.1469-8137.2010.03611.x
Noble HM, Langley D, Sidebottom PJ, et al (1991) An echinocandin from an endophytic Cryptosporiopsis sp. and Pezicula sp. in Pinus sylvestris and Fagus sylvatica. Mycol Res 95:1439–1440. https://doi.org/10.1016/S0953-7562(09)80401-2
Nylander JAA (2004) MrModeltest Version 2
Ogura-Tsujita Y, Gebauer G, Hashimoto T, et al (2009) Evidence for novel and specialized mycorrhizal parasitism: the orchid Gastrodia confusa gains carbon from saprotrophic Mycena. Proc R Soc B Biol Sci 276:761–767. https://doi.org/10.1098/rspb.2008.1225
Perotto S, Girlanda M, Martino E (2002) Ericoid mycorrhizal fungi: Some new perspectives on old acquaintances. Plant Soil 244:41–53. https://doi.org/10.1023/A:1020289401610
Read DJ (1996) The structure and function of the ericoid mycorrhizal root. Ann Bot 77:365–374. https://doi.org/10.1006/anbo.1996.0044
Read DJ, Kerley S (1995) The Status and Function of Ericoid Mycorrhizal Systems. Mycorrhiza 499–520. https://doi.org/10.1007/978-3-662-08897-5_22
Sayers EW, Cavanaugh M, Clark K, et al (2019) GenBank. Nucleic Acids Res 47:D94–D99. https://doi.org/10.1093/nar/gky989
Schulz B, Boyle C (2006) What are Endophytes? In: Schulz B, Boyle C, Sieber TN (eds) Microbial Root Endophytes. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1–13
Schulz B, Sucker J, Aust HJ, et al (1995) Biologically active secondary metabolites of endophytic Pezicula species. Mycol Res 99:1007–1015. https://doi.org/10.1016/S0953-7562(09)80766-1
Selosse MA, Setaro S, Glatard F, et al (2007) Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol 174:864–878. https://doi.org/10.1111/j.1469-8137.2007.02064.x
Setaro S, Weiß M, Oberwinkler F, Kottke I (2006) Sebacinales form ectendomycorrhizas with Cavendishia nobilis, a member of the Andean clade of Ericaceae, in the mountain rain forest of southern Ecuador. New Phytol 169:355–365. https://doi.org/10.1111/j.1469-8137.2005.01583.x
Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21:75–89. https://doi.org/10.1016/j.fbr.2007.05.004
Sigler L, Allan T, Lim SR, et al (2005) Two new Cryptosporiopsis species from roots of ericaceous hosts in western North America. Stud Mycol 53:53–62. https://doi.org/10.3114/sim.53.1.53
Smith SE, Read D (2008) Ericoid mycorrhizas. In: Mycorrhizal Symbiosis. Elsevier, pp 389–418
Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033
Stillwell MA, Wood FA, Strunz GM (1969) A broad-spectrum antibiotic produced by a species of Cryptosporiopsis. Can J Microbiol 15:501–507. https://doi.org/10.1139/m69-087
Toju H, Tanabe AS, Ishii HS (2016) Ericaceous plant-fungus network in a harsh alpine-subalpine environment. Mol Ecol 25:3242–3257. https://doi.org/10.1111/mec.13680
Verkley GJM (1999) A monograph of the genus Pezicula and its anamorphs. Stud Mycol 5–180
Verkley GJM, Zijlstra JD, Summerbell RC, Berendse F (2003) Phylogeny and taxonomy of root-inhabiting Cryptosporiopsis species, and C. rhizophila sp. nov., a fungus inhabiting roots of several Ericaceae. Mycol Res 107:689–698. https://doi.org/10.1017/S0953756203007883
Villarreal-Ruiz L, Neri-Luna C, Anderson IC, Alexander IJ (2012) In vitro interactions between ectomycorrhizal fungi and ericaceous plants. Symbiosis 56:67–75. https://doi.org/10.1007/s13199-012-0161-7
Vohník M (2020) Ericoid mycorrhizal symbiosis: theoretical background and methods for its comprehensive investigation. Mycorrhiza 30:671–695. https://doi.org/10.1007/s00572-020-00989-1
Vohník M, Albrechtová J (2011) The Co-occurrence and Morphological Continuum Between Ericoid Mycorrhiza and Dark Septate Endophytes in Roots of Six European Rhododendron Species. Folia Geobot 46:373–386. https://doi.org/10.1007/s12224-011-9098-5
Vohník M, Albrechtová J, Vosátka M (2005) The inoculation with Oidiodendron mains and Phialocephala fortinii alters phosphorus and nitrogen uptake, foliar C:N ratio and root biomass distribution in Rhododendron cv. Azurro. Symbiosis 40:87–96
Vohník M, Figura T, Réblová M (2022) Hyaloscypha gabretae and Hyaloscypha gryndleri spp. nov. (Hyaloscyphaceae, Helotiales), two new mycobionts colonizing conifer, ericaceous and orchid roots. Mycorrhiza 32:105–122. https://doi.org/10.1007/s00572-021-01064-z
Vohník M, Lukančič S, Bahor E, et al (2003) Inoculation ofRhododendron cv. Belle-Heller with two strains ofPhialocephala fortinii in two different substrates. Folia Geobot 38:191–200. https://doi.org/10.1007/BF02803151
Vohník M, Mrnka L, Lukešová T, et al (2013) The cultivable endophytic community of Norway spruce ectomycorrhizas from microhabitats lacking ericaceous hosts is dominated by ericoid mycorrhizal Meliniomyces variabilis. Fungal Ecol 6:281–292. https://doi.org/10.1016/j.funeco.2013.03.006
Vohník M, Pánek M, Fehrer J, Selosse M-A (2016) Experimental evidence of ericoid mycorrhizal potential within Serendipitaceae (Sebacinales). Mycorrhiza 26:831–846. https://doi.org/10.1007/s00572-016-0717-0
Vohník M, Sadowsky JJ, Kohout P, et al (2012a) Novel root-fungus symbiosis in Ericaceae: Sheathed ericoid mycorrhiza formed by a hitherto undescribed basidiomycete with affinities to Trechisporales. PLoS One 7:e39524. https://doi.org/10.1371/journal.pone.0039524
Vohník M, Sadowsky JJ, Lukešová T, et al (2012b) Inoculation with a ligninolytic basidiomycete, but not root symbiotic ascomycetes, positively affects growth of highbush blueberry (Ericaceae) grown in a pine litter substrate: Ligninolytic basidiomycete enhances growth of blueberry: Ligninolytic basidiom. Plant Soil 355:341–352. https://doi.org/10.1007/s11104-011-1106-2
Walker JF, Aldrich-Wolfe L, Riffel A, et al (2011) Diverse helotiales associated with the roots of three species of arctic ericaceae provide no evidence for host specificity. New Phytol 191:515–527. https://doi.org/10.1111/j.1469-8137.2011.03703.x
Welch D, Scott D, Doyle S (2000) Studies on the paradox of seedling rarity in Vaccinium myrtillus L. in NE Scotland. Bot J Scotl 52:17–30. https://doi.org/10.1080/03746600008684942
Yuan Z, Verkley GJM (2015) Pezicula neosporulosa sp. nov. (Helotiales, Ascomycota), an endophytic fungus associated with Abies spp. in China and Europe. Mycoscience 56:205–213. https://doi.org/10.1016/j.myc.2014.06.004
Zhang L, Chen J, Lv Y, et al (2012) Mycena sp., a mycorrhizal fungus of the orchid Dendrobium officinale. Mycol Prog 11:395–401. https://doi.org/10.1007/s11557-011-0754-1
Zhang Z, Schwartz S, Wagner L, Miller W (2000) A Greedy Algorithm for Aligning DNA Sequences. J Comput Biol 7:203–214. https://doi.org/10.1089/10665270050081478
Zijlstra JD, Van’t Hof P, Baar J, et al (2005) Diversity of symbiotic root endophytes of the Helotiales in ericaceous plants and the grass, Deschampsia flexuosa. Stud Mycol 53:147–162. https://doi.org/10.3114/sim.53.1.147