Conventional mechanism of action of IBS
Traditionally, the diagnosis of IBS has been based on identification of symptoms that correlate with several different syndromes associated with disorders such as IBS diarrhea, IBS constipation, functional diarrhea, functional constipation, chronic functional abdominal pain, or bloating [36]. Several peripheral and central mechanisms initiate disorders of GI motor and sensory functions leading to IBS symptoms [37]. The predominant pathophysiological mechanisms in IBS are abnormalities of gut smooth muscle, visceral hypersensitivity, and central nervous system (CNS) hypervigilance. IBS symptoms are not specific to a single etiologic mechanism but are manifestations of several peripheral mechanisms that perturb motor and sensory functions [38]. Our study lacked a healthy control group to elucidate directly the metabolomic basis of IBS. Nevertheless, anti-IBS drugs induced metabolomics changes in regulation of biological pathways based on abnormalities of gut smooth muscle and CNS hypervigilance. These biological pathways included the metabolism of tryptophan, arginine, and L-carnitine-regulated lipid metabolism.
Pharmacological mechanism of action of Dicetel in the body
Dicetel is a GI-selective antagonist of Ca2+ channels. It has highly selective spasmolytic activity in the GI tract. Dicetel helps to lessen the discomfort and abdominal pain associated with functional intestinal disturbances (e.g., IBS) by inhibiting Ca2+ influx into intestinal smooth muscle cells [39]. Dicetel also inhibits the contractile effect of digestive hormones and proinflammatory mediators such as cholecystokinin, gastrin, and substance P. These metabolites play a key part in the contraction of intestinal smooth muscles, and are linked to defecation-associated abdominal pain and discomfort in patients with IBS.
The beneficial effect of Dicetel arose from two biological pathways. First, Dicetel improved tryptophan metabolism, especially the production of 5-HIAA and N-acetyltryptophan (Fig. 5). Tryptophan can be converted to N-acetyltryptophan by N-Acetyltransferase or into 5-hydroxytryptophan (5-HTP) by tryptophan hydroxylase (TPH)1 and TPH2. Dicetel is a blocker of L-type Ca2+ channels, and Ca2+ influx through L-type high-voltage-activated calcium channels is essential for full activation of TPH [40, 41]. Hence, inhibiting Ca2+ influx using Dicetel would lead to more N-acetyltryptophan. Conversely, 5-HTP can be converted to 5-hydroxytryptamine (5-HT). Once bound to target receptors or taken-up by 5-HT transporters, internalized 5-HT can be metabolized by monoamine oxidase, thereby leading to 5-HIAA generation. Often, the 5-HIAA concentration is used to detect changes in the whole-body 5-HT level [42]. An increased 5-HIAA level cannot be explained directly by the negative influence on TPH by Dicetel. Another compensatory mechanism (e.g., suppressed 5-HT internalization by cells) may also lead to an increased plasma level of 5-HIAA. The Ca2+-channel blockers isradipine and darodipine can increase the 5-HIAA:5-HT ratio in mouse brains [43].
A low 5-HT level can cause depression [44], which is one of the causes leading to IBS. IBS has been postulated to be the most clinically important peripheral disease associated with 5-HT levels [45]. In addition, 5-HIAA and N-acetyltryptophan cause cell toxicity at high concentrations. 5-HIAA can inhibit the growth of the ovary cells of Chinese hamsters [46] and suppresses normal neuronal function by inducing production of oligomerized alpha-synuclein [47]. N-acetyltryptophan is classified as a “uremic toxin” if present in high abundance in sera or plasma [48, 49]. N-acetyltryptophan has been identified as a catabolite of tryptophan generated by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are excreted subsequently in urine [50]. Uremic toxins are a diverse group of endogenously produced molecules that, if not cleared appropriately or eliminated by the kidneys, can cause kidney damage, cardiovascular disease, and neurological deficits [51]. The overall negative influence of Dicetel on neurons may suppress IBS-related CNS hypervigilance, and improve GI motility and secretion of the enterochromaffin cells [52, 53].
Apart from tryptophan metabolism, Dicetel can alter the arginine level in blood, which can increase protein synthesis and suppress inflammation. These actions also help to relieve IBS symptoms [54].
Potential pharmacological mechanism of action of CGGD
CGGD has been used to treat liver/spleen deficiency, abdominal pain, and diarrhea [26]. The potential pharmacological mechanism of action of CGGD is more extensive and complex than that of Dicetel. The beneficial effect of CGGD arose from three biological pathways. In addition to increased metabolism of tryptophan and arginine (which were also documented for Dicetel), CGGD improved carnitine-mediated lipid metabolism.
With respect to tryptophan metabolism, CGGD could increase the blood level of PEA, which functions as a neuromodulator or neurotransmitter [55]. PEA is a direct stimulator of 5-HT biosynthesis, thereby regulating GI transit and colonic secretion in vivo and ex vivo. PEA can improve depression [56, 57]. It can activate the G-protein coupled receptor trace amine-associated receptor 1 (TAAR1) which, in turn, mediates 5-HT biosynthesis by stimulating TPH1/ amino acid decarboxylase activities. Zhai and colleagues [58] showed that PEA production stimulates 5-HT biosynthesis to accelerate GI transit via a TAAR1-dependent mechanism. They demonstrated that PEA could relieve constipation [58]. CGGD also increases the blood level of 5-HIAA, which can suppress CNS hypervigilance. Research has shown that baicalin and Chinese thorowax have a positive influence on the concentration of monoamines, including PEA and 5-HT [59], but the exact biological mechanism is under investigation. It has been speculated that the Ca2+ present in oyster shells can also promote tryptophan to be converted to 5-HTP by TPH1/2 [60, 61], thereby resulting in increased metabolic output [62].
With regard to carnitine-mediated lipid metabolism, the overall effect of CGGD seemed to increase the availability of acetyl groups, which can suppress pain and depression. L-carnitine is transported across cell membranes primarily by two organic cation transporters (OCTNs): OCTN1 and OCTN2. Once inside a cell, the main physiological function of L-carnitine is to shuttle long-chain fatty acids across mitochondrial membranes with the aid of carnitine palmitoyl transferase 1 (CPT1). The latter is located on the internal side of the external mitochondrial membrane and converts activated fatty acyl-coenzyme A (acyl-CoA) from acyl-CoA to acyl-carnitine. Carnitine translocase exchanges acyl-carnitine for carnitine from the matrix via the internal mitochondrial membrane. On the internal side of the inner mitochondrial membrane, CPT2 catalyzes acyl-CoA synthesis from acylcarnitine and a matrix pool of CoA [73]. Acyl-CoA is processed by beta-oxidation to produce energy in the form of adenosine triphosphate [63]. As demonstrated in vitro and in vivo, S. baicalensis and baicalin can activate CPT directly and accelerate the β-oxidation of lipids [70–72]. CGGD increases the blood level of long-chain lipids such as PE(35:0) and PC(40:7), as well as acylcarnitine. Acetyl-CoA and acetyl-L-carnitine are important providers of acetyl groups. The latter can activate the glutamate receptor metabotropic 2 gene through epigenetic regulation to suppress pain and depression [64, 65]. Studies [65, 66] have shown that carnitine supplementation can improve the depressive state of male patients suffering from uremia and cancer patients. In addition, the root of Trichosanthes species and oyster shells can supplement levels of lysine and aspartate as synthetic substrates of carnitine, which can increase the carnitine content directly [67, 68].
CGGD can also increase the blood level of arginine. The latter can activate adenosine monophosphate kinase, which then stimulates fatty-acid oxidation in skeletal muscle and glucose uptake in muscles [57]. This phenomenon can be explained (at least in part) by the existence of baicalin. Baicalin can increase expression of arginase-1 [69], which converts arginine into ornithine. Ornithine has been shown to have a role in regulation of cellular immunity in the microenvironment [70], and its metabolites cna increase protein synthesis and suppress inflammation. Arginine and its metabolites also have important roles in regulation of esophageal, gastric, and intestinal motility [58].
In addition to the three major biological pathways stated above, two metabolomics changes associated with CGGD may explain its beneficial effect against IBS. First, Rhizoma Zingiberis can supplement ergothioneine directly [71]. According to Cheah and colleagues, ergothioneine can relieve the symptoms of several cognitive diseases [72]. Fond and coworkers have suggested that ergothioneine expression through OCTN1 transporters can protect the nervous system from oxidative stress, maintain energy reserves, provide nutritional and neuroprotective factors, and inhibit abnormal brain excitation, combined with the risk factors of IBS [73], which is also an important reason to relieve patients' symptoms. Second, Radix Glycyrrhizae Preparata also has roles in treating depression [59] and IBS [74].
Collectively, combined with the risk factors of IBS, CGGD can improve the mental state of patients by regulating lipid metabolism. We elucidated the pharmacological mechanism of action of CGGD in regulating lipid metabolism through network pharmacology and lipidomics. This strategy may contribute to the discovery of new drugs and clinical application of CGGD in IBS as well as diseases associated with disorders of lipid metabolism.