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Abstract

Background
In the tumor microenvironment, tumor-associated macrophages (TAMs) interact with cancer cells and
contribute to the progression of solid tumors. Nonetheless, the clinical signi�cance of TAMs-related
biomarkers in prostate cancer (PCa) is largely unexplored. The present study aimed to construct a
macrophage-related signature (MRS) for predicting the prognosis of PCa patients based on macrophage
marker genes and exploring its potential mechanisms.

Methods
Six cohorts containing 1056 PCa patients with RNA-Seq and follow-up data were enrolled in this study.
Based on macrophage marker genes identi�ed by single-cell RNA-sequencing (scRNA-seq) analysis,
univariate analysis, least absolute shrinkage and selection operator (Lasso)-Cox regression, and machine
learning procedure were performed to derive a consensus MRS. The receiver operating characteristic
curve (ROC), concordance index, and decision curve analyses were used to con�rm the predictive
capacity.

Results
The predictive performance of MRS for recurrence-free survival (RFS) is stable and robust, and it
outperforms traditional clinical variables. Furthermore, the high MRS patients presented abundant
macrophage in�ltration and high expression of immune checkpoint genes (CTLA4, HAVCR2, and CD86).
The frequency of mutations was relatively high in high MRS group. However, the low MRS patients
indicated a better response to immune checkpoint blockade (ICB) and leuprolide-based adjuvant
chemotherapy. Notably, the abnormal ATF3 expression may be associated with docetaxel and
cabazitaxel-resistant in the PCa cell lines.

Conclusions
In this study, a novel MRS was �rst developed and validated to accurately predict patients’ RFS, assess
immune characteristics, infer therapeutic bene�ts, and provide an auxiliary tool for personalized
therapies.

Introduction
Prostate cancer (PCa) is the world’s second most diagnosed cancer type and the leading cause of cancer-
related deaths in men [1]. Currently, radical prostatectomy (RP) and radiotherapy with or without
androgen deprivation therapy (ADT) remain the standard therapeutic regimen for clinically localized PCa
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[2, 3]. Although most PCa patients respond to treatment initially, many eventually progress to castration-
resistant prostate cancer (CRPC) or neuroendocrine prostate cancer (NEPC) [4]. The rate of biochemical
recurrence (BCR) following RP was estimated to be 17–33% [5, 6]. BCR may predict disease recurrence
and subsequent lethal metastases, but BCR often predates other signs of clinical progression by several
years [7]. Hence, there is an urgent need to determine biomarkers that predict potential recurrence before
therapy. Most studies have focused on investigating cell-autonomous alterations in CRPC, while the
contributions of the tumor microenvironment are less understood. TAMs are the most abundant immune
subpopulation in various malignancies, especially PCa [8–10]. The tumor-promoting M2 phenotype often
outweighs the cytotoxic M1 phenotype and is used to re�ect the clinical features of advanced PCa [11].
TAMs are known to promote tumor growth and resistance to therapy by releasing cytokines, inhibiting
immune surveillance, enhancing angiogenic mediators, and other mechanisms [12, 13]. Mechanistically,
macrophage-derived CCL5 can mediate the STAT3-dependent epithelial-mesenchymal transition process,
causing drug resistance and metastasis in PCa [14]. research has shown that CSF1R inhibitors contribute
to the therapeutic resistance of PCa as a macrophage targeting agent [15].

Nowadays, the growing research on scRNA-seq has led to the identi�cation of a multitude of potentially
predictive biomarkers in PCa, exploring tumor heterogeneity and mechanisms, effectively [16, 17].
Furthermore, studies have found that a signature based on B cell marker genes for lung adenocarcinoma
could effectively predict patients’ survival and immunotherapy [18]. Given the importance of TAMs in anti-
tumor immunity, it is necessary to incorporate molecular characteristics of immune cells and their
associations with prognosis and immunotherapeutic prediction into preclinical models.

Here, a novel MRS model is developed and validated using six independent public datasets to predict
patients’ prognosis, recurrence, as well as immune characteristics, drug sensitivity, and immunotherapy
response. The relationship between this model and the advantages of leuprolide-based adjuvant
chemotherapy (ACT) was analyzed, and drug sensitivity in PCa was assessed. This study may facilitate
individualized treatment strategies and provide new perspectives for cancer immunity.

Materials And Methods

1. Curation and preprocessing of public datasets
The genomic expression and matched clinicopathological annotations of prostate cancer samples were
retrieved from The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD)
(https://portal.gdc.cancer.gov/) and the Gene Expression Omnibus database (GEO)
(https://www.ncbi.nlm.nih.gov/geo/) [GSE116918, GSE70768, GSE70769, GSE46602 and
GSE21032/Memorial Sloan Kettering Cancer Center (MSKCC)]. Moreover, single-cell RNA-seq data of
three PRAD samples of GSE153892 were employed to identify macrophage marker genes in different cell
clusters. Next, the microarray data of PCa cell lines were downloaded from three drug-related datasets
(GSE36135-GPL571, GSE33455, and GSE158494) to assess important gene expressions in docetaxel and
cabazitaxel samples.
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Then, all counts or fragments per kilobase of transcript per million (FPKM) values were converted to
transcripts per kilobase million (TPM) values and were directly used for further analysis. Probe IDs are
mapped to gene symbols according to the corresponding annotation GENCODE (Homo sapiens GRCh38).
The probes with the same gene were expressed as average values. Finally, a total of 1056 patients with
available clinical information were included in subsequent analysis, integrated by the "ComBat"
algorithm, which eliminates potential batch effects across datasets. The baseline information of
collected cohorts was provided in Supplementary Table 1.

2. Distinguishing and extraction of macrophage marker
genes
The scRNA-seq analysis was conducted by using the "Seurat" and "SingleR" packages [19, 20]. All other
parameters were run with default values. Cells with more than 5% of the mitochondrial gene were
removed. Principal component analysis (PCA) dimensionality reduction was performed using 2000 highly
variable genes and the top 10 principal components were selected for cell clustering analysis based on
the “tsne” package in R. The |log2FC| > 0.25 and adjusted P-value < 0.05 were set as the thresholds for
identifying marker genes.

3. Development of the MRS signature
Machine learning algorithms, including Lasso [21], stepwise Cox, random survival forest (RSF) [22],
generalized boosted regression modeling (GBM), partial least squares regression for Cox (plsRcox),
CoxBoost, survival support vector machine (survival-SVM) and supervised principal components
(SuperPC) were integrated to build a consensus signature. Using the “survival” and “survminer” packages
to �t univariate cox regression in the meta cohort, the P-value of 0.05 was considered RFS-associated
genes. The Lasso method was performed via the glmnet package, where all crossover mRNAs were
penalized for preventing over-�tting. The above analysis was adopted to better choose stable hub genes.
Consequently, we employed integrative algorithms to establish a predictive model based on the leave-one-
out cross-validation (LOOCV) framework in the TCGA-PRAD cohort and applied all models to �ve
validation cohorts (GSE116918, GSE70768, GSE70769, GSE46602, and MSKCC). After calculating
Harrell’s concordance index (C-index) across all validation cohorts, the optimal model was selected
according to the highest average C-index.

4. Somatic mutation pro�le analysis
According to mutation data of TCGA-PRAD samples, we calculated tumor mutational burden (TMB) using
“Maftools” to compare the relationship between TMB and MRS scores. Additionally, oncoprint plots
displayed differences in the frequency of alterations between high/low MRS subgroups. The
microsatellite instability (MSI) was inferred using the PreMSIm method.

5. Evaluation of the immunological characteristics
With transcriptome-based algorithms, ESTIMATE [23] compute the immune/stromal scores to re�ect the
overall immune in�ltration, and single-sample gene set enrichment analysis (ssGSEA) [24] and
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CIBERSORT [25] were employed to quantify the relative immune cell proportions. Additionally, the 20
immune checkpoint molecules were retrieved from studies by Auslander et al. [26] and Hu et al. [27]. The
immunotherapy responses in PCa patients were inferred by the tumor immune dysfunction and exclusion
(TIDE) score.

6. Functional Enrichment Analysis
Gene annotation enrichment analysis was performed using the “clusterPro�ler” and “fgsea” packages.
Differentially expressed genes (DEGs) were identi�ed with a threshold of |log2 FC| > 1 and P < 0.05 by the
R package “limma”, and also clustered into various Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways and biological processes of Gene Ontology (GOBP). Using the �le (msigdb.v7.4.symbols.gmt)
as a reference, gene set enrichment analysis (GSEA) was performed using the GSEA software to analyze
various potential signaling pathways. The biological pathways were signi�cantly enriched when nominal
P-value (NOM P-value) < 0.05 and FDR < 0.25 after 1000 permutations. Protein-protein interaction (PPI)
networks were generated using “STRINGdb” package to describe the interactions among representative
DEGs and visualized using Cytoscape (3.8.2).

7. Prediction of therapeutic sensitivity
A total of 2,191 compounds from three drug sensitivity databases (GDSC2, CTRPv2.0, and PRISM), which
accessed via the Cancer Dependency Map (DepMap) portal (https://depmap.org/portal/). The lower IC50
(or AUC) value represents a higher sensitivity to compounds. The IC50 (or AUC) of each compound was
predicted by the calcPhenotype function of “pRRophetic” package. The correlation between IC50, AUC
values, and MRS scores for prostate cancer was evaluated via the Pearson correlation analysis (GDSC: r 
< − 0.29; CTRP: r < − 0.39; PRISM: r < − 0.35;). Box plots were depicted to assess the differential drug
response of the signature.

8. Statistical analysis
All statistical analyses were conducted using R (4.2.1). The Kaplan-Meier (KM) and log-rank tests were
applied to detect the survival difference. The optimal cutoff value was de�ned using the “survminer”
algorithm. The comparison of the C-index with different models was carried out using the CompareC
package. The ROC and Area under the ROC curve (AUC) were used to explore exactly the predictive ability,
which was drawn via pROC and timeROC packages. Heatmaps were generated using the R package
“ggcor”. Decision Curve Analysis (DCA) captured the clinical e�cacy when we try to use complex models
as a tool for decision-makers [28, 29]. Using the Pearson analysis to evaluate the corresponding
coe�cients between two continuous variables. Wilcox test or Kruskal-Wallis or Student’s t-test was
employed to compare differences between groups. The chi-squared test was applied for categorical
variables. P-value or adjusted P-value less than 0.05 were regarded as statistically signi�cant.

Results
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1. Identi�cation and selection of macrophage marker gene
expression pro�les
Figure 1 depicts the complete work framework of this study. The clinicopathological features of TCGA
cohorts are presented in Table 1. In this study, 1056 PCa patients were included in a large meta-cohort,
and the cross-platform batch effect was �rst removed using ComBat. Following the removal, the
clustering across platforms was closer than before (Fig. 2A, B). After data processing and �ltering, three
PCa samples were extracted from the GSE153892, and the gene expression pro�le of 11,527 cells was
identi�ed for subsequent analysis. The plots showed the distribution and dissimilarity of the ten cell
clusters (Fig. 2C, D). Cellular annotations for each cluster were determined by cross-referencing DEGs
with typical marker genes, and cells in cluster 5 were classi�ed as macrophage cells (Fig. 2E). As a result,
447 macrophage marker genes of PCa were identi�ed. Subsequently, 329 genes were obtained from the
meta cohort.
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Table 1
Baseline clinical characteristic of TCGA Database

Characteristics Low MRS

(N = 371)

High MRS

(N = 58)

P-value

Age, median (IQR) 61 (56,66) 63 (57,66) 0.24

T stage 6 missing   < 0.001

T2 151(35.70%) 3(0.71%)  

T3 210(49.65%) 51(12.06%)  

T4 5(1.18%) 3(0.71%)  

N stage 55 missing   < 0.001

N0 272(72.73%) 33(8.82%)  

N1 49(13.10%) 20(5.35%)  

Biochemical recurrence     < 0.001

No 346(80.65%) 25(5.83%)  

Yes 25(5.83%) 33(7.69%)  

Gleason score     < 0.001

GS = 6–7 232(54.08%) 12(2.80%)  

GS = 8–10 139(32.40%) 46(10.72%)  

Residual tumor 148 missing   < 0.001

No 212(75.44%) 27(9.61%)  

Yes 27(9.61%) 15(5.34%)  

Response to ACT 55 missing   < 0.001

No 297(79.41%) 30(8.02%)  

Yes 30(8.02%) 17(4.55%)  

*IQR, interquartile range

2. Integrative construction of the MRS model
Based on 329 macrophage genes from the meta cohort, univariate analysis was used to screen 104
prognostic genes with P < 0.05 (Supplementary Table 2). Then, Lasso-Cox analysis was performed to
acquire 40 more stable genes that were signi�cantly associated with RFS in PCa patients. Finally, these
genes were selected for the machine learning-based integration procedure to develop a consensus MRS.
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In the TCGA-PRAD dataset, we �tted nine prediction models through the LOOCV framework and then
calculated the C-index of each model in the other �ve validation datasets (Fig. 3A). Interestingly, the
average C-index (0.699) was highest in the RSF model and higher in most validation datasets
(Supplementary Table 3). Meanwhile, the optimal cut-off value was con�rmed to be 13.45. PRAD
samples were categorized as low and high MRS subgroups based on the value. The survival curve in the
TCGA-PRAD training dataset indicated that high MRS patients had a signi�cantly inferior RFS (P < 0.001)
(Fig. 3B). Furthermore, similar trends were detected in the �ve validation datasets and meta-cohort
combining all samples and performed well (Fig. 3C-H).

3. Prognostic assessment of the signature
The estimated AUC value for 1-, 3‐, and 5‐year survival rates were 0.854, 0.902, and 0.925 in TCGA-PRAD
(Supplementary Fig. 1A); 0.754, 0.781, and 0.763 in MSKCC (Supplementary Fig. 1B); 0.975, 0.617, and
0.680 in GSE116918 (Supplementary Fig. 1C); 0.709, 0.756, and 0.609 in GSE70768 (Supplementary
Fig. 1D); 0.688, 0.754, and 0.816 in GSE46602 (Supplementary Fig. 1F); 0.834, 0.851, and 0.887 in Meta-
cohort (Supplementary Fig. 1G), respectively. The AUC values for 3-, 4-, and 5-year survival rates were
0.832, 0.874, and 0.816 in GSE70769, respectively (Supplementary Fig. 1E). These �ndings suggested
that the MRS model had signi�cant predictive power. The performance of MRS was further compared
with other clinicopathological features in predicting prognosis. MRS had distinctly favorable accuracy
than other variables, including age; T, prostate-speci�c antigen (PSA) level, Gleason score, TMB, and MSI.
(Fig. 4A-F). However, there was no difference in MSKCC datasets. Next, the MRS performance was
assessed in the TCGA cohort to further evaluate its clinical utility. DCA analysis indicated that the MRS
model added more net bene�t than the clinical characteristics. It also indicated that prediction with all or
non-patient schemes is more bene�cial when the decision probability based on the nomogram is greater
than 0.1 and less than 0.3 (Fig. 4G). The �ndings also revealed that the combination of MRS and
pathologic parameters might improve superior clinical usefulness for PCa patients.

4. The immune landscape of MRS subgroups
We used the GSEA algorithm to enrich the various signal pathways in the meta cohort to better
understand the underlying mechanisms associated with MRS in PCa. Signaling pathways such as cell
cycle and DNA replication were speci�cally active in the high MRS subgroup. In contrast, the metabolic
pathways were signi�cantly enriched in the low MRS subgroup, including drug metabolism cytochrome
p450, adipocytokine signaling pathway, and peroxisome (Supplementary Fig. 2A). Simultaneously,
GOBPs analysis was performed, and the results suggested that most genes were signi�cantly associated
with �ve pathways (P < 0.05), such as regulation of cell development, ameboid-type cell migration,
positive regulation of MAPK cascade, positive regulation of cell adhesion, and small molecule catabolic
process (Supplementary Fig. 2B). Particularly, a thorough search of the TCGA training dataset revealed
that 313 DEGs (|LogFC| >1 and P < 0.05) were involved in multiple KEGG immune-related pathways, such
as IL-17 signaling pathway, TNF signaling pathway, MAPK signaling pathway, Human T-cell leukemia
virus 1 infection, Cytokine-cytokine receptor interaction, and PI3K-Akt signaling pathway. Then, based on
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the STRING database, the PPI network was generated to reveal interactions among representative DEGs
(containing 46 proteins), which regulated the immune response to a speci�c level (Fig. 5A). In addition to
the enrichment differences observed above, the relationship between the MRS and immune cell and
checkpoints in meta PCa samples was investigated.

The immune, stromal, and estimate scores were positively correlated with MRS, while tumor purity had
signi�cant negative dependencies (Fig. 5B, C; Supplementary Fig. 2C, D). Furthermore, CIBERSORT
analysis displayed that PCa patients with high MRS had a signi�cantly greater proportion of memory B
cells, resting memory CD4 T cells, regulatory T cells (Tregs), gamma delta T cells, activated NK cells, and
M1/M2 macrophages, but had a lower proportion of plasma cells and T follicular helper cells (Fig. 5D).
Simultaneously, a correlation heatmap was generated to illustrate the relationships among MRS and 28
different immune cells from ssGSEA. The Pearson analysis was performed in all types of immune cells,
and 13 pairs exhibited signi�cantly positive correlations, especially among memory B cells and gamma
delta T cells, while activated B cells, CD56 bright natural killer cells, eosinophils, immature dendritic cells,
mast cells, and natural killer cells were negatively correlated. Besides, the correlation between the
expressions of 20 genes (15 immune checkpoint-related genes and 5 immunological activity-related
genes) and MRS were analyzed. Moreover, this analysis suggested that 12 genes were positively
correlated with MRS, and CEACAM1, CD40, and PVR were negatively correlated (Fig. 5E). Violin plots also
suggested that 11 immune cells were highly in�ltrated in the high MRS group which exhibited a positive
correlation with MRS (Supplementary Fig. 2E). Moreover, the expression of most checkpoints was
upregulated in the high MRS group, which may be associated with overall upregulation of immune
activity. Details of the expression patterns of genes are depicted in Supplementary Fig. 2F. These genes
were all positively correlated with MRS scores.

Due to suppression of critical immune checkpoints can in�uence cancer immunotherapy with ICB, some
representative molecules (CTLA4, HAVCR2, and CD86) were evaluated, and it was observed that they had
a positive correlation with MRS. The patients were categorized into four subtypes based on MRS and
checkpoint genes and the impact of their interaction on RFS in PCa patients was determined using the
KM curve. The log-rank test results showed that MRS could effectively differentiate the prognosis of
patients with con�icting levels of CTLA4 (Fig. 5G), HAVCR2 (Fig. 5H), and CD86 (Fig. 5I). Patients with the
worst prognosis had low MRS scores and high expressions of checkpoints, while patients with high MRS
scores and low expressions of checkpoints had the highest survival rates among the four subtypes.
Hence, we hypothesized that it might be used to predict immunotherapeutic response in PCa. The
Wilcoxon test results also demonstrated that tumors with low MRS scores had signi�cantly lower TIDE
score, implying a better response to ICB therapy (Fig. 5F). Overall, these �ndings demonstrated that MRS
correlated with immune activation and indicated potential ICB bene�ts in PCa.

5. Somatic Mutation characteristics were observed in
different MRS groups
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Increasing evidence suggests that high mutational load and neoantigen overexpression increase the
chances of tumor recognition by the immune system [30]. Therefore, the maftools approach was used in
the present study to investigate the possible relationship between mutational load and MRS scores. First,
Using the MRS score, patients were classi�ed into two groups (low and high). The oncoPrint plots
summarized the top 10 mutated genes in the high MRS groups (31%, 14%, 10%, 10%, and 10% for TP53,
TTN, ABCA13, CSMD3, and FOXA1 respectively) (Fig. 6A). The mutation rates for SPOP, TTN, TP53,
FOXA1, and KMT2D in the low MRS subgroup were 12%, 9%, 8%, 5%, and 5%, respectively. Also, the forest
plot showed that ABCA13 was highly mutated in the high MRS group (Fig. 6B). Subsequently, a series of
evaluation indicators such as TMB, MSI, and immune checkpoint molecule expression represented the
responsiveness to immunotherapy. The �ndings suggested that CD86, CTLA4, HAVCR2, PDCD1LG2, and
CXCL9 expression levels were signi�cantly elevated as MRS increased, and TMB scores were signi�cantly
distributed in the high MRS group (Supplementary Fig. 2F, Fig. 6C). The MRS score in MSI-L/MSS was
higher than in MSI-H (Fig. 6D). These results demonstrated that MRS might correlate with higher
immunogenicity and heterogeneity in PCa.

6. Potential therapeutic compounds of PCa patients with
high MRS
Many studies have been searching for potential druggable targets and compounds for PCa patients
because of resistance to standard chemotherapeutic agents. In the TCGA-PRAD cohort, 21 patients were
treated with leuprolide-based ACT. The chi-square test results demonstrated that the low MRS subgroup
exhibited a higher response rate than the high MRS subgroup (91% vs. 50%) (Fig. 7A), and MRS could
also signi�cantly discriminate responders from non-responders of leuprolide-based ACT (AUC = 0.722)
(Fig. 7B).

Next, three drug response databases (GDSC, CTRP, and PRISM) were searched to identify effective
chemotherapeutic agents for patients with high MRS scores and poor prognoses. First, IC50 values were
estimated for each sample in the meta-cohort, and then correlations between values and the MRS were
calculated. A screening threshold of negative r values with p-values less than 0.05 was used to identify
candidate compounds, with �ve compounds annotated with the most negative correlation coe�cients
displayed in volcano plots (WIKI4, MIM1, Vorinostat, GSK2578215A, and WEHI-539), and their estimated
IC50 values were lower in the high MRS subgroup (Fig. 7C, D). Moreover, ten compounds were found to be
negatively correlated with MRS scores, containing CD-1530, teniposide, tigecycline, LY-2183240, and
leptomycin B in the CTRP database (Fig. 7E) and ixabepilone, triclabendazole, cabazitaxel, paliperidone,
and SC-12267 in the PRISM database (Fig. 7G). Furthermore, the results showed that all compounds
presented higher AUC values in the low MRS subgroup (Fig. 7F, H). Finally, we obtained a group of drugs
from the three datasets whose bene�cial therapeutic values in high MRS scores were signi�cantly higher
than low MRS scores (p < 0.05, Fig. 7I). Among them, vorinostat, cabazitaxel, and �udarabine have been
widely used for the treatment of speci�c targets of PCa [31, 32].
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To explore the mechanism of drug resistance, we extracted genes ranked in the top 10 of the RSF in three
external datasets based on the PCa cell line and analyzed the expression differences (Supplementary
Fig. 3A-C). Notably, GSE36135 and GSE33455 revealed that ATF3 expression was upregulated in
docetaxel-resistant DU-145 cells respectively (Fig. 8A, B). However, the outcome was the opposite in PC-3
cells. Moreover, GSE158494 suggested that ATF3 expression was upregulated in cabazitaxel-resistant
cells compared to original and docetaxel-resistant cells (Fig. 8C). According to the cutoff threshold of
2.48 derived from the expression of ATF3 in the TCGA cohort, low expression samples presented
signi�cantly poorer RFS than high expression samples (P < 0.001, Fig. 8D). Similarly, the expressions of
ATF3 are negatively correlated with MRS scores (Fig. 8E, Supplementary Table 4).

Discussion
Macrophages have received signi�cant attention regarding the prognosis of several cancer types [33].
Particularly, the presence of TAMs in�ltration in the tumor microenvironment was associated with disease
progression following ADT, and preclinical studies also recommended that TAMs promote PCa cell
proliferation and migration [34–36]. The heterogeneity of PCa is being revisited with the advent of single-
cell technologies. Yu et al. discovered FMO2 as a biomarker of macrophage in�ltration and prognosis in
epithelial ovarian cancer [37]. Additionally, MS4A6A was found to be a new prognostic biomarker
produced by macrophages in glioma patients [38]. However, the underlying mechanism of TAMs-induced
remains unclear, and molecular strati�cation of TAMs based on predictive biomarkers to guide PCa
treatment selection has not been implemented in the clinic yet. Therefore, broadly exploring the
prognostic markers of PCa can guide future clinical management.

In the present study, we initially identi�ed macrophage marker genes from PRAD tissue by scRNA-seq
analysis. Further, we employed univariate Cox regression analyses and Lasso to screen 40 candidate
genes that were highly correlated with the RFS of patients. We further established an integrative method
to generate a consensus MRS with the expression pro�les of these genes. One advantage of a complex
machine learning algorithm is the capacity to develop better statistical models to forecast RFS across all
cohorts to enhance classi�cation performance. A total of nine models were �tted to the TCGA-PRAD
database through the LOOCV framework. Subsequently, validation results in �ve independent cohorts
obtained from the GEO dataset suggested that RSF was the best model with the capability of stratifying
PCa patients into two MRS groups. Patients with higher MRS exhibited worse RFS in the training dataset.
The survival curve in �ve external cohorts also con�rmed the good reproducibility and robustness of the
MRS in predicting patients’ RFS. Furthermore, the AUC value in all cohorts presented satisfying molecular
subtyping accuracy. Previous studies indicated that various clinical predictors were widely used for
prognostication and risk assessment of PCa, such as Gleason score, PSA, and stage [39–41]. Other
parameters, such as TMB and MSI status, might potentially have an impact on therapy response and
prognosis in addition to the clinicopathological features of the patient [42]. The C-index assessment
suggested that the MRS signature has a signi�cant advantage in predicting RFS relative to these factors.
However, the difference showed no statistical signi�cance in the MSKCC dataset. Notably, the decision
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curve, which synthesized the MRS with clinical characteristics, added a net bene�t rate to current clinical
values.

Furthermore, these DEGs within subgroups were also correlated with pathways involved in in�ammation,
such as the IL-17 signaling pathway, TNF signaling pathway, MAPK signaling pathway, PI3K-Akt
signaling pathway, Cytokine-cytokine receptor interaction, peroxisome and cell cycle. Recent studies have
shown that these variables and pathways are essential for metabolic regulation and macrophage
polarization [43, 44]. Next, we discovered that PCa patients with high MRS were associated with an
increased risk of biochemical recurrence and had a higher immune in�ltration (like Tregs, activated CD8 T
cells, activated NK cells, and M1 and M2 macrophages). These observations were in agreement with the
previous studies [45, 46]. We observed that higher MRS scores correlated with higher expressions of
immune checkpoints (CTLA4, HAVCR2, and CD86), which, in survival studies, was shown to have a
mutually bene�cial in�uence on patient prognosis. With the increase in MRS score, the expressions of
checkpoints such as CXCL9 and CD80 also increased. This might be the result of the mechanism by
which M1 hot TAMs may recruit T cells through CXCL9 expression [47]. As per recent studies,
overexpression of HAVCR2 in T cells can lead to dysfunction of PSA-speci�c CD8 + T cells, further leading
to a poor prognosis for PCa patients [48, 49]. Additionally, CD80 binds to CD28 or CTLA4 to activate T cell
co-stimulation or initiate T cell co-inhibition, respectively [50]. Targeting immune checkpoints was
considered to improve the therapeutic e�cacy of immunotherapy modalities in solid tumors [51]. This
study showed that patients with low MRS bene�t more from ICB treatment, but those with high TIDE
scores may react poorly to immunotherapy. Therefore, the identi�cation of MRS classi�ers that predict
response to immunotherapies is critical for enhancing their use in treating patients. Therefore, the
mechanism about how MRS affects RFS and ICB treatment of PCa patients may require more evidences
and discussions.

The high MRS subgroup presented a higher mutation frequency of TP53 (31%), and the low MRS
subgroup tended to have a higher proportion of SPOP mutations (12%). Studies have reported a mutually
exclusive relationship between TP53 and SPOP mutations, both of which are independent prognostic
markers for CRPC [52, 53]. For example, alterations in TP53 were associated with a decreased
dependence of the tumor on AR signaling, which was associated with ARSI, whereas the highest levels of
AR activity were found in the SPOP mutant subtype, indicating a good response to androgen receptor
signaling inhibitor (ARSI) [54]. In addition to modifying CSF1 signaling, the combination of PTEN and p53
loss increased CXCL17 secretion, further in�uencing macrophage recruitment and function [55, 56].
ABCA13 was highly mutated in the high MRS group. It is reported that overexpression of ABCA13 is
associated with decreased progression-free survival and reduced sensitivity to temozolomide in
glioblastoma [57]. Patients with microsatellite instability-high (MSI-H) responded well to immunological
response [58]. This study showed a better immune response in patients with low MRS, which is in line
with both the �ndings from the TIDE approach. However, as con�rmed by various studies, the high MRS
group had a higher TMB score, suggesting that TMB is unlikely to be a major determinant of response to
immunotherapy for this disease [59–61]. Considering the present and previous �ndings, it is concluded
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that the MRS score could be a credible biomarker that assists with �ltering the dominant population of
immunotherapy patients.

Neoadjuvant leuprolide enhances radiation-mediated apoptosis of PCa cells with well-documented
effects in reducing tumor bulk and increasing progression-free survival [62]. According to this data,
patients with low MRS were more inclined to respond to leuprolide-based ACT. ROC analysis suggested
that MRS provided better accuracy in predicting leuprolide-based ACT. In addition, potential drug targets
and corresponding compounds for high MRS PCa patients were screened as per the established MRS
model, and several promising compounds were selected from three drug response databases, like
paclitaxel, vorinostat, cabazitaxel, and �udarabine. It was discovered that Zn promotes the
chemosensitivity of PCa cells to paclitaxel by inhibiting epithelial-mesenchymal transition and inducing
apoptosis, which increases life expectancy in PCa patients [63]. Currently, Poly (ADP-ribose) polymerase
inhibitors (vorinostat) can be used clinically to activate genotoxic and proteotoxic stress response
pathways in human PCa [64]. Clinical trial data revealed that cabazitaxel enhanced survival with
manageable side effects in patients with metastatic CRPC [65]. Furthermore, increased reactive oxygen
species production by �udarabine phosphate may represent an effective treatment option for patients
with N-MYC overexpressing NEPC tumors [66]. As a result, MRS might be a powerful tool for making
choices for targeted drug development and immunotherapy combination for PCa patients.

Considering the impact of the tumor microenvironment on drug resistance, a differential analysis of
critical genes in the external cohorts of PCa cells was performed. The GSE36135 and GSE33455 cohorts
demonstrated high expression of ATF3 in docetaxel-resistant DU-145 cells compared to sensitive or
original cells; however, the outcomes were opposite in the PC-3 cell line. Furthermore, GSE158494 showed
that ATF3 expression was upregulated in cabazitaxel resistant cells compared to original and docetaxel
resistant cells. As an inducer of oxidative stress and in�ammation, ATF3 may regulate macrophage-
associated host defense [67]. For example, in response to chemotherapy, wild-type macrophages exhibit
pro-oncogenic activity, whereas ATF3 knockout macrophages exhibit anti-cancer activity [68]. ATF3 has
been identi�ed as a tumor suppressor for a major subset of PCa with dysfunctional PTEN and has also
been shown to inhibit hormone-induced prostate carcinogenesis in mice [69, 70]. Our study further shows
that the high expression of ATF3 was associated signi�cantly with better prognosis and low MRS score.
Therefore, ATF3 can be used as a key indicator of apoptosis and drug resistance in PCa cells. Although
external cohorts were validated in this study, its predictive power needs further validation in prospective
multicenter cohorts. Furthermore, given the complexity of the tumor microenvironment, which is
in�uenced by multiple factors, the interaction between tumor cells and macrophage-associated genes
requires more exploration and evidence. Potential drug combination interventions for MRS subgroups are
expected to be further explored in clinical trials.

Conclusions
In conclusion, this study developed and validated a novel MRS by integrating machine learning
algorithms to effectively predict the RFS of PCa patients. This signature presented the superior ability of
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risk strati�cation and effectively predicted chemotherapeutic drug sensitivity and immunotherapy
response, suggesting its promising future in utilization.
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Figure 1

The work�ow of the research.



Page 22/29

Figure 2

Identi�cation and selection of macrophage marker genes in PCa. (A, B) The distribution of prostate
cancer samples (TCGA-PRAD, MSKCC, GSE116918, GSE70768, GSE70769, and GSE46602) before and
after removal of batch effects by principal component analysis. (C) PCa dimension reduction by scRNA-
seq, Color depending on various samples. (D) Label colors according to various cell types. (E) Cluster
annotation of cell types using standard markers.
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Figure 3

Construction of MRS model via the machine learning-based procedure. (A) A total of nine prediction
models were developed through the LOOCV framework and the C-index was further calculated for each
model across all validation datasets. Kaplan-Meier curves showed that patients with lower MRS scores
had better RFS than the ones with higher MRS scores in the TCGA-PRAD (B), MSKCC(C), GSE116918(D),
GSE70768(E), GSE70769(F), GSE46602(G), and meta-cohort(H).
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Figure 4

Evaluation of the MRS model. (A-F) The performance of MRS was compared with other clinical and
molecular variables in predicting prognosis. (G) Comparisons of the clinical utility for the clinical
variables and combined with MRS using decision curve in the entire TCGA dataset. *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001, ns: no signi�cance.
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Figure 5

Immunological features in prostate cancer. (A) The diagram depicted the protein interactions of multiple
immune-related pathways. The green backward slash lines represent indirect, the red solid lines represent
direct, the grey dotted lines represent the KEGG pathway. Colour bars from red to blue represent the fold
change in protein levels from increasing to decreasing. The signi�cance of pathways represented by -log
(pvalue) (limma test) was indicated as most signi�cant in dark purple. (B, C) The box plots presented that
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both immune score and stromal score are signi�cantly correlated with MRS subtypes. (D) Comparison of
22 cellular levels inferred by CIBERSORT algorithm between high/low MRS groups in meta-cohort. (E) A
correlation heatmap illustrated the relationships of MRS score with the immune in�ltrating cells and
inhibitory immune checkpoints. (F) The differences in TIDE score between two MRS subgroups. KM curve
of four subgroups strati�ed according to the MRS scores and expression of inhibitory immune
checkpoints for CTLA4 (G), HAVCR2 (H), and CD86 (I), respectively. *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001, ns: no signi�cance.

Figure 6

Landscape of somatic mutations. (A) The top 10 mutated genes are in the high MRS and low MRS score
groups. (B) The somatic mutations were compared between the high/low MRS score groups. (C) The
relationship between TMB and MRS scores in PCa patients. (D) Comparison of the MRS score between
MSI-L/MSS and MSI-H group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns: no signi�cance.



Page 27/29

Figure 7

MRS predicted therapeutic response for PCa patients. (A) Differences in response rates between the high
MRS and the low MRS score group concerning Leuprolide-based ACT. (B) ROC curves of MRS predict the
e�cacy of leuprolide in TCGA. For the GDSC database, volcano plot (C) and box plot (D) of Pearson’s
correlations and signi�cance between MRS scores and estimated IC50 values, and blue points being
signi�cantly negatively correlated (p < 0.05, r < -0.29). (E, G) The AUC values of compounds in CTRP and



Page 28/29

PRISM were estimated for each PRAD sample and Pearson correlation was performed between MRS
scores and estimated AUC values, and the �ve compounds with the highest negative correlation
coe�cients were shown on dotted line plots (CTRP: r < -0.39, PRISM: r < - 0.35). (F, H) All estimated AUC
values for these compounds were signi�cantly lower in the MRS high group. ***P < 0.001, ****P < 0.0001.
(I) Barplot showed drugs with differences in pharmacological value between high and low MRS scores in
the GDSC (blue), CTRP (yellow), and PRISM (pink) databases, where columns represent p values and
rows represent drugs. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns: no signi�cance.

Figure 8

Molecular comparison in prostate cancer cell lines. (A) Boxplot compared abnormal ATF3 expression
between docetaxel-resistant and docetaxel-sensitive DU-145 cells in GSE36135. The differences of ATF3
expression between original and docetaxel (or cabazitaxel) resistant DU-145 (or PC-3) cell lines in the
GSE33455 (B) and GSE158494 (C) databases, respectively. *P < 0.05, **P < 0.01, ***P < 0.001, ****P <
0.0001, ns: no signi�cance. (D) KM survival curves showed the difference in RFS between the two groups
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with high and low ATF3 expression. (E) In the TCGA cohort, ATF3 displayed a signi�cant negative
correlation with MRS scores.
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