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Abstract
Climate change and human activities have massively impacted the hydrological cycle. Thus, it is of the greatest
concern to examine the effect of climate change on water management, especially at the regional level, to
understand possible future shifts in water supply and water-related crises and support regional water
management. Fortunately, there is a high degree of ambiguity in determining the effect of climate change on
water requirements. In this paper, the Statistical DownScaling (SDSM) model is applied to simulate the potential
impact of climate on crop water requirements (CWR) by downscaling ET0 in the region of Western Maharashtra,
India, for the future periods, viz., the 2030s, 2050s, and 2080s, across three meteorological stations (Pune,
Rahuri, and Solapur). Four crops, i.e., cotton, soybean, onion, and sugarcane, were selected during the analysis.
The Penman-Monteith equation calculates reference crop evapotranspiration (ET0). Further, in conjunction with
the crop coe�cient (Kc) equation, it calculates crop evapotranspiration (ETc)/CWR. The predictor variables were
extracted from the NCEP reanalysis dataset for 1961–2000 and the HadCM3 for 1961–2099 under the H3A2
and H3B2 scenarios. The results indicated by SDSM profound good applicability in downscaling due to
satisfactory performance during calibration and validation for all three stations. The projected ET0 indicated an
increase in mean annual ET0 compared to the present condition during the 2030s, 2050s, and 2080s. The ET0

would increase for all months (in summer, winter, and pre-monsoon seasons) and decrease from June to
September (monsoon season). The estimated future CWR shows variation in the range for cotton (-0.97 to
2.48%), soybean (-2.09 to 1.63%), onion (0.49 to 4.62%), and sugarcane (0.05 to 2.86%).

1. Introduction
Climate change is becoming a problem and the hottest topic on the entire globe. Extreme warming caused by
human emissions of greenhouse gases and the subsequent large-scale changes in weather patterns confronts
climate change. Most Asian countries have witnessed more frequent �oods and droughts over the last decades
due to climate change and human activities (Kranz et al., 2010; Xu et al., 2013; Zhai et al., 2005). According to
the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), the global warming trend
will continue, mainly caused by the increasing amount of greenhouse gas emissions (IPCC, 2013; Tao et al.,
2015).

As per the IPCC, during the years 1880–2012, the global surface temperature rose by 0.65–1.06 ºC, and the pace
of increase after 1951 was around 0.12 ºC per 10 years, which is almost double the rate since 1880 (Zhou et al.,
2017). The effects of global climate change on hydrological parameters such as runoff, evapotranspiration
(ET0), surface storage, and soil moisture must be explored to determine water supply conditions (Rajabi and
Babakhani, 2018; Xu et al., 2013). Global agriculture has impacted climate change in recent decades and is one
of the threats to increasing food demand for the rapidly growing population under intensi�ed environmental
stress. Worldwide, a shift in the atmosphere is anticipated due to global warming and contributes to the
�uctuations in CWR.

The knowledge of the water requirements of various crops is supposed to predict the water demand and the
water �uctuations for effective management. Global agriculture, impacted by climate change in recent decades,
is one of the main challenges of rising food supply for the rapidly growing population. The regional cropping
calendar, cropping system, growing season, crop water requirement (CWR), and irrigation requirement (IR) for
different agro-climatic zone rely on the respective climatic parameters such as precipitation, temperature, relative
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humidity, evapotranspiration, wind speed, sunshine hours, etc. (Goyal, 2004; Thomas, 2008). It was analyzed that
seasonal rainfall (June-Sept) in Maharashtra directly impacted soil moisture variation (Gade et al., 2021).
Furthermore, the agriculture sector and CWR are more sensitive to and affected by climate variability through
extreme climate events such as droughts, �oods, and heatwaves.

Past studies (IPCC, 2013, 2007, 2002; Pandey et al., 2008) revealed that worldwide precipitation, temperature,
evapotranspiration, wind speed, and sunshine hours �uctuated from normal in the last century. These are due to
both natural as well as anthropogenic factors. Temperature is the prime climatic variable for the water allocation
and farming sector after precipitation (Duhan et al., 2013). Studies have also shown that temperature levels are
rising with higher latitudes in the Northern Hemisphere (Kumar, 2007). (Goyal, 2004) conducted a sensitivity
analysis of the evapotranspiration rate over Rajasthan, India. The results suggested that the evapotranspiration
rate rose by 14.8%, with a signi�cant increase in temperature by 20%.

Crop evapotranspiration (ETc) varies signi�cantly from ET0 as soil cover, canopy properties, and aerodynamic
resistance. Due to alterations in crop characteristics during the growing season, the crop coe�cients change
from sowing to harvesting. As a result, different crops would have different crop coe�cients. The crop coe�cient
also in�uences the varying properties of the crop during its growth. Penman-Monteith (P-M) is still the only
standard method under all climatic conditions recommended by FAO 56 (Allen et al., 1998). Potential climate
change signi�cantly affects agriculture and water supplies; in a nutshell, the crop production sector should be
more conscious of productive approaches for the application and storage of water. (Doria et al., 2006) have
demonstrated that simulation reliant on both natural and anthropogenic radiative forcing is more closely
associated with observed data, which only accounts for natural climatic conditions.

Many downscaling methodologies have been proposed in the last two decades, recognizing the temporal and
spatial mismatch between the regional and gross scales. These techniques were mainly used in Europe and the
United States (Wilby and Wigley, 1997). By deriving regional climate detail from global climate data (Gagnon et
al., 2005), downscaling approaches have emerged as effective methods to reduce the problem of indistinct
scales. Various researchers (Guo et al., 2018; Kundu et al., 2017; Manasa and Shivapur, 2016; Tao et al., 2015;
Wang et al., 2013; Xu et al., 2014; Zhou et al., 2017) downscaled ET0 using SDSM and other models and found
signi�cant variations in contrast to current conditions. The statistical downscaling is based on a few
assumptions; the predictor–predictand relationships are valid under future climatic conditions, and predictor
variables with their changes are well characterized by GCMs (Saraf and Regulwar, 2016; Wilby and Wigley, 2000).
Studies in the Tibetan plateau by (Wang et al., 2013) projected ET0 during 2011–2100 from the HadCM3 and
CGCM3 models, where SDSM performed satisfactorily in downscaling ET0, and the continuous increment in ET0

was observed in the 21st century. (Guo et al., 2018) analyzed the evaluation indices (R2, Ens) during the
calibration and validation periods. The results indicated a fair simulation of temperature and evapotranspiration
by the SDSM model. The SDSM combines multiple regression and a stochastic weather generator (Gebremeskel
et al., 2004; Mahmood and Babel, 2013).

Although climate projections of rainfall and temperature are frequent, there has been limited research on the
generation of future ET0 (Kundu et al., 2017). However, ET0 is not only a crucial climatic parameter controlling
the water balance but also a key factor in�uencing crop production. In the semi-arid areas of less rainfall or
rainfall-based agricultural seasons (such as Western Maharashtra), variation in crop water requirements may
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create a problem. The future projection of ET0 has not been made in the region. Therefore, it is necessary to
study variations in ET0 and evaluate their effectiveness in the future, and develop better management strategies.

2. Materials And Methods

2.1. Study area description
The investigation was carried out for the region of Western Maharashtra, the agro-climatic region of Maharashtra
in the western province of India. The major crops grown in the study area are cotton, onion, soybean, sugarcane,
groundnut, sorghum, and maize. The average annual rainfall in the region ranges from 608–635 mm. The
climate of Western Maharashtra is hot and dry. 89% of annual rainfall in the central part during southwest
monsoon rainfall is received from June to September, with 37 rainy days out of 122 days having daily rainfall (r 
> = 2.5) (Guhathakurta et al., 2020). The average annual rainfall decreases from 852 mm on the southern side to
567.5 mm on the northern side (TERI, 2014). Western Maharashtra is more irrigated than the rest of
Maharashtra. The geology of the region is dominated by basaltic rock. The study area occupied the largest share
(50 percent) of the gross irrigated area of the state since most of the rivers originate from the Western Ghats
mountain ranges and are diverted to the east through Western Maharashtra. The irrigation potential of 4.826 ×
106 ha-m has been created by the Water Resources Department of the state through 3,712 completed and
ongoing projects (Audit, 2018). The conditions adversely affect the socio-economic conditions of the people,
mainly dependent on agriculture. It also has a phenomenal impact on crop water requirements.

2.2. Location of study area
The area for the study is in the Western Maharashtra region bounded by latitudes 17º 39' to 19º 24' N and 73º
50' to 75º 55' E. The selected regional stations with their names, latitude, longitude, and altitude are represented
in Table 1. The boundary map of the study area with selected stations is depicted in Fig. 1.

Table 1 The details of the meteorological stations under the study area

Sr. No District Station Latitude Longitude Altitude Data

1. Ahmednagar Rahuri 190 23' 33"N 740 38' 56"E 514.55 m 1975–2000

2. Pune Pune 180 31' 13"N 730 51' 24"E 559.90 m 1970–2000

3. Solapur Solapur 170 40' 08"N 750 54' 24"E 483.50 m 1967–2000

2.3. Data Acquisition

2.3.1. Geographical Data:

2.3.2. Meteorological Data:
The climatic parameters such as maximum temperature, minimum temperature, maximum relative humidity,
minimum relative humidity, bright sunshine hours, and wind speed were used to estimate reference crop
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evapotranspiration. The data was acquired from the Indian Meteorological Department (IMD), Pune, and SAU,
Rahuri, for selected stations. It was available as a continuous record in a daily format.

2.3.3. Reanalysis Data:
The estimation of future crop water requirements was done by analyzing NCEP and GCM data along with
observed meteorological data of the study area. The National Centre for Environmental Prediction (NCEP)
provides daily reanalysis data of 26 factors. These include mean temperature, mean sea level pressure, near-
surface relative humidity, near-surface speci�c humidity, 500 hPa geopotential height, 850 hPa geopotential
height, and relative humidity, geostrophic air�ow velocity, vorticity, zonal velocity component, meridional velocity
component, wind direction and divergence at the surface, 500 hPa height, and 850 hPa height (Zhou et al., 2017).
Table 5 describes the predictors along with their descriptions. The grid resolution is 2.5 degrees of latitude by 2.5
degrees of longitude. This data is available on the Canadian Climate Impact Scenarios (CCIS) website (Guo et al.,
2018).

2.3.4. GCM Data:
The General circulation model (GCM) data was used for generating different scenarios. The GCM selected was
the Hadley Centre Coupled Model version 3 (HadCM3). The HadCM3 is a coupled climate model with a
horizontal resolution of 2.5 degrees of latitude by 3.75 degrees of longitude, and the predictors were the same as
in NCEP data. The predictor variables are available for 1961–2099 (Saraf and Regulwar, 2016). Furthermore, this
model has been extensively used in the statistical downscaling of climatic variables across the Indian sub-
continent (Anandhi et al., 2008; Mahmood and Babel, 2013; Saraf and Regulwar, 2016). The output of HadCM3
consists of two scenarios (H3A2 and H3B2), both used in the study.

2.4. Estimation of Crop Water Requirement (CWR)
The estimation of CWR is one of the basic needs for crop planning of any irrigation project. The water
requirement is speci�ed as the quantity of water, regardless of its source, needed by a crop or diversi�ed crop
pattern for its growth under �eld conditions in a given period (Micheal, 2008). The water requirement
encompasses losses due to crop evapotranspiration (ETc) or consumptive use (Cu). In addition to losses during
water use (inevitable losses), seepage losses also occur. 

WR = ETc or Cu + application losses …. (1)

The water requirement for plants is, therefore, a "demand" and a "supply" consisting of a contribution from any
source of water, the primary source being irrigation water (IR), effective rainfall (ER), and soil pro�le contribution
(S). Here, water requirement was estimated considering the demand side and nullifying the losses due to
application as these parameters vary from place to place. The following relationship calculates the crop
evapotranspiration, 

…. (2)

Where, ETc = Crop evapotranspiration (mm/day); ET0 = Reference crop evapotranspiration (mm/day); and Kc =
Crop coe�cient (dimensionless)

ETC = ET 0 × KC
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ET0 was calculated using the FAO 56 Penman-Monteith method (Allen et al., 1998). It is recommended as the
sole method for determining ET0 and is represented as:

…. (3)

Where, ET0 = Reference crop evapotranspiration (mm/day); Δ = Slope of saturation vapour pressure temperature

curve (kPa/0C); γ = Psychometric constant (kPa/0C); T = Mean air temperature (0C); es= Saturated vapour

pressure (kPa); ea= Actual vapour pressure (kPa); Rn= Net radiation (MJ/m2/day); G = Soil heat �ux density

(MJ/m2/day); U2 = Wind speed at 2m height (m/s) and (es - ea) = Saturated vapour pressure (kPa)

The net radiation was estimated as follows: 

…. (4)

Where, a and b are empirical coe�cients (a = 0.18 and b = 0.55); n (h) is the sunshine duration; N (h) is the
maximum sunshine duration; Ra (MJ/m2.d) is the extraterrestrial radiation; and Rnl (MJ/m2.d) is the net outgoing
longwave radiation (Wang et al., 2019; Zotarelli et al., 2010).

2.4.1. Details of Selected Crops
For estimation of crop water requirement, cotton, onion, soybean, and sugarcane crops were selected as they are
majorly grown in the study region. The details of selected crops for analysis with their growth period, duration,
and season are described in Table 2.  

Table 2
Details of selected crop with growth period

Crops Sowing Date Harvesting Date Duration Season

Cotton 15 May 10 Nov. 180 Days Kharif

Onion 15 Oct. 11 Feb. 120 Days Rabi

Soybean 1 July 8 Oct. 100 Days Kharif

Sugarcane 30 Jan. 29 Jan. 365 Days Perennial

2.4.2. Crop Coe�cient (Kc) Equations
The crop coe�cient varies with crop growth stages. The Kc values were interpolated for the initial, mid-season,
and late-season stages. The daily Kc values for different crops in the Rahuri region during their entire growth
were calculated by the polynomial equations generated by the Department of Irrigation and Drainage Engineering
and recommended by Mahatma Phule Agriculture University, Rahuri (India). It was assumed that the equations

ET 0 =
0.408∗Δ∗(Rn−G)+γ∗( )∗U2∗(es−ea)900T+273

Δ+γ∗(1+0.34∗U2)

Rn = 0.77 (a + b )Ra − RnlnN
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are valid over the entire study area and do not change concerning place and time. The details of the Kc equation
for cotton, onion, soybean, and sugarcane are well-illustrated below in Table 3 and Fig. 3, where t = Day since
sowing; T = Total crop growth period in days.

  
Table 3

The Kc equation for cotton, onion, soybean and sugarcane
Crops Polynomial equation

Cotton

Onion

Soybean

Sugarcane

2.5. Estimation of Future Crop Water Requirement
General circulation models (GCMs) can very well predict the signi�cant characteristics of the projected climate
on a wide scale in the study of regional climate change. However, GCMs have limited utility due to their poor
spatial resolution and lack of regional climate information. There are two ways to compensate for GCMs’
inadequacy in projecting regional climate change: to create new GCMs with higher resolution and downscale
GCMs to the regional scale. The Downscaling techniques are categorized further into Dynamic DownScaling and
Statistical DownScaling. The purpose of dynamical downscaling is to build a regional climate model with a clear
physical meaning that will not be affected by the observation data. However, it also has some disadvantages.
For example, the requirement for signi�cant computing resources is not readily transferred to new regions or
domains. Statistical downscaling is premised on the theory that the large-scale climatic state and local
physiographic factors in�uence regional climate (Zhou et al., 2017).

The SDSM, developed by R. L. Wilby and C. W. Dawson, started its life in the summer of 2000. It is a combination
of multiple linear regression (MLR) and stochastic weather generator (SWG) (Wilby et al., 2002). MLR is used to
build an empiric relationship between predictors (NCEP) and predictands (observed local scale data) and develop
regression parameters. A stochastic weather generator (SWG) simulates up to 100 daily time series from
predictors of NCEP and GCMs based on the regression parameters (Mahmood and Babel, 2013).

3.6 Theoretical Consideration of SDSM
The SDSM (Statistical DownScaling Model) is a decision support method for evaluating local climate change
impacts using a rigorous statistical downscaling approach. In addition, the program performs ancillary tasks of

Kct = 18.78 ∗ ( )
4

− 39.98 ∗ ( )
3

+ 24.06 ∗ ( )
2

− 2.89 ∗ ( )+ 0.453tT tT tT tT

Kct = 8.062*( )
5

− 24.31*( )
4

+ 20.15*( )
3

− 5.76*( )
2

+ 1.498* ( )+ 0.561tT tT tT tT tT

Kct = 2.647 ∗ ( )
5

+ 0.14 ∗ ( )
4

− 8.76 ∗ ( )
3

+ 5.862 ∗ ( )
2

+ 0.26 ∗ ( )+ 0.494tT tT tT tT tT

Kct = 0.484*( )
4

− 4.948*( )
3

+ 3.988*( )
2

+ 0.636* ( )+ 1.498tT tT tT tT
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variable pre-screening, model calibration, basic diagnostic testing, statistical analysis, and graphing of climate
data.

The statistical downscaling technique utilized in this study was SDSM version 4.2 (Wilby and Dawson, 2007) to
simulate crop evapotranspiration for future periods centered on the 2030s, 2050s, and 2080s. The step-by-step
procedure using SDSM is summarized further.

The National Center for Environmental Prediction (NCEP) relates the intensity of each predictor-predict
relationship; the calibration and validation stage facilitate the establishment of statistical relationships between
the selected predictors and the surface predictand (Gagnon et al., 2005). In this process, simulation of observed
data was done with predictors from the re-analysis of NCEP data, while for the 2030s, 2050s, and 2080s global
climate models, HADCM3 with emission scenarios H3A2 and H3B2.

Table 4
Climatic scenario classes

Scenario
Classes

Concerns Remarks

A2 • Rapid economic growth

• Low population growth

• Rapid new technology

• Concern to wealth rather than environment

• Homogenous world on economic
development

• Cultural convergence

• No difference in per capita income

B2 • Diverse technological change

• Emphasis on community initiative

• Concern on environment rather than
economic development

• Heterogeneous world

• Local solutions for environmental and
social sustainability

The IPCC has grouped future emission scenarios into four signi�cant classes/groups: a) A1, b) A2, c) B1, and d)
B2, based on the level of economic development and environmental concern. It is to be observed (Table 4) that
the scenario group or class A2 is concerned more about activities that will improve the world's economic
development. In contrast, B2 is more concerned about the world's environmental sustainability (Mohan and
Ramsundram, 2014).
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Table 5
Details of predictors used in the present study

Sr. No Predictor Description

1 p_f Surface air�ow strength

2 p_u Surface zonal velocity

3 p_v Surface meridional velocity

4 p_z Surface velocity

5 p_th Surface wind direction

6 p_zh Surface divergence

7 rhum Surface relative humidity

8 p5_f 500 hPa air�ow strength

9 p5_u 500 hPa zonal velocity

10 p5_v 500 hPa meridional velocity

11 p5_z 500 hPa vorticity

12 p5th 500 hPa wind direction

13 p5zh 500 hPa divergence

14 r500 500 hPa relative humidity

15 p8_f 850 hPa air�ow strength

16 p8_u 850 hPa zonal velocity

17 p8_v 850 hPa meridional velocity

18 p8_z 850 hPa vorticity

19 p8th 850 hPa wind direction

20 p8zh 850 hPa divergence

21 r850 850 hPa relative humidity

22 p500 500 hPa geopotential height

23 p850 850 hPa geopotential height

24 temp Mean temperature at 2m height

25 shum Surface-speci�c humidity

26 mslp Mean sea level pressure

The GCM outputs used in the analysis are derived from the United Kingdom Meteorological O�ce's Hadley
Center Coupled Ocean/Atmosphere Climate Model, version 3 (HadCM3). It includes A2 (high greenhouse gas
emissions) and B2 (low greenhouse gas emissions) scenarios with a daily time series from 1961 to 2099.
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Similarly, the NCEP reanalyzed dataset is a daily time series from 1961 to 2000, including 26 large-scale weather
factors. Table 5 represents the variable number, the abbreviation, and the description of the 26 GCM or NCEP
weather factors.

The downscaling process involved the following steps: quality check of data, the transformation of data,
screening of predictors, calibration of sub-model using observed data (predictand) and selected NCEP predictors,
generation of present and future scenarios from gridded datasets of NCEP and GCMs, and statistical analysis.

2.5.1. Quality Control Check and Transformation of Observed
Data (Predictand)
The meteorological stations might have anomalies or missing records following this quality control check
function veri�es the dataset. The missing data is replaced with the identi�er value/code, i.e., -999. The second
step after the quality control check is the transformation of data. SDSM can convert data before calibration into
various formats such as logarithm, power, inverse, and binomial (Saraf and Regulwar, 2016).

2.5.2. Selection of Large-Scaled Predictor
The selection of predictors is a crucial step in the statistical downscaling process. Their four rules govern the
selection of predictors (Amin et al., 2014; Guo et al., 2018) stated below

1. There is a strong correlation and agreement between predictor and predictand.

2. The selected predictor can be simulated by the GCM.

3. The selected predictors should maintain independence or weak dependence.

A screening of predictor variables chose the predictors of the SDSM model. The strongly associated and
correlated predictors were screened using correlation analysis, scatter plots, and seasonal variance methods of
the SDSM model. The number of control predictors in the recursive algorithm adopted by SDSM is limited to 12,
while the predictors in GCM or NCEP are typically more than 20, making the correlation screening analysis more
complicated to perform in one stage. After selecting the large-scale predictor, the predictors from the reanalysis
data (NCEP) and predictand (observed station) data were used to establish the statistical relationships for the
study area.

2.5.3. Selection of sub-model
There are also two sub-models: conditional and unconditional; depending on the local-scale variables either can
be used. The unconditional sub-model is used for independent variables such as temperature,
evapotranspiration, and sunshine hours (Chu et al., 2010; Gagnon et al., 2005; Hussain et al., 2015; Mahmood
and Babel, 2013; Saraf and Regulwar, 2016; Wilby and Wigley, 2000). The default permits unconditional
processes in the downscaling model to simulate negative values (e.g., minimum temperature); deselection
truncates values at zero (e.g., sunshine hours). This default does not affect conditional processes (rainfall). In
unconditional models, a direct relationship between predictors and predictands is assumed (e.g., local wind
speeds may be a function of regional air�ow indices). In conditional models, there is an intermediate process
between regional forcing and local weather (for example, local precipitation quantities are determined by the
occurrence of rainy days, which are determined by regional-scale predictors such as humidity and atmospheric
pressure) (Wilby and Wigley, 2000, 1997).
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Precipitation and evaporation are dependent variables under the conditional sub-model. The distribution of
precipitation data is typically non-normal, although evapotranspiration data follows a normal distribution. In
SDSM, speci�c data transformation can be applied to the conditional model. In the conditional sub-model,
thresholds can be de�ned to exclude values less than or equal to the event threshold. Before using the data in
regression equations, SDSM can convert it to make it normal (Hussain et al., 2015; Khan et al., 2006). Several
statistical parameters (generic and conditional tests) and graphical assessment techniques (such as bar plots)
are used in SDSM to assess the performance (Gebrechorkos et al., 2019). In the present study, an unconditional
sub-model was used without transformation and optimization of the best �t by ordinary least square (OLS).

2.5.4. Calibration and Validation of Model
The ET0 was calibrated and validated based on the available observed daily data. The model was developed
using the monthly sub-model and selected NCEP predictors. As per the availability of data, NCEP, H3A2, and
H3B2 predictors simulated the model for 1968–2000, 1970–2000, and 1975–2000 for Solapur, Pune, and Rahuri
stations, respectively. A total of 20 ensembles were generated for the monthly SDSM and used in the study
(Mahmood and Babel, 2013). The SDSM can generate up to 100 ensembles and can be used to research the
uncertainty analysis of climate scenarios (Saraf and Regulwar, 2016). The total dataset was utilized as follows:
2/3rd of the total data was for calibration, and 1/3rd of the remaining data was for validation. The calibration
periods for Pune, Rahuri, and Solapur were 1970–1990, 1975–1990, and 1968–1989, respectively. In contrast,
the validation periods for Pune, Rahuri, and Solapur were 1991–2000, 1991–2000, and 1990–2000, respectively.

2.5.5. Statistical analysis for model performance
The statistical parameters evaluated the performance of SDSM for all three stations during the calibration and
validation (Huang et al., 2011; Mahmood and Babel, 2013). These parameters are mean (µ), coe�cient of
determination (R2), nash-sutcliffe evaluation (Ens), root mean square error (RSME), standard deviation (SD),
standard error in mean (SE- µ), mean absolute deviation (MAD) and mean absolute percentage error (MAPE). The
general equations of all statistical terms are described below.

(1) Coe�cient of determination (R2)

The coe�cient of determination was used to show the model's accuracy in predicting data. The coe�cient of
determination (R2) is presented as.

 

…. (8)

The value of R2 explains the correlation between observed and downscaled values. It lies between 0 and 1, where
0 indicates poor, and one indicates the best.

(2) Nash-Sutcliffe evaluation (Ens)

The Nash-Sutcliffe (Ens) evaluation index (Eq. 9) was used to assess the model applicability by comparing
observed data with the output of SDSM.

R
2 = ∑(Xi−X ′)∗(Yi−Y ′)

√∑(X−X ′)
2
∗(Y −Y ′)2



Page 12/33

 

…. (9)

Xi and Yi are time-series of observed value X and simulated value Y; and X’, Y’ is the mean of observed value X
and simulated value Y. The Nash-Sutcliffe (Ens) index ranges from –∞ to 1; the closer the model e�ciency is to
1, the more accurate (Guo et al., 2018).

(3) Root Mean Square Error (RMSE)

The Root Mean Square Error (RMSE) is a measure of the difference between values predicted by a model and the
values observed in the environment that is being modeled.

 

…. (10)

Where Xobs,i  are observed value and Ymod,i are projected modelled value.

(4) Mean Absolute Percentage Error (MAPE)

The Mean Absolute Percentage Error (MAPE) measures the prediction accuracy of a forecasting method. It
measures the size of the error in percentage terms. The statistical formula of MAPE is given in Eq. 11.

 

…. (11)

Where Xi and Yi are individual values of observed and modelled data respectively.

(5) Mean Absolute Deviation (MAD)

The Mean Absolute Deviation (MAD) of a data set is the average distance between each data value and the
mean. A dataset's mean absolute deviation is a way to describe variation in a data set. The statistical formula of
MAPE is given in Eq. 12.

…. (12)

(6) Standard Error Mean (SE- μ) and Standard Deviation (SD)

The Standard Error in mean (SE- µ) was used to observe the variability of the data predicted by the model and
was given by Eq. 13. The Standard Deviation (SD) is a measure of variability or the scatter or the dispersion of
the mean value.

Ens = 1 − ∑
n

i=1(Xi−Yi)
2

∑
n

i=1(Xi−X′)2

RMSE = √∑
n

i=1
(Xobs,i−Ymod,i)

2
n

MAPE = 100 ∗ ∗ ∑
n

i=1

∣

∣

∣

∣1n Xi−YiXi

MAD = ∑
∣
∣(X−X ′)

∣
∣

n
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…. (13)

 Where nis the number of time series and other notation same as above.

…. (14)

Where, Xi is variable, X’ is mean, and N is total number of variables

2.5.6. Generation of Present and Future Time Series for
Reference crop evapotranspiration (ET0)
Following calibration and validation of the model, the weather generator function was applied to generate a
synthesis daily time series of ET0 presenting climate from a selected set of NCEP predictors. The generated daily
time series of ET0 was compared statistically with the observed records to check how close it was to the present
climate. Finally, the scenario generator function was used to stimulate future time series of ET0 using output
from GCMs (HadCM3) under H3A2 and H3B2 scenarios.

Daily ET0 data for the observed period for the mentioned stations was provided in (.DAT) format to the SDSM
model, and the model input �les have been established. The downscaled data per requirements was simulated
for three future periods based on the base period. As discussed earlier, downscaling was done for three time
periods, the 2030s, 2050s, and 2080s, depending on the observed data period.

Considering Solapur station

The observed data was available for 33 years. The years were split as (16 + 1 + 16), where the �rst 16 are
considered pre-years and the next 16 as post-years. Thus, the analysis period for the 2030s was 2014–2046,
keeping the year 2030 at the center. A similar procedure was adopted for the 2050s, 2080s, and remaining
stations (Table 6).

  
Table 6

Analysis period/time for projecting future scenarios in ET0

Periods Solapur Pune Rahuri

Base/Observed Period 1968–2000 1970–2000 1975–2000

First period (2030s) 2014–2046 2015–2045 2017–2043

Second period (2050s) 2034–2066 2035–2065 2037–2063

Third period (2080s) 2064–2096 2065–2095 2067–2093

The steps involved in downscaling and scenario generation is shown in Fig. 3.

3. Results

SE = √∑
n

i=1(Y ′−X ′)
2

n

SD = √∑
N

I=1 (Xi−X ′)
2

N
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The study analyzed variability in crop water requirements for future atmospheric conditions. The daily ET0 was
calculated using the Penman-Monteith equation discussed in section 2.4. The output of daily ET0 was used for
projecting future ET0 during different periods. The projected ET0, in combination with crop coe�cient (Kc),
calculated CWR for future periods, and further variation in crop water requirement was analyzed using observed
data. Based on base climate data, the SDSM was used to project future ET0 for three periods: the 2030s, 2050s,
and 2080s. The analysis results were presented separately for Pune, Rahuri, and Solapur stations. The
performance of SDSM model predictions was studied using observed and predicted values of ET0 during the
same period.

3.1. Screening of predictors
The selection of predictors was a crucial step in the downscaling process. It is an iterative procedure consisting
of a rough screening of the predictors repeated until an objective function is optimized (Wilby and Harris, 2006).
The variables with the highest correlation were selected using the screen variable tool in the SDSM. Initially, all
the predictors from historical records were correlated with the observed data of ET0. The predictors with the
highest correlation were chosen with a minimum (or zero) p-value and a maximum partial r-value. The correlation
statistics and p-values explain the strength of the relationship between the predictor and predictand and multi-co-
linearity among selected predictors. The number of selected predictors varied from three to four. The correlations
with a p-value ( < = 0) were selected to predict results better. Table 7 represents the selected predictors and the
partial r value for ET0. 

Table 7 
Selected predictors with partial r values for reference crop

evapotranspiration (ET0)

Sr. No. Predictors Meteorological stations with partial r values

Pune Rahuri Solapur

1 nceptempas 0.494 0.362 0.337

2 ncepp_zhas   0.260 0.245

3 ncepp_uas 0.185 0.243   

4 ncepp5_uas 0.244     

5 ncepp8_uas     0.101

6 ncepp8_vas   0.124 0.056

(Suo et al., 2019) examined partial r values for temperatures ranging from 0.27 to 0.77. Similarly, identical partial
r values for temperature and precipitation were also observed by Mahmood and Babel, 2013. The highest
correlation values represent a higher degree of association, while smaller p-values describe a better chance of
association between variables. The selection of predictors was made as discussed in section 2.5.2. Amongst 26
predictors, only six (nceptempas, ncepp_zhas, ncepp_uas, ncepp5_uas, ncepp8_uas, and ncepp8_vas) were used
as they strongly correlated with observed (ET0) (Table 7). For all three weather stations, nceptempas (the
temperature at 2 m height) was a super predictor and common to all three stations with the highest "partial r"
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value. A similar super-predictor (nceptempas) in the downscaling of ET0 for nine stations in the Beijing region
was also examined by (Guo et al., 2018).

3.2. Calibration and Validation of Model
The Calibrate Model operation takes a user-speci�ed predictand with a set of predictor variables and computes
the parameters of multiple regression equations via an optimization algorithm (ordinary least squares). Before
future scenario construction, the results of the observed data of ET0 were correlated with the modeled data
during the calibration and validation. All measured statistical values conspicuously resembled the statistics of
observed data for ET0.

Table 8 
Statistical criteria for best �t model for downscaling ET0 during calibration for

HadCM3 model
Pune (1970–1990)

Data type R2 Ens RMSE MAPE µ S.D. SE-µ MAD

OBS - 4.583 1.39 0.016 1.38

NCEP 0.71 0.713 0.92 16.10 4.575 1.05 0.012 1.21

H3A2 0.72 0.719 0.91 16.12 4.584 1.07 0.012 1.22

H3B2 0.72 0.721 0.90 16.09 4.574 1.06 0.012 1.23

Rahuri (1975–1990)

Data type R2 Ens RMSE MAPE µ S.D. SE-µ MAD

OBS - 5.087 1.47 0.019 1.44

NCEP 0.69 0.685 1.000 15.86 5.073 1.10 0.014 1.23

H3A2 0.68 0.683 1.003 15.93 5.080 1.12 0.015 1.24

H3B2 0.68 0.683 1.002 15.84 5.078 1.13 0.015 1.24

Solapur (1968–1989)

Data type R2 Ens RMSE MAPE µ S.D. SE-µ MAD

OBS - 5.709 1.73 0.019 1.61

NCEP 0.60 0.603 1.32 18.33 5.689 1.27 0.014 1.39

H3A2 0.61 0.609 1.31 18.19 5.690 1.25 0.014 1.39

H3B2 0.61 0.609 1.31 18.16 5.694 1.27 0.014 1.38

The SDSM showed the best values of all performance measures, higher values for R2 and Ens and lower values
for RMSE and MAPE. The MAD values show that there was consistently less variation among observed and
downscaled data, ranging from 1.2 to 1.6 mm. The analysis also pointed out that the performance measures as
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R2 and Ens were more than 0.71, 0.68, and 0.60 for Pune, Rahuri, and Solapur stations, respectively. The values
of RMSE varied from 0.90 to 0.92 for Pune, 1.000 to 1.003 for Rahuri, and 1.31 to 1.32 mm for Solapur station.

Similarly, it was worth noticing that for calibration, MAPE was less than 16.12, 15.93, and 18.33% for Pune,
Rahuri, and Solapur stations. The mean, standard deviation, and standard error mean suggested that observed
and modeled data had an almost similar mean, less deviation, and less error between observed and predicted
values.

Table 9 
Statistical criteria for best �t model for downscaling ET0 during validation for HadCM3 model

Pune (1991–2000)

Data
type

R2 Ens RMSE MAPE µ S.D. SE-µ MAD

OBS - 4.452 1.62 0.027 1.30

NCEP 0.70 0.698 0.89 15.96 4.442 1.38 0.023 1.15

H3A2 0.70 0.698 0.89 15.78 4.434 1.39 0.023 1.16

H3B2 0.70 0.701 0.88 15.68 4.442 1.40 0.023 1.16

Rahuri (1991–2000)

Data
type

R2 Ens RMSE MAPE µ S.D. SE-µ MAD

OBS - 4.221 1.44 0.024 1.17

NCEP 0.71 0.71 0.78 14.48 4.201 1.22 0.020 0.98

H3A2 0.70 0.70 0.79 14.51 4.211 1.23 0.020 0.99

H3B2 0.71 0.71 0.78 14.37 4.196 1.24 0.020 1.00

Solapur (1990–2000)

Data
type

R2 Ens RMSE MAPE µ S.D. SE-µ MAD

OBS - 4.850 1.67 0.026 1.35

NCEP 0.62 0.61 1.11 18.51 4.842 1.37 0.022 1.14

H3A2 0.62 0.61 1.12 18.56 4.849 1.36 0.021 1.15

H3B2 0.61 0.61 1.10 18.43 4.836 1.36 0.021 1.15

Similarly, Table 9 represents statistical performance during the validation period. In the Rahuri station,
considering NCEP data, the value of the R2 and Ens was 0.71 in the validation stage. There were lesser values of
RMSE and MAPE at 0.78 and 14.48, respectively. There was an identical close difference during the calibration
and validation period for each performance measure of the remaining HadCM3 data (H3A2 and H3B2 scenarios)
for the Pune and Solapur stations.
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Overall, the performance suggests that for the accurate projection of ET0, HadCM3 data is a valid approach.
Based on Tables 8 and 9, the derived predictor–predictand relationships were considered satisfactory for three
stations. Guo et al. 2018 observed that the values of R2 and Ens ranged from 0.61 to 0.78 during the calibration
and validation of downscaled ET0 in China. Similar values of R2 were also observed by Saraf and Regulwar
2016 during the calibration of observed and modeled temperature for the Godavari basin, Maharashtra (India).

3.3. Projected Changes in ET0 for Future Climate Scenarios
The changes in mean monthly ET0 in the three selected stations under all scenarios would present noticeable
differences in other months.

3.3.1. Future projections and percent change in ET0 for Pune
station
Figure 4a and b represented the changes in ET0 for future 2030s, 2050s, and 2080s relative to the base period
(1970–2000) under H3A2 and H3B2 scenarios for Pune stations. The �gure represents general monthly changes
observed in modeled ET0. It showed that the changes in ET0 projected under both scenarios were quite different
in magnitude (amount) but identical in pattern. The maximum mean monthly ET0 (7.43 mm) for the base period
was observed in May, whereas the minimum ET0 was 3.08 mm in December. Projected ET0 presented an
increasing trend in the entire period from 2015 to 2095 under both scenarios during the 2030s, 2050s, and
2080s. The maximum projected ET0 would be in May, followed by April during the 2030s, 2050s, and 2080s,
whereas the minimum projected ET0 would be in December, followed by August.

During the 2050s and 2080s periods, there would be an increment in the average ET0 for all months except June
and August. The maximum decrease in mean monthly ET0 for the 2050s would be in August (-9.15%) under the
H3A2 and − 8.78% under the H3B2 scenario. In August 2080s, ET0 would moderate by -3.81 and − 7.36% under
the H3A2 and H3B2 scenarios, respectively, observed in Fig. 4c and d.

In the long-term seasonal trend analysis of ET0, a decreasing trend was observed in the monsoon period (m =

-0.188 mm season− 1 year− 1). In contrast, an increasing trend was observed during the northeast winter monsoon
(m = 0.156 mm season− 1 year− 1) and pre-monsoon (m = 0.068 mm season− 1 year− 1) periods (Goroshi et al.,
2017). Tamaddun et al. 2019 found a similar decrease in PET during the post-monsoon months in India. The
above references support for the similar outcome of decreased ET0 in August and September.

3.3.2. Future projections and percent change in ET0 for Rahuri
station
ET0 constantly advanced over three periods at Rahuri station, with a maximum increasing rate in contrast to the
baseline period computed for the 2080s. The max and min mean monthly ET0 during the base period were
observed in May (7.54 mm) and December (2.98 mm), respectively. The maximum projected ET0 during the
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2030s, 2050s, and 2080s would be in May, followed by April, whereas the minimum projected ET0 would be in
December, followed by November, Fig. 5(a and b). The percentage change in ET0 for Rahuri station revealed
variation in the range for 2030s (-3.24 to 5.04%), 2050s (-4.73 to 5.59%), and 2080s (-5.96 to 12.39%) under the
H3A2 scenario, whereas, in the range for 2030s (-4.91 to 4.92%), 2050s (-6.40 to 7.23%), and 2080s (-6.49 to
8.52%) Fig. 5(c and d). Kundu et al. 2017 observed an increase in projected ET0 with both increase and decrease
�uctuations during different decades, with the highest rise projected in 2091–2099, particularly in the winter
season from November to January.

3.3.3. Future projection and percent change in ET0 for Solapur
station
Solapur station had higher mean monthly ET0 values for all months than Rahuri and Pune stations. The
maximum and minimum mean monthly ET0 during the base period were in May (8.25 mm) and December (3.90
mm), respectively (Fig. 6a and b). The maximum projected ET0 would be in May, followed by April, whereas the
minimum ET0 would be in December, followed by November.

The Solapur station would show increments of 1.76, 2.01, and 2.73% under the H3A2 scenario and 1.54, 2.52,
and 3.13% under the H3B2 scenario during the periods of 2030s, 2050s, and 2080s, respectively for mean annual
values (Fig. 6c and d).

Overall, for most of the months, it was envisioned that a gradual rise in projected ET0 during the 2030s, 2050s,
and 2080s periods. The maximum and minimum mean monthly projected ET0 would be observed in May and
December under both scenarios (H3A2 and H3B2). The projected ET0 during the 2030s, 2050s, and 2080s
compared to the base period decreased in June, September., and October. months under both scenarios, with the
maximum reduction in ET0 examined in September.

3.4. Future Crop Water Requirement in Potential Climate
Scenarios
Crop evapotranspiration (ETc) is closely correlated with ET0. It indicates the quantity of water a type of plant
needs during crop development. Considering the projected ET0 and present Kc values, the crop water requirement
was estimated for cotton, onion, soybean, and sugarcane for three stations (Pune, Rahuri, and Solapur) for the
2030s, 2050s, and 2080s periods. The water requirements of the four crops were different due to the varied
growing periods and Kc values. The CWR was calculated for a three-time period considering both the H3A2 and
H3B2 scenarios.

3.4.1. Cotton
Considering both scenarios, the predicted ET0 in the earlier section revealed that reference evaporation (ET0)
increased for all months except June to September (Kharif Season). Therefore, it is obvious that the water
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requirement of cotton would decrease or most likely be the same as that of the base period. Figure 7 represents
the variation in CWR of cotton during different periods for all three stations. The base period water requirement
of cotton for the Pune station is 620.2 mm. The CWR would marginally decrease during the 2030s and 2050s
compared to the present condition.

In the 2080s, a marginal increase of 626.1 mm under H3A2 and 622.1 mm under H3B2 scenarios would be
observed for the Pune station. For Rahuri station, the base period CWR is 672.3 mm, which would relatively
increase by 4.8 mm and 4 mm for the 2030s and 2080s periods, respectively, and �nd a relative decrease during
the 2050s (-4.5 mm) under the H3A2 scenario. The Solapur station witnesses a higher CWR (717.6 mm) for a
base period compared to Rahuri and Pune stations. The CWR for Solapur station would increase during all three
periods under both scenarios. (Doria et al., 2006) compared results of estimated CWR to the base period and
observed an increase in CWR by 3.0% (20 mm) per season for the 2020s and about 7.0% (43 mm) per season for
the 2050s using both H3A2 and H3B2 scenarios.

The CWR would be approximately the same (less than 1% variation) during the 2030s, 2050s, and 2080s
concerning the base period for Pune and Rahuri stations. In contrast, it would marginally increase (0.91 to 2.48%
variation) for all periods at Solapur station.

3.4.2. Onion
The base/observed period CWR of the onion for the Pune station is 428.9 mm. The CWR would relatively
increase by 6.3, 18.1, and 17.9mm under the H3A2 scenario and 7.1, 12.9, and 19.9mm under the H3B2 scenario
during the 2030s, 2050s, and 2080s, respectively (Fig. 8). The increment in the CWR was due to the increasing
trend in ET0 observed during the growth period from Nov to Feb. Similarly, the base period CWR of the onion for
Rahuri is quite identical to Pune station (428.3 mm). The CWR would relatively increase in the 2030s to 437.9
and 429.2 mm under the H3A2 and H3B2 scenarios, respectively. The CWR for Solapur station would marginally
increase during the 2030s and �nd a relatively large increase during the 2050s under both scenarios. In the
2080s period, the CWR of onions would increase to 559.1 mm by 21 mm under H3A2 and 562.1 mm by 24 mm
under H3B2 sequentially.

The CWR would advance to all three stations during the 2030s, 2050s, and 2080s. It would marginally increase
(0.49 to 2.48%) during the 2030s, whereas the 2050s and 2080s periods would observe the highest increment in
CWR (1.80 to 4.62%) for all three stations. The reason could be a predominant increase in the ET0 during the
winter season under both scenarios.

3.4.3. Soybean
Fig. 9 represents the changes in the CWR of soybean during different periods for all three stations. For the Pune
station, the CWR under the H3A2 scenario would marginally decrease by-1.05, -1.05, and -0.16 % during the
2030s, 2050s, and 2080s, respectively. Similarly, CWR would show variation in the range of 1.67 to 0.06%
compared to a base period under the H3B2 scenario. The Rahuri station corresponded to a similar variation as
the Pune station, from -2.09 to 0.37%. The CWR of soybean for Solapur station would marginally increase or
approximately be the same during all three periods (the 2030s, 2050s, and 2080s) under both scenarios. The
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CWR would show an increment of up to 1.63% during the 2080s. (Manasa and Shivapur 2016) observed both a
rise and a fall in CWR for the future scenario compared with a base period with a decrease in CWR during Kharif
crops (sorghum, maize, groundnut, soybean, cotton) and an increase in CWR during rabi crops (sugarcane and
wheat).

3.4.4. Sugarcane
Sugarcane has the highest increase in crop water requirements as compared to cotton, onions, and soybeans.
The base/observed period CWR of sugarcane for the Pune station is 1384.6 mm. The highest increment in CWR
of sugarcane would be during the 2080s, with estimated CWR values of 1421.4 and 1410.8 mm under the H3A2
and H3B2 scenarios, respectively (Fig. 10). The CWR for Rahuri station would be relatively increased in the 2030s
to 1460.6 and 1452.8 mm under the H3A2 and H3B2 scenarios, respectively.

Compared to a base period, the 2080s period could observe an increase of 41.1 mm and 24.8 mm under the
H3A2 and H3B2 scenarios. For Solapur station, the CWR of sugarcane under the H3A2 would relatively increase
during the 2030s (1.66%) and 2050s (1.83%) and increase during the 2080s (2.26%). Similarly, under the H3B2
scenario, the increment in CWR during the 2030s, 2050s, and 2080s would be 1.37, 2.37, and 2.86%, respectively.

4. Discussions
Western Maharashtra, located in the semi-arid zone of India, is a core region for the economic growth of
Maharashtra state. The area has an arid climate and minimal water supply and is one of the most fragile
ecological environments in the country. The geographical area of the state of Maharashtra is 30.7 Mha, and the
cultivable area is 22.5 Mha. Therefore, to optimize water resources management to achieve sustainable
development in the region, it is critical to explore the requirements for CWR. At the same time, it is also inevitable
to estimate the crop coe�cient (Kc) of different parts.

SDSM is used to downscale and project long-term (the 2030s, 2050s, and 2080s) future scenarios of ET0 from
predictors of HadCM3 models in the Western Maharashtra region, India. The H3A2 and H3B2 forcing emission
scenarios generated the future ET0 series. The monthly SDSM sub-model is found to be effective in downscaling
ET0. SDSM projects an increase in mean annual ET0 for future periods under both scenarios. The annual ET0

ranges from 0.42 to 3.09%, 0.77 to 3.52%, and 1.54 to 3.13% for Pune, Rahuri, and Solapur stations, respectively.
The highest increase in projected monthly ET0 reached 8.57%, and the decrease approached − 9.15% in Pune.
Similarly, the maximum positive increment in projected monthly ET0 reaches 12.39%, and the decrease is -6.49%
at Rahuri station. As for Solapur station, the relative changes range from − 8.09–8.93%, indicating a trend of
increase concerning the projected climate change. The uncertainty in future ET0 projections due to GCMs,
emission scenarios, and different time stages is maximized. The results in section 3.3 of this paper show that
despite an increasing trend in annual ET0 during a future period, the ET0 would drastically decrease in some
months. The projected changes in ET0 revealed that all months during three future periods (the 2030s, 2050s,
and 2080s) showed an increment in ET0 compared to a base period. The ET0 would advance during summer, pre-
monsoon, and winter, whereas it could decrease during the monsoon (Kharif) season. This further implies a
decrease in CWR of Kharif crops (cotton and soybean). The CWR would be equal to or less than that of the
present condition. Alternatively, the CWR of the rabi crop (onion) shows a phenomenal increase of up to 4.62%.
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The perennial crop sugarcane corresponds to a marginal increase in water requirements in the range of 0.05 to
2.86%.

Any of the shortcomings of this research may be the subjects of future investigations. Even though SDSM is a
versatile tool in the downscaling method, it does not have any physical signi�cance, and the extent of parameter
changes is unknown. Since ET0 plays a vital role in the hydrological cycle, numerous studies have concentrated
on researching ET0 variability and analyzed that ET0 is shifting periodically (Bandyopadhyay et al., 2009;
Chattopadhyay and Hulme, 1997; Zeng et al., 2019). If there is a loop in CWR at this point, whether or not the
future CWR will have the same cycle is not considered. There is also a cascade of ambiguity in the climate
change impact analysis, including uncertainty arising from GCMs, emission scenarios, the hydrological model,
and the parameters (Wilby and Harris, 2006; Xu et al., 2013). To overcome this uncertainty analysis should be
done considering more than one GCM, this would give a better synoptic view of understanding the variability of
any climatic parameter under different GCMs.

However, it must be understood that such �ndings are very much based on the existence of potential climate
forecasts and the approaches to GCM used in this research. When large datasets are available, a more
sophisticated downscaling method should be used, as different methods will generate different future climate
predictions (Chiew et al., 2010; Xu et al., 2013).

5. Conclusion
Many researchers have pointed out that �uctuations in ET0 have dramatically shifted as climate change has
escalated. In the present study, we selected Western Maharashtra to analyze variability in CWR by downscaling
ET0. The SDSM performs satisfactorily in downscaling ET0 with values of more than 0.60 for R2 and Ens and
less than 1.32 and 18% for RMSE and MAPE, respectively, during calibration and validation periods. The
projected changes showed an increase in ET0 for all months (in summer, winter, and pre-monsoon seasons) and
a decrease from June to September (monsoon season) during the 2030s, 2050s, and 2080s periods compared to
the base period under both the H3A2 and H3B2 scenarios. The result is a decrease in projected CWR for Kharif
season and an increase in CWR for rabi and summer season. The estimated future CWR showed variation in the
range for cotton (-0.97–2.48%), soybean (-2.09–1.63%), onion (0.49–4.62%), and sugarcane (0.05–2.86%)
during the 2030s, 2050s, and 2080s period compared to present condition for Pune, Rahuri and Solapur stations
under both H3A2 and H3B2 scenario. Considering the impact of climate variability on CWR, it is necessary to
promote water-saving technologies like drip and sprinkler irrigation systems. Also, promote rain-water
conservation and increase groundwater recharge in the Western Maharashtra region to minimize the risk of yield
reduction and enhance maximum water availability in the study area due to climatic variability.
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Figure 1

The location map of Western Maharashtra
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Figure 2

Crop coe�cient Kc curve during growth stage for a) Cotton, b) Onion, c) Soybean, and d) Sugarcane
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Figure 3

Flow chart showing depicting involved during downscaling and scenario generation modi�ed after (Saraf and
Regulwar, 2016; Wilby and Dawson, 2007)
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Figure 4

Mean monthly downscaled ET0 under (a) H3A2 and (b) H3B2 scenario; and percent changes in ET0 as compared
to base period under (c) H3A2 and (d) H3B2 scenario for Pune station
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Figure 5

Mean monthly downscaled ET0 under (a) H3A2 and (b) H3B2 scenario; and percent changes in ET0 as compared
to base period under (c) H3A2 and (d) H3B2 scenario for Rahuri station
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Figure 6

Mean monthly downscaled ET0 under (a) H3A2 and (b) H3B2 scenario; and percent changes in ET0 as compared
to base period under (c) H3A2 and (d) H3B2 scenario for Solapur station
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Figure 7

CWR of cotton during different time period at different stations

Figure 8

CWR of onion during different time period at different stations
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Figure 9

CWR of soybean during different time period at different stations

Figure 10

CWR of sugarcane during different time period at different stations


