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Abstract 

Speech is vital parameter in human cognitive and socio-emotional development. Deaf speech 

is even more complex to understand unless the noise is removed and improved its fidelity. 

Denoising of speech signal is an important pre-processing stage in speech signal processing. 

Denoising of speech signal not only removes the redundant coefficients (leads to data 

compression) but also improve the quality of speech signal. Waveshrink is a technique used to 

in this paper to suppress the redundant wavelet coefficient through threshold concept. 

Denoising concept find application in both signal and image processing. Denoising of the 

signal will improve in processing the deaf signal speech with any assistive technologies. Digital 

devices can use this denoised speech to compare and reproduce the deaf speech signal for 

emotional analysis and comparison of various speech parameters in real time environment.  
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1. Introduction 

Speech and language are vital skillset of human cognitive and socio emotional development. 

The human voice is generated in the vocal folds makes the human to produce their speech in 

different voice frequency as voiced and the unvoiced sounds. The laryngeal airflow through 

the larynx emanates strong or weaken sound. The variation in the larynx muscles based on the 

length of the vocal fold fine tunes as pitch and tone of the speech [1]. The normal 

communication is a great challenge for the Deaf person to express their thoughts. The National 

Deaf Children’s Society has classified the deafness from mild to intense deafness in the range 

from (21- 40) dB for mild and intense deafness above 95 dB [2].  
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The rehabilitation techniques and hearing aids support the deaf person as an assistive method. 

Generally, the children with speech disorders have poor articulations, misplacement of 

articulators and excessive nasality [3]. The deaf speech characteristics has been stated by 

Hudgins’ in his study as extremely slow and breathy speech with excess strain in the vocal 
folds, long duration during the vowel production leading to replaced syllable in the speech, a 

bent when the devoice stops in landing its positions during speech production, the excessive 

use of the nasal breathe during the vowels and consonants production and also abnormal 

rhythm sequence during the word utterance [4]. Further in their study about the deaf speech 

they found two major errors which involves consonants, vowels and errors of rhythm [5]. 

Speech signal is a one-dimensional function of time and this signal is processed in a digital 

representation to study about the signal [6]. The comparison of the normal and deaf speech 

deviated in pitch, formants and energy levels which is a challenge for the assistive technologies. 

In order to produce the enhanced speech signal by eliminating the errors from the assistive 

devices various clustering algorithms has been proposed by Nirmaladevi which enhanced the 

speech signal using the energy entropy. [7,8,9,10]. 

The statistical estimation method stated (Srinath, Rajasekaran and Viswanathan 2003) is used 

is to findthe useful information about a signal from an observed random process.This 

information could reconstruct the speech signal completely or else it consists the maximum 

speech signal parameters and is generally used to obtain the necessary information during the 

process. Noise reduction is the process to eliminate the undesired frequency added in addition 

with the original deaf speech signal. Biggest challenge is to extract the attributes of the speech 

signal from the noise. Noise reduction may greatly alter the properties of the any kind of speech 

signals. Many researchers have recommended even for various types of algorithms for 

extracting the speech signals from the buried noise. Digital device might generate random or 

white noise along with the speech signals with an event of frequency distribution, or frequency 

dependent noise based on the device’s signal processing algorithms or mechanisms. There are 

three different sources of noise in speech signals viz., physiological variability, environmental 

noise or interference and noise due to instrumentation.  

With the prior qualitative or quantitative knowledge about an undesired noise affecting the 

signal should be estimated to improve the speech signal quality without noise. Also, an 

estimator on the directionof orthogonal basis can be implemented will be basically useful when 

thereis a distribution of added noise energy in the signal. This which in turn provides the vital 

information to discriminate the signal generated with the noise to a great extent and supports 

the estimator could obtain a good approximation of the signal. [11,12,13,14,15]. 

 

2. WaveShrink 

2.1 Objective 

The waveshrink model is used in this research paper to reduce the error difference between the 

original deaf speech signal f and denoised deaf speech signal𝑓.  

The deaf speech signal input vector is given by 



𝑓(𝑦𝑖) = [𝑦1, 𝑦2, … . , 𝑦𝑁] ∈ ℜ𝑁 

The noisy deaf speech signal vector is given by 𝑓(𝑦, 𝜂) = 𝑓(𝑦𝑖) + 𝜂𝑖 ,     𝑖 = 1,2, … , 𝑁 

Where 𝜂 is the White Gaussian Noise (WGN) with independent and identically distributed 

random variables 𝑁(0, 𝜎). 

The minimum mean square error (MME) for the given noisy speech signal function is  𝑅(𝑓, 𝑓) = 1𝑁 ‖𝑓 − 𝑓‖2
 

Where, 𝑓 is the estimated speech signal. 

 

2.2 Wavelet Transform 

Wavelet transform has exhibited unique attributes viz., asymptotic, optimal bases, adaptability 

and reduced computational complexity. The wavelet decomposition using the filter banks 

concept provides reduced computation. The speech signal is decomposed into detail and 

approximation coefficients, which provides the exact representation of the speech signal and 

no information is lost during downsampling. Each wavelet subband level is calculated by 

passing only the previous wavelet approximation coefficients through discrete-time low and 

high pass quadrature mirror filters. However, due to the downsampling process the overall 

number of coefficients is still the same in each subband level and there is no redundancy [16]. 

The reconstruction of speech signal is performed with reversing the process; up-sampling the 

approximation coefficients and filtering the un-sampled coefficients. 

 

2.3 WaveShrink 

Waveshrink method compares wavelet coefficient with a threshold and is reduces to zero if its 

magnitude is less than threshold value. The threshold value is point which distinguishes 

between the significant and redundant wavelet coefficients [17]. In Wavshrink method, energy 

of the function is concentrated only in few coefficients [18]. 

Donoho et.al., have proposed several thresholds viz., Universal threshold, SureShrink and 

Minimax, and developed waveshrink methods for signal denoising [17][19].  

Donoho and Johnstone studied hard shrinkage )(x
H

  and soft shrinkage )(x
S

  functions 

[22]: 
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The wavelet coefficients at the coarsest scale were left intact, while the coefficients at all other 

scales were thresholded viasoft shrinkage with the universal threshold,  
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where 
2̂  is estimate of noise variance and N is length of the signal. 
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where ijc  was the empirical wavelet coefficients. 

The threshold   determines the redundant wavelet coefficients. The threshold value is to be 

set optimally neither too big (leakage of outliers into the signal) nor too small (distortion of the 

signal). Gnanadurai and Sadasivam (2005) proposed estimation theory wherein random noise 

is suppressed while preserving the original image details. The choice of the threshold 

estimation analyzed through the statistical metrics like arithmetic mean, geometrical mean and 

standard deviation of the wavelet subband coefficients.  

Bruce and Gao illustrated that the signal had a large variance value due to the lack of continuity 

when hard shrinkage function is applied and had major bias when the soft shrinkage has 

applied. The signal shrinkage profile distribution is depicted in figure (1).  

 

Figure1. a) Shrikage function distribution b) Mean Distribution c) Variance Distribution 

 

Breiman introduced a non-negative garrote shrinkage function which overcomes the 

disadvantages of hard and soft shrinkage, that is, less sensitive than hard shrinkage to small 

fluctuations and less biased than soft shrinkage [18]. The non-negative garrote shrinkage 

function is continuous and approaches the unity for the larger signals [20][23].  

The major limitation of linear shrinkage is outperformed by introducing non-linear shrinkage 

for the signal contains signal attributes preserved in the detail wavelet coefficients. Hyperbolic 



function is a nonlinear waveshink model proposed by Poornachandra, unlike hard shrinkage, 

is a continuously differentiable. The hyper shrinkage model is expressed as,  𝛿𝜆ℎ𝑦𝑝(𝑥) = 𝑡𝑎𝑛ℎ(𝜌 × 𝑥)(|𝑥| − 𝜆)+   

Where 𝜌 = λ𝑚𝑎𝑥|𝑥| 𝜌 is the boundary tuning function to retain the exponential behaviour of the hyperbolic function 

outside the redundant area as shown in figure (1). 

The WaveShrink algorithm is  

1. Discrete Wavelet Transform (DWT) is applied to the input speech signal vector y and 

the experimental Wavelet coefficients Cj,k is obtained at scale j, where j= 1,2,...,J. 

2. WaveShrink function is applied to coefficients Cj,k at each scale j. 

3. The Estimated coefficients 𝐶̂𝑗,𝑘 are obtained based on the threshold 𝜆 

4. Different threshold values are obtained based on the scales 

5. Estimation function 𝑓 obtained by taking inverse DWT. 

 

3. Results &Discussion 

The practical deaf speech signals specification taken in this research paper for the evaluation 

of proposed WaveShrink is as follows; 

1. Number of channels: 1 (mono) 

2. Time: (0-13.477) seconds of 646,896 sample length 

3. Sampling frequency 48KHz,  

4. The first sample centred at 1.042e-005 seconds 

5. Minimum amplitude -0.951 Pascal, maximum amplitude is 0.915 Pascal, Mean value 

is -1.577e-005 Pascal & RMS is 0.0861 Pascal. 

6. Total energy is 0.0999 Pascal2 sec (energy in air is 0.000245 Joules/ m2) 

7. Mean power in air is 1.853e-005 Watt/m2 = 72.68 dB  

8. Standard deviation (Channel1) is 0.0861 Pascal. 

The simulation was done on 50 different deaf signals from 10 deaf persons. The test was 

conducted for the chosen deaf persons on normal and uncertain condition for knowing 

denoising condition of Waveshrink function. 

During the simulation for testing the efficiency of denoising in the Waveshrink models, 

Gaussian noise has been added to the original deaf speech signals. Figure 2 illustrates the 

denoised Deaf signals from Soft, Hard, Negative Garrot and Hyper Shrinkage functions. It is 

clear from the figure 2 that hard shrinkage function has an ability to retain the profile of original 

Deaf signal compare to other shrinkage functions. In this paper, Alpha-trim threshold function 

has been used in the shrinkage function to identify the redundancy in the coefficiencies. 

 



 

Figure 2. a) Original Deaf signal b) Noisy Deaf Signal c) Denoised Deaf signal using soft 

shrinkage function d) Denoised Deaf signal using hard shrinkage function e) Denoised Deaf 

signal using Negative Garrot shrinkage function f) Denoised Deaf signal using Hyper 

shrinkage function 

Figure 3 illustrates the Wavelet subband of Original Deaf signal, Noisy Deaf signal and 

recovered Deaf signal using Hard shrinkage function. It is quite evident that the Deaf signal is 

distributed in the all the frequency range as depicted in Approximate range (-1,+1), Detail-3 

(D3) in the range (-1,+1), Detail-2 (D2)in the range (-0.05, +0.05) and Detial-1 (D1) in the 

range (-0.05, +0.05). When the WGN is introduced in the Deaf speech signal, noises are 

distributed uniformly across the entire wavelet subband. It is quite interesting to see that when 

the hard shrinkage is introduced for denoising, the redundant coefficients (observed in D1 and 

D2) were swept away. The speech signal contribution of D1 and D2 would be redundant 

compared to the D3 and Approx coefficients. The spurious noise distribution in D3 and 

Approximate level also been filtered as illustrated in figure 3 (3rd column). 

 

Figure 3. Subband of Deaf Signals a) Original Deaf Signal b) Noisy Deaf Signal c) 

Recovered Deaf Signal using Hard Shrinkage function 



 

Figure 4. Subband of Deaf Signals a) Recovered Deaf Signal using Soft Shrinkage function 

b) Recovered Deaf Signal using Negative Garrot Shrinkage function c) Recovered Deaf 

Signal using Hyper Shrinkage function 

 

Figure 4 depict the subbanding of recovered Noisy Deaf signal using Soft Shrinkage, Negative 

Garrot Shrinkage and Hyper Shrinkage functions. Though the original Deaf speech signal has 

been recovered from these shrinkage functions, the loss of signal in the recovered signal is high 

compared to hard shrinkage function. 

Tables 1 to 4 illustrate the statistical analysis viz.,of deaf speech signal for various wavelet 

transforms viz., db9, db10, bior3.7 and bior6.8. Higher value of SNR is observed using hard 

shrinkage function compared to other shrinkage functions due to its linear functionality. 

The compression values after applied the shrinkage model on the deaf speech has been 

compared for improved performance using Percent RMS difference (PRD) and given in the 

tables. Hard shrinkage has exhibited lower values of PRD and RMS for all the signals. 

 

Table1. Statistical Analysis of Deaf Speech signal using db9 Wavelet Transform 

Wavele

t 

Subban

d 

WaveShrin

k 

Noise 

level 
SNR 

SNR 

improvement 
PRD RMS 

db9 3 Soft  

0.001 1.6435 31.6274 
82.761

1 
0.0712 

0.003 1.406 22.3456 
85.054

6 
0.0732 

0.005 1.2222 18.0788 
86.873

7 
0.0748 

0.007 1.0509 15.3261 88.604 0.0763 



0.009 0.9102 13.3021 
90.051

3 
0.0775 

0.01 0.837 12.4501 
90.813

8 
0.0782 

0.03 0.2579 3.4811 
97.074

2 
0.0836 

0.05 0.0975 -0.7847 
98.883

7 
0.0851 

0.07 0.0438 -3.6577 
99.497

3 
0.0857 

0.09 0.0197 -5.8217 
99.773

4 
0.0859 

Hard 

0.001 3.7327 29.5382 
65.067

7 
0.056 

0.003 3.3317 20.4199 
68.142

2 
0.0587 

0.005 2.9905 16.3105 
70.872

2 
0.061 

0.007 2.6583 13.7187 
73.634

7 
0.0634 

0.009 2.3508 11.8615 
76.289

1 
0.0657 

0.01 2.2125 11.0746 
77.513

5 
0.0667 

0.03 0.8556 2.8834 
90.619

2 
0.078 

0.05 0.3992 -1.0863 
95.508

4 
0.0822 

0.07 0.2 -3.8139 
97.723

5 
0.0841 

0.09 0.1113 -5.9133 
98.727

2 
0.085 

Hyper 

0.001 1.6435 31.6274 
82.761

1 
0.0712 

0.003 1.406 22.3456 
85.054

6 
0.0732 

0.005 1.2222 18.0788 
86.873

7 
0.0748 

0.007 1.0509 15.3261 88.604 0.0763 

0.009 0.9102 13.3021 
90.051

3 
0.0775 

0.01 0.837 12.4501 
90.813

8 
0.0782 

0.03 0.2579 3.4811 
97.074

2 
0.0836 

0.05 0.0975 -0.7847 
98.883

7 
0.0851 



0.07 0.0438 -3.6577 
99.497

3 
0.0857 

0.09 0.0197 -5.8217 
99.773

4 
0.0859 

 

Table2. Statistical Analysis of Deaf Speech signal using db10 Wavelet Transform 

Wavele

t 

Subban

d 

WaveShrin

k 

Noise 

level 
SNR 

SNR 

improvement 
PRD RMS 

db10 3 

Soft  

0.001 1.533 31.7446 
83.820

9 
0.0722 

0.003 1.3332 22.4093 
85.770

8 
0.0738 

0.005 1.1557 18.1617 87.542 0.0754 

0.007 0.9985 15.3935 
89.140

8 
0.0767 

0.009 0.8719 13.3334 
90.448

8 
0.0779 

0.01 0.8065 12.4619 
91.132

6 
0.0785 

0.03 0.2506 3.4996 
97.155

5 
0.0836 

0.05 0.0883 -0.7681 
98.988

2 
0.0852 

0.07 0.0402 -3.6616 
99.537

9 
0.0857 

0.09 0.0191 -5.8161 
99.780

7 
0.0859 

Hard 

0.001 3.308 29.9695 68.328 0.0588 

0.003 2.9847 20.7578 
70.919

2 
0.0611 

0.005 2.6769 16.6405 
73.477

5 
0.0633 

0.007 2.3706 14.0213 
76.115

1 
0.0655 

0.009 2.1307 12.0746 
78.246

2 
0.0674 

0.01 2.0118 11.2566 
79.324

7 
0.0683 

0.03 0.8211 2.9291 
90.980

1 
0.0783 

0.05 0.3572 -1.037 
95.971

2 
0.0826 

0.07 0.1705 -3.7918 
98.056

7 
0.0844 



0.09 0.0907 -5.8877 
98.961

1 
0.0852 

Hyper 

0.001 1.533 31.7446 
83.820

9 
0.0722 

0.003 1.3332 22.4093 
85.770

8 
0.0738 

0.005 1.1557 18.1617 87.542 0.0754 

0.007 0.9985 15.3935 
89.140

8 
0.0767 

0.009 0.8719 13.3334 
90.448

8 
0.0779 

0.01 0.8065 12.4619 
91.132

6 
0.0785 

0.03 0.2506 3.4996 
97.155

5 
0.0836 

0.05 0.0883 -0.7681 
98.988

2 
0.0852 

0.07 0.0402 -3.6616 
99.537

9 
0.0857 

0.09 0.0191 -5.8161 
99.780

7 
0.0859 

 

Table3. Statistical Analysis of Deaf Speech signal using bior3.7 Wavelet Transform 

Wavele

t 

Subban

d 

WaveShrin

k 

Noise 

level 
SNR 

SNR 

improvement 
PRD RMS 

bior3.7 3 Soft  

0.001 1.4468 31.8288 
84.656

8 
0.0729 

0.003 1.336 22.4029 
85.743

5 
0.0738 

0.005 1.1957 18.1102 
87.139

5 
0.075 

0.007 1.0623 15.3222 
88.488

1 
0.0762 

0.009 0.9442 13.2555 
89.699

5 
0.0772 

0.01 0.8902 12.3893 90.259 0.0777 

0.03 0.3761 3.3807 
95.762

5 
0.0824 

0.05 0.1969 -0.8894 
97.758

8 
0.0842 

0.07 0.1232 -3.7419 
98.591

2 
0.0849 

0.09 0.087 -5.8806 
99.003

6 
0.0852 



Hard 

0.001 1.7627 31.5128 
81.632

5 
0.0703 

0.003 1.7535 21.9854 
81.719

3 
0.0704 

0.005 1.6382 17.6677 
82.811

4 
0.0713 

0.007 1.5077 14.8768 
84.065

1 
0.0724 

0.009 1.3542 12.8455 
85.563

5 
0.0737 

0.01 1.2891 11.9904 
86.207

2 
0.0742 

0.03 0.5829 3.1739 
93.509

6 
0.0805 

0.05 0.2761 -0.9686 
96.871

7 
0.0834 

0.07 0.1291 -3.7477 
98.524

8 
0.0848 

0.09 0.0609 -5.8545 
99.301

5 
0.0855 

Hyper 

0.001 1.4468 31.8288 
84.656

8 
0.0729 

0.003 1.336 22.4029 
85.743

5 
0.0738 

0.005 1.1957 18.1102 
87.139

5 
0.075 

0.007 1.0623 15.3222 
88.488

1 
0.0762 

0.009 0.9442 13.2555 
89.699

5 
0.0772 

0.01 0.8902 12.3893 90.259 0.0777 

0.03 0.3761 3.3807 
95.762

5 
0.0824 

0.05 0.1969 -0.8894 
97.758

8 
0.0842 

0.07 0.1232 -3.7419 
98.591

2 
0.0849 

0.09 0.087 -5.8806 
99.003

6 
0.0852 

Table 4. Statistical Analysis of Deaf Speech signal using bior6.8 Wavelet Transform 

 

Wavele

t 

Subban

d 

WaveShrin

k 

Noise 

level 
SNR 

SNR 

improvement 
PRD RMS 

bior6.8 3 Soft  0.001 1.7185 31.5666 82.049 0.0706 



0.003 1.4756 22.2687 
84.376

6 
0.0726 

0.005 1.2795 18.0239 
86.302

7 
0.0743 

0.007 1.119 15.2607 
87.911

9 
0.0757 

0.009 0.9691 13.244 
89.442

4 
0.077 

0.01 0.9086 12.352 
90.067

7 
0.0775 

0.03 0.315 3.4224 
96.438

6 
0.083 

0.05 0.1333 -0.8422 
98.476

8 
0.0848 

0.07 0.0621 -3.6852 99.288 0.0855 

0.09 0.0319 -5.8362 
99.633

5 
0.0858 

Hard 

0.001 3.8877 29.3974 
63.916

6 
0.055 

0.003 3.4398 20.3045 
67.299

6 
0.0579 

0.005 3.0555 16.2479 
70.343

7 
0.0606 

0.007 2.7062 13.6736 
73.229

9 
0.063 

0.009 2.3819 11.8312 
76.015

6 
0.0654 

0.01 2.2609 10.9998 
77.082

7 
0.0664 

0.03 0.9552 2.7822 
89.585

8 
0.0771 

0.05 0.5157 -1.2245 
94.235

7 
0.0811 

0.07 0.2887 -3.9119 
96.730

6 
0.0833 

0.09 0.1611 -5.9654 
98.162

1 
0.0845 

Hyper 

0.001 1.7185 31.5666 82.049 0.0706 

0.003 1.4756 22.2687 
84.376

6 
0.0726 

0.005 1.2795 18.0239 
86.302

7 
0.0743 

0.007 1.119 15.2607 
87.911

9 
0.0757 

0.009 0.9691 13.244 
89.442

4 
0.077 



0.01 0.9086 12.352 
90.067

7 
0.0775 

0.03 0.315 3.4224 
96.438

6 
0.083 

0.05 0.1333 -0.8422 
98.476

8 
0.0848 

0.07 0.0621 -3.6852 99.288 0.0855 

0.09 0.0319 -5.8362 
99.633

5 
0.0858 

4. Conclusion 

This paper proposes the wavelet domain shrinkage model and the experiment was conducted 

to various deaf persons. This model has shrinked the redundant empirical wavelet coefficients 

of the deaf speech signal at every subband level and the reduced noise distribution on the signal. 

The experiment was conducted for higher noise level and found that linear hard shrinkage 

model outperforms other shrinkage models. The data compression of speech signal is validated 

using hard shrinkage function and compression performance showed that the applied 

waveshrink model is able to achieve good PRD. The hard shrinkage function is further tested 

with respect to SNR and found better response. The results are clearly seen and it is comparable 

with the other waveshrink functions. The recommended waveshrink model has various 

application in the assistive device development for deaf persons where denoising is a prime 

criterion before processing. 
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