Study design, recruitment, and participant characteristics
FIT-FAM (Financial Incentive Trial targeting FAMilies) was a 12-month (48-week), open-labelled RCT conducted in Singapore comparing two parallel arms (1:1 allocation ratio): (1) activity tracker plus child-based incentive, and (2) activity tracker plus family-based incentive. This manuscript conforms to CONSORT reporting guidelines (Additional file 1, CONSORT checklist).
Participants were recruited directly through advertisements and indirectly via “cold calls” to select companies. Ultimately, 5 private sector and 5 public sector companies agreed to participate and promote the study to their employees. All interested individuals recruited through the advertisements or from the company worksites were directed to the study website for additional information, registration, and eligibility screening, which was administered through an online questionnaire.
To be eligible, parents had to be English-speaking, computer-literate, non-pregnant, maintain full-time employment in Singapore, aged 25–65 years upon enrolment, and have a child aged 7–11 years who was willing to participate. We focused on parents who were full-time employees as this is a particularly inactive group in Singapore [16]. Both parent and child had to be able to climb ≥10 stair steps without stopping to minimize health concerns with participation. They also had to be willing to wear an activity tracker throughout the study and an accelerometer for 7 days each at baseline, month 6, and month 12. At baseline, all participants were required to provide ≥600 min/day of accelerometer wear time on at least 3 weekdays and 1 weekend day out of the 7 days before they were allowed to participate in the study.
Eligible parents wishing to participate signed an informed consent form, assented to their child’s participation, and paid a non-refundable enrolment fee of SGD25 (≈USD18.00). The nominal enrolment fee served as a deterrent to those who may join the study solely to receive the free activity tracker but who are not truly motivated to change their behavior. Those who answered ‘yes’ to any of the 7 Physical Activity Readiness Questionnaire questions, had a body mass index (BMI) of >40 kg/m2, asthma, chronic obstructive pulmonary disease, diabetes mellitus, hypertension, lipid disorders, stroke, or personal or familial history of cardiovascular conditions were required to obtain written approval from a physician prior to enrolment.
Randomization
After completing enrolment, parent-child dyads were randomized with equal probability into one of two arms (Figure 1, CONSORT flow diagram) within strata using a computer algorithm with strata defined by low or high amounts of weekly self-reported physical activity. Those who self-reported less than 60 min/week of moderate-to-vigorous physical activity (MVPA) were classified as low physical activity participants. A statistician generated the randomization list and did not disclose the allocation sequence to the study team members (research assistants/associates) involved in enrolling participants, revealing arm allocation, and delivering the interventions. For allocation concealment, sequentially numbered, opaque, and sealed randomization envelopes was used for the randomization assignment for all participants.
Intervention
Upon enrolment, all participants were provided with booklets covering the benefits of and strategies for increasing physical activity, encouraged to achieve ≥10,000 steps/day (step target), and issued an activity tracker (Fitbit Zip® for children and a Fitbit Flex® for parents). The child’s activity tracker could be upgraded to a Fitbit Flex® for an additional SGD20 (≈USD14.40). Participants also had access to all features available on the Fitbit app and website.
Child-based incentive arm
Children in the child-based study arm were awarded SGD5 (≈USD3.60) each week that they achieved the target through logging their steps on the activity tracker according to the following schedule: ≥10,000 steps/day on ≥4, ≥5, and ≥6 days each week in months 1–3, 4–6, and 7–12, respectively, and their participating parent logged ≥2,000 steps/day on ≥4 days in the same week. The very low threshold for child-based parents, was meant to motivate child-based parents to wear the activity tracker. Children in the child-based arm could also earn a SGD5 (≈USD3.60) monthly bonus if they and their parents met their respective step targets in all 4 weeks in the month. This reinforcement strategy was used to encourage children to maintain streaks in efforts to promote a habit of sustained physical activity.
We chose a 10,000 steps/day target for simplicity, because this is an often-recommended target [17] and because it is the level advocated on the Fitbit app used by study participants [9]. Increasing the number of days required to reach the step goal throughout the study further encouraged participants to increase physical activity over time.
We chose the amount of SGD5 (≈USD3.60) for the weekly and monthly bonus incentives based on a prior study where children were rewarded a comparable amount for achieving monthly physical activity targets [10] and to accommodate the smallest voucher denomination carried by some providers. The maximum pay-out possible per child (in either arm) was valued at SGD300 (≈USD216) over 12 months (48 weeks).
Family-based incentive arm
Family-based children were awarded SGD5 (≈USD3.60) each week that they and their participating parent achieved the same step target schedule presented to children in the child-based study arm through logging their steps on their activity trackers. Family-based children were also eligible to earn the monthly bonus if they and their participating parent met the goal in all weeks in the month.
For both arms, if either child or parent did not reach their weekly goal, the child earned no incentive for that week. Pay-outs were disbursed as child-friendly gift vouchers (e.g., Toys"R"Us).
Outcomes and assessments
Step-tracking and awarding of incentives were based on the Fitbit activity trackers provided upon enrolment. However, to ensure higher quality data and to minimize missingness, the outcome of interest was the between-arm difference in the change in parents’ steps/day at months 6 and 12 (month 12 as primary endpoint) relative to baseline measured using waist-worn triaxial GT3X+ or wGT3X-BT ActiGraph accelerometers. Accelerometry was also used to measure the following secondary outcomes: steps/day (children); MVPA and MVPA bouts; sedentary duration; light, moderate, and vigorous physical activity; and total volume of physical activity (sum of light, moderate, and vigorous physical activity) presented in average minutes/day. Accelerometer data were expressed as average vector magnitude (VM) counts per minute (cpm). Tri-axial VM cut-points classified time in sedentary (0–199 cpm), light (200–2689 cpm), moderate (2690–6166 cpm), and vigorous (≥6167 cpm) minutes/day [18, 19]. MVPA was defined as VM ≥2690 cpm. MVPA bouts were defined as a total of 10 or more consecutive minutes above the MVPA VM cut-point with allowance for interruptions of 1 or 2 minutes below the cut-point [20]. The Choi et al. algorithm was used to identify adherent days [21]. A sample rate of 30 Hz and an epoch duration of 60 seconds were specified.
Participants were encouraged to wear the accelerometer on their waist for 7 days during waking hours at each assessment period, regardless of whether they wore their activity tracker during follow-up. Similar to the baseline assessment, data were considered adherent if ≥3 weekdays and 1 weekend day were provided for ≥600 min/day of wear time during each follow-up assessment period. All data were processed with R (version 3.5.1).
Secondary health outcomes for parents include BMI (Seca 217 Portable Stadiometer and Seca 869 Floor Scale), systolic blood pressure (Welch Allyn Spot Vital Signs Blood Pressure monitor), estimated cardiorespiratory fitness [maximum oxygen consumption (VO2max) approximated based on age, gender, BMI, resting heart rate (Welch Allyn Spot Vital Signs Blood Pressure monitor), and a non-exercise test (NET-F) for cardiorespiratory fitness; termed NET-F VO2max] [22, 23], and health-related quality of life (EQ-5D-5L) using the Thailand EQ-5D-5L value set as no Singapore value set was available [24]). All health outcome measures, excluding those collected through online questionnaires, were obtained at Duke-NUS Medical School or at the company worksites. Covariates (age, gender, and ethnicity) were captured at baseline and potential moderators were captured at baseline and both follow-up assessments using online questionnaires. For moderators, family dynamics were measured using the Family Adaptability and Cohesion Scale (FACES IV) [25], and parents’ social support for and enjoyment of physical activity were measured by the Physical Activity and Social Support scale (PASS) [26, 27] and the Physical Activity Enjoyment Scale (PACES), respectively [28]. To encourage attendance and questionnaire completion, parents were compensated SGD20 (≈USD14.40) per completed follow-up assessment.
Sample size calculation
The study was powered to detect a medium effect size (r) of 0.3 between family-based and child-based parents assuming 20% attrition at month 12. We chose to power the study on a medium effect size so any differences observed would be both clinically meaningful and statistically significant. We were guided by effect sizes of this magnitude based on our prior studies [9, 10]. Using this effect size, an alpha of 0.05, and power of 0.8, we needed 158 parent-child dyads per arm.
Statistical analysis
We hypothesized that the family-based incentive scheme would be more effective at increasing steps at months 6 and 12 (primary) [hypothesis (H) 1] and other measures of physical activity and health outcomes (H2) among parents without reducing children’s physical activity (H3). We also hypothesized that parents in the family-based incentive scheme would be more likely to achieve the weekly step targets (goal attainment) over the course of the study (H4).
We used a mixed effects linear difference-in-differences regression to test our primary hypothesis (H1) on parents with the key dependent variable being the number of daily steps recorded for person i on day j as measured by the accelerometer during each assessment. Independent variables include time and treatment (family-based participants) dummies and their interactions, controls for age, gender, and ethnicity. We also include fixed effects for worksites, random effects for individual participants, and adjusted the standard errors for clustering within individuals across days. Tests of our hypotheses were the sign and significance of the interaction terms, which allowed for testing whether step changes from baseline at months 6 and 12 (primary) were greater for family-based than child-based parents.
Analogous regressions were run for secondary hypotheses with the exception of H4. This hypothesis was tested with separate mixed effects logistic regression models for each incentive period where the dependent variable is an indicator variable for whether the ≥10,000 steps/day target was achieved and the key independent variable is a dummy for family-based participants. This variable allowed for testing whether those in the family-based arm were more likely to achieve the ≥10,000 steps/day targets in each incentive period. The logistic regressions included the same controls, and fixed and random effects as the linear model. Finally, we explored several potential moderators of effectiveness, including parent’s and child’s gender, family dynamics, and parent’s social support for and enjoyment of physical activity as described in Additional file 2. All analyses were from the intent-to-treat basis and conducted in Stata (version 14.2).