[1] Wojtecki, Ł., Iwaszenko, S., Apel, D. B., Bukowska, M., & Makówka, J. (2022). Use of machine learning algorithms to assess the state of rockburst hazard in underground coal mine openings. Journal of Rock Mechanics and Geotechnical Engineering, 14(3), 703-713.
[2] Wang, F., & Kaunda, R. (2019). Assessment of rockburst hazard by quantifying the consequence with plastic strain work and released energy in numerical models. International Journal of Mining Science and Technology, 29(1), 93-97.
[3] Keneti, A., & Sainsbury, B. A. (2018). Review of published rockburst events and their contributing factors. Engineering geology, 246, 361-373.
[4] Zhou, J., Li, X., & Mitri, H. S. (2018). Evaluation method of rockburst: state-of-the-art literature review. Tunnelling and Underground Space Technology, 81, 632-659.
[5] Pu, Y., Apel, D. B., Liu, V., & Mitri, H. (2019). Machine learning methods for rockburst prediction-state-of-the-art review. International Journal of Mining Science and Technology, 29(4), 565-570.
[6] Jong, S. C., Ong, D. E. L., & Oh, E. (2021). State-of-the-art review of geotechnical-driven artificial intelligence techniques in underground soil-structure interaction. Tunnelling and Underground Space Technology, 113, 103946.
[7] Mahmoodzadeh, A., Mohammadi, M., Ghafoor Salim, S., Farid Hama Ali, H., Hashim Ibrahim, H., Nariman Abdulhamid, S., ... & Rashidi, S. (2022). Machine Learning Techniques to Predict Rock Strength Parameters. Rock Mechanics and Rock Engineering, 55(3), 1721-1741.
[8] Mahmoodzadeh, A., Mohammadi, M., Farid Hama Ali, H., Hashim Ibrahim, H., Nariman Abdulhamid, S., & Nejati, H. R. (2022). Prediction of safety factors for slope stability: comparison of machine learning techniques. Natural Hazards, 111(2), 1771-1799.
[9] Mahmoodzadeh, A., Mohammadi, M., Ali, H. F. H., Salim, S. G., Abdulhamid, S. N., Ibrahim, H. H., & Rashidi, S. (2022). A Markov-based prediction model of tunnel geology, construction time, and construction costs. Geomechanics and Engineering, 28(4), 421-435.
[10] Li, D., Liu, Z., Armaghani, D. J., Xiao, P., & Zhou, J. (2022). Novel ensemble intelligence methodologies for rockburst assessment in complex and variable environments. Scientific reports, 12(1), 1-23.
[11] Russenes, B. F. (1974). Analysis of rock spalling for tunnels in steep valley sides. Norwegian Institute of Technology.
[12] Lu, C. P., Dou, L. M., Liu, B., Xie, Y. S., & Liu, H. S. (2012). Microseismic low-frequency precursor effect of bursting failure of coal and rock. Journal of Applied Geophysics, 79, 55-63.
[13] Srinivasan, C., Arora, S. K., & Yaji, R. K. (1997). Use of mining and seismological parameters as premonitors of rockbursts. International Journal of Rock Mechanics and Mining Sciences, 34(6), 1001-1008.
[14] Liu, J. P., Feng, X. T., Li, Y. H., & Sheng, Y. (2013). Studies on temporal and spatial variation of microseismic activities in a deep metal mine. International Journal of Rock Mechanics and Mining Sciences, 60, 171-179. https://doi.org/10.1016/j.ijrmms.2012.12.022
[15] Ma, T. H., Tang, C. A., Tang, S. B., Kuang, L., Yu, Q., Kong, D. Q., & Zhu, X. (2018). Rockburst mechanism and prediction based on microseismic monitoring. International Journal of Rock Mechanics and Mining Sciences, 110, 177-188.
[16] Ma, X., Westman, E., Slaker, B., Thibodeau, D., & Counter, D. (2018). The b-value evolution of mining-induced seismicity and mainshock occurrences at hard-rock mines. International Journal of Rock Mechanics and Mining Sciences, 104, 64-70.
[17] Altindag, R. (2003). Correlation of specific energy with rock brittleness concepts on rock cutting. Journal of the Southern African Institute of Mining and Metallurgy, 103(3), 163-171.
[18] Kidybiński, A. (1981, August). Bursting liability indices of coal. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 18, No. 4, pp. 295-304). Pergamon.
[19] WATTIMENA, R. K., SIRAIT, B., Widodo, N. P., & MATSUI, K. (2012). Evaluation of rockburst potential in a cut-and-fill mine using energy balance. International Journal of the JCRM, 8(1), 19-23.
[20] Wang, J. A., & Park, H. D. (2001). Comprehensive prediction of rockburst based on analysis of strain energy in rocks. Tunnelling and underground space technology, 16(1), 49-57.
[21] Mitri, HS*, Tang, B.* & Simon, R. (1999). FE modelling of mining-induced energy release and storage rates. Journal of the Southern African Institute of Mining and Metallurgy, 99(2), 103-110.
[22] Ullah, B., Kamran, M., & Rui, Y. (2022). Predictive modeling of short-term rockburst for the stability of subsurface structures using machine learning approaches: T-SNE, K-Means clustering and XGBoost. Mathematics, 10(3), 449.
[23] Zhou, J., Li, X., & Shi, X. (2012). Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines. Safety science, 50(4), 629-644.
[24]. Pu, Y., Apel, D. B., & Xu, H. (2019). Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier. Tunnelling and Underground Space Technology, 90, 12-18.
[25] Zhao, H., & Chen, B. (2020). Data-driven model for rockburst prediction. Mathematical Problems in Engineering, 2020.
[26] Zhao, H., Chen, B., & Zhu, C. (2021). Decision Tree Model for Rockburst Prediction Based on Microseismic Monitoring. Advances in Civil Engineering, 2021.
[27] Yin, X., Liu, Q., Pan, Y., Huang, X., Wu, J., & Wang, X. (2021). Strength of stacking technique of ensemble learning in rockburst prediction with imbalanced data: Comparison of eight single and ensemble models. Natural Resources Research, 30(2), 1795-1815.
[28] Ahmad, M., Hu, J. L., Hadzima-Nyarko, M., Ahmad, F., Tang, X. W., Rahman, Z. U., ... & Abrar, M. (2021). Rockburst hazard prediction in underground projects using two intelligent classification techniques: a comparative study. Symmetry, 13(4), 632.
[29] Wu, S., Wu, Z., & Zhang, C. (2019). Rock burst prediction probability model based on case analysis. Tunnelling and underground space technology, 93, 103069.
[30] Sun, Y., Li, G., Zhang, J., & Huang, J. (2021). Rockburst intensity evaluation by a novel systematic and evolved approach: Machine learning booster and application. Bulletin of Engineering Geology and the Environment, 80(11), 8385-8395.
[31] Li, D., Liu, Z., Armaghani, D. J., Xiao, P., & Zhou, J. (2022). Novel ensemble intelligence methodologies for rockburst assessment in complex and variable environments. Scientific reports, 12(1), 1-23. https://doi.org/10.1038/s41598-022-05594-0
[32] Li, Y.;Wang, C.; Xu, J.; Zhou, Z.; Xu, J.; Cheng, J.(2021). Rockburst Prediction Based on the KPCA-APSO-SVM Model and Its Engineering Application. Shock Vib., 2021, 7968730.
[33] Liang, W., Sari, A., Zhao, G., McKinnon, S. D., & Wu, H. (2020). Short-term rockburst risk prediction using ensemble learning methods. Natural Hazards, 104(2), 1923-1946.
[34] Shirani Faradonbeh, R., Shaffiee Haghshenas, S., Taheri, A., & Mikaeil, R. (2020). Application of self-organizing map and fuzzy c-mean techniques for rockburst clustering in deep underground projects. Neural Computing and Applications, 32(12), 8545-8559.
[35] Ahmad, M., Katman, H. Y., Al-Mansob, R. A., Ahmad, F., Safdar, M., & Alguno, A. C. (2022). Prediction of Rockburst Intensity Grade in Deep Underground Excavation Using Adaptive Boosting Classifier. Complexity, 2022.
[36] Cai, W., Dou, L., Zhang, M., Cao, W., Shi, J. Q., & Feng, L. (2018). A fuzzy comprehensive evaluation methodology for rock burst forecasting using microseismic monitoring. Tunnelling and Underground Space Technology, 80, 232-245.
[37] Kidega, R., Ondiaka, N., Maina, D., Jonah, K., Kamran, M., (2022). Decision Based Uncertainty Model to Predict Rockburst in Underground Engineering Structures Using Gradient Boosting Algorithms. Geomechanics and Engineering. 30 (3). 259-272 https://doi.org/10.12989/gae.2022
[38] Afraei, S., Shahriar, K., & Madani, S. H. (2019). Developing intelligent classification models for rock burst prediction after recognizing significant predictor variables, Section 1: Literature review and data preprocessing procedure. Tunnelling and Underground Space Technology, 83, 324-353.
[39] Li, T. Z., Li, Y. X., & Yang, X. L. (2017). Rock burst prediction based on genetic algorithms and extreme learning machine. Journal of Central South University, 24(9), 2105-2113.
[40] Roohollah, S. F., & Abbas, T. (2019). Long-term prediction of rockburst hazard in deep underground openings using three robust data mining techniques. Engineering with Computers,
35(2), 659–675.
[41] Xue, Y., Bai, C., Qiu, D., Kong, F., & Li, Z. (2020). Predicting rockburst with database using particle swarm optimization and extreme learning machine. Tunnelling and Underground Space Technology, 98, 103287.
[42] Pu Y, Apel DB, Xu H (2019b) Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier. Tunn Undergr Space Technol 90:12–18. https://doi.org/10.1016/j.tust.2019.04.019
[43] Gao W (2015) Forecasting of rockbursts in deep underground engineering based on abstraction ant colony clustering algorithm. Nat Hazards 76(3):1625–1649
[44] Liang, W., Sari, A., Zhao, G., McKinnon, S. D., & Wu, H. (2020). Short-term rockburst risk prediction using ensemble learning methods. Natural Hazards, 104(2), 1923-1946. https://doi.org/10.1007/s11069-020-04255-7
[45] Ahmad, M., Hu, J. L., Hadzima-Nyarko, M., Ahmad, F., Tang, X. W., Rahman, Z. U., ... & Abrar, M. (2021). Rockburst hazard prediction in underground projects using two intelligent classification techniques: a comparative study. Symmetry, 13(4), 632. https://doi.org/10.3390/sym13040632
[46] Pu, Y., Apel, D.B. and Lingga, B. (2018), “Rockburst prediction in kimberlite using decision tree with incomplete data”, J. Sustain. Min., 17(3), 158-165. https://doi.org/10.1016/j.jsm.2018.07.004.
[47] Zhu, Y. H., Liu, X. R., & Zhou, J. P. (2008). Rockburst prediction analysis based on v-SVR algorithm. J. China Coal Soc, 33(3), 277-281.
[48] Zhou, J., Li, X., & Shi, X. (2012). Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines. Safety science, 50(4), 629-644. https://doi.org/10.1016/j.ssci.2011.08.065
[49] Wang, H., Li, Z., Song, D., He, X., Sobolev, A., & Khan, M. (2021). An intelligent rockburst prediction model based on scorecard methodology. Minerals, 11(11), 1294.
[50] Ahmad, M., Katman, H. Y., Al-Mansob, R. A., Ahmad, F., Safdar, M., & Alguno, A. C. (2022). Prediction of Rockburst Intensity Grade in Deep Underground Excavation Using Adaptive Boosting Classifier. Complexity, 2022. https://doi.org/10.1155/2022/6156210
[51] Feng, XT, Chen, BR, Zhang, CQ, Li, SJ, Wu, SY. (2013) Mechanism, Warning and Dynamic Control of Rockburst Development Processes; Science Press: Beijing, China, 2013. (In Chinese)
[52] Liang, W., Sari, A., Zhao, G., McKinnon, S. D., & Wu, H. (2020). Short-term rockburst risk prediction using ensemble learning methods. Natural Hazards, 104(2), 1923-1946. https://doi.org/10.1007/s11069-020-04255-7
[53] Abeyratne, D., & Halgamuge, M. N. (2020). Applying Big Data Analytics on Motor Vehicle Collision Predictions in New York City. Intelligent Data Analysis: From Data Gathering to Data Comprehension, 219-239.
[54] Hannachi, A., & Turner, A. G. (2013). Isomap nonlinear dimensionality reduction and bimodality of Asian monsoon convection. Geophysical Research Letters, 40(8), 1653-1658.
[55] Tseng, J. C. H. (2022). An ISOMAP Analysis of Sea Surface Temperature for the Classification and Detection of El Niño & La Niña Events. Atmosphere, 13(6), 919.
[56] Krivov, E., & Belyaev, M. (2016, February). Dimensionality reduction with isomap algorithm for EEG covariance matrices. In 2016 4th International Winter Conference on Brain-Computer Interface (BCI) (pp. 1-4). IEEE.
[57] Sun, W., Halevy, A., Benedetto, J. J., Czaja, W., Liu, C., Wu, H., ... & Li, W. (2014). UL-Isomap based nonlinear dimensionality reduction for hyperspectral imagery classification. ISPRS Journal of Photogrammetry and Remote Sensing, 89, 25-36.
[58] Mehrbani, E., & Kahaei, M. H. (2022). Low‐rank isomap algorithm. IET Signal Processing, 16(5), 528-545.
[59] Cho, M., & Park, H. (2009, June). Nonlinear dimension reduction using ISOMap based on class information. In 2009 International Joint Conference on Neural Networks (pp. 566-570). IEEE.
[60] Dubois, D., Ostasiewicz, W., & Prade, H. (2000). Fuzzy sets: history and basic notions. In Fundamentals of fuzzy sets (pp. 21-124). Springer, Boston, MA.
[61] Bundy, A., & Wallen, L. (1984). Fuzzy Set Theory. In Catalogue of Artificial Intelligence Tools (pp. 41-41). Springer, Berlin, Heidelberg.
[62] Lu, Y., Ma, T., Yin, C., Xie, X., Tian, W., & Zhong, S. (2013). Implementation of the fuzzy c-means clustering algorithm in meteorological data. International Journal of Database Theory and Application, 6(6), 1-18.
[63] Parlina, A., Ramli, K., & Murfi, H. (2021). Exposing emerging trends in smart sustainable city research using deep autoencoders-based fuzzy c-means. Sustainability, 13(5), 2876.
[64] Rout, R., Parida, P., Alotaibi, Y., Alghamdi, S., & Khalaf, O. I. (2021). Skin lesion extraction using multiscale morphological local variance reconstruction based watershed transform and fast fuzzy C-means clustering. Symmetry, 13(11), 2085.
[65] Alam, M. S., Rahman, M. M., Hossain, M. A., Islam, M. K., Ahmed, K. M., Ahmed, K. T., ... & Miah, M. S. (2019). Automatic human brain tumor detection in MRI image using template-based K means and improved fuzzy C means clustering algorithm. Big Data and Cognitive Computing, 3(2), 27.
[66] Sun, L., Du, J., & He, Z. (2016, November). Machine learning for nonlinearity mitigation in CAP modulated optical interconnect system by using K-nearest neighbour algorithm. In Asia Communications and Photonics Conference (pp. AS1B-1). Optica Publishing Group.
[67] Rottondi, C., Barletta, L., Giusti, A., & Tornatore, M. (2018). Machine-learning method for quality of transmission prediction of unestablished lightpaths. Journal of Optical Communications and Networking, 10(2), A286-A297.
[68] Pérez, A. E., Torres, J. J. G., & González, N. G. (2019, July). KNN-based Demodulation in gridless Nyquist-WDM Systems affected by Interchannel Interference. In Signal Processing in Photonic Communications (pp. SpTh1E-3). Optical Society of America.
[69] Marquez-Viloria, D., Castano-Londono, L., & Guerrero-Gonzalez, N. (2021). A modified knn algorithm for high-performance computing on fpga of real-time m-qam demodulators. Electronics, 10(5), 627.
[70] Anchalia, P. P., & Roy, K. (2014, January). The k-nearest neighbor algorithm using MapReduce paradigm. In 2014 5th International Conference on Intelligent Systems, Modelling and Simulation (pp. 513-518). IEEE.
[71] Saadatfar, H., Khosravi, S., Joloudari, J. H., Mosavi, A., & Shamshirband, S. (2020). A new K-nearest neighbors classifier for big data based on efficient data pruning. Mathematics, 8(2), 286.
[72] Kamran, M., & Shahani, N. M. (2022). Decision support system for the prediction of mine fire levels in underground coal mining using machine learning approaches. Mining, Metallurgy & Exploration, 39(2), 591-601.
[73] Kamran, M., Shahani, N. Armaghani, D (2022). Decision Support System for Underground Coal Pillar Stability Using Unsupervised and Supervised Machine Learning Approaches. Geomechanics and Engineering, 30 (2), 107-121. https://doi.org/10.12989/gae.2022.30.2.107
[74] Kim, S. W., & Gil, J. M. (2019). Research paper classification systems based on TF-IDF and LDA schemes. Human-Centric Computing and Information Sciences.
[75] Ma, Y., Peng, M., Xue, W., & Ji, X. (2013, April). A dynamic affinity propagation clustering algorithm for cell outage detection in self-healing networks. In 2013 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 2266-2270). IEEE.
[76] Sarno, R., Ginardi, H., Pamungkas, E. W., & Sunaryono, D. (2013, November). Clustering of ERP business process fragments. In 2013 International Conference on Computer, Control, Informatics and Its Applications (IC3INA) (pp. 319-324). IEEE.
[77] Zhou, J., Zhu, S., Qiu, Y., Armaghani, D. J., Zhou, A., & Yong, W. (2022). Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm. Acta Geotechnica, 17(4), 1343-1366.