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Abstract
Moral Foundations Theory (MFT) holds that moral judgments are driven by modular and ideologically
variable moral foundations, but where and how they are represented in the brain and shaped by political
beliefs remains an open question. Using a moral judgment task of moral foundation vignettes, we probed
the neural (dis)unity of moral foundations. Univariate analyses revealed that moral judgment of moral
foundations, versus conventional norms, reliably recruits core areas implied in emotional processing and
theory of mind. Yet, multivariate pattern analysis demonstrated that each moral foundation has
dissociable neural representations distributed throughout the cortex. As predicted by MFT, political
ideology modulated neural responses to moral foundations. Our results con�rm that each moral
foundation recruits domain-general mechanisms of social cognition, but has a dissociable neural
signature malleable by sociomoral experience. We discuss these �ndings in view of uni�ed versus
dissociable accounts of morality and their neurological support for MFT.

Introduction
Human morality comprises a set of diverse norms that prescribe what is considered morally right or
wrong (Buckholtz & Marois, 2012). Despite ongoing debates about the speci�c nature and function of
morality (Curry, 2016; Haidt, 2001; Shweder et al., 1997; Suhler & Churchland, 2011), diversity and
pluralism in moral norms is increasingly recognized (Curry et al., 2021; Graham et al., 2013; Haidt &
Joseph, 2007; Sinnott-Armstrong & Wheatley, 2012). Moral Foundations Theory (MFT, Graham et al.,
2013; Haidt, 2007) posits that there are �ve universal, but contextually variable groups of moral intuitions:
Care/harm, Fairness/cheating, Loyalty/betrayal, Authority/subversion, and Sanctity/degradation. A sixth
Liberty/oppression foundation has been identi�ed (Iyer et al., 2012). Despite the wide-ranging relevance
of moral foundations (Amin et al., 2017; Brady et al., 2017; Hoover et al., 2021; Mooijman et al., 2018;
Morgan et al., 2010), where and how they are represented in the brain remains an open question. 

A central proposition of MFT is that moral foundations are su�ciently distinct to be treated as separate
cognitive modules (Haidt & Joseph, 2007), yet behavioral evidence for this prediction remains mixed
(Doğruyol et al., 2019; Dungan & Young, 2012). Although mounting literature suggests that different
forms of moral judgment may rely on distinguishable neural systems (FeldmanHall et al., 2014; Greene &
Haidt, 2002; Parkinson et al., 2011; Tsoi et al., 2018; Wasserman et al., 2017; Young, & Dungan, 2012), no
neuroimaging study has examined the full spectrum of morality as proposed by MFT. 

Furthermore, research on MFT consistently reports that liberals (progressives) endorse individualizing
intuitions of Care and Fairness more than the binding intuitions of Loyalty, Authority, and Sanctity,
whereas conservatives endorse all �ve foundations more or less equally (Graham et al., 2009; Kivikangas
et al., 2020). While individualizing and binding moral concerns have been related to individual differences
in regional brain volume (Lewis et al., 2012; Nash et al., 2017), it is unknown whether political ideology
moderates functional variation in neural responses to moral foundation vignettes.
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            We tested MFT’s predictions in an fMRI study (n = 64; Fig. 1a.), using a standardized and validated
stimulus database of moral foundation vignettes (MFVs; Clifford et al., 2015). The MFVs were designed
for use in neuroimaging studies, describe behaviors that violate a particular moral foundation and not
others, and also feature transgressions of conventional, social norms as a non-moral control category.
Using functional neuroimaging allowed us to examine whether moral intuitions are encoded in uni�ed or
distributed brain systems. Furthermore, by treating moral foundations as multivariate neural
representations, we moved beyond asking where moral foundations are located in the brain and
examined how moral foundations are neurally organized. Speci�cally, we tested whether moral
foundations have shared or dissociable neural signatures, and where substructures of moral foundations
can be recovered. Finally, we combined neural responses to the MFV with behavioral data to examine
whether political ideology moderates individual differences in neural processing of moral foundations. 

Results
Behavioral results.

During the fMRI experiment, judgments of moral wrongness (1 = not morally wrong to 4 = extremely
morally wrong) were collected from each participant for each of the 120 vignettes (Fig. 1a). Each vignette
described a violation of either: (1) one of seven moral foundations (Physical Care, Emotional Care,
Fairness, Liberty, Authority, Loyalty, Sanctity), or (2) a non-moral social norm transgression. 15 vignettes
were presented in each condition. Vignettes were randomly distributed across three runs, with 5 vignettes
per condition per run (40 vignettes/run).

To assess the impact of vignette condition on moral wrongness ratings and response times, we used
linear mixed-effect modeling and performed likelihood ratio tests (LRTs) to test whether the model
including vignette condition (moral vs. non-moral) would provide a better �t to the data than a model
without (Tsoi et al., 2018). There was a signi�cant main effect of vignette condition (χ2 (7) = 202.29, p < 
0.001). Pairwise contrasts revealed that each moral violation was judged as more morally wrong than
were social norm transgressions (Fig. 1b): Physical Care (z = 18.315, p < 0.001), Emotional Care (z = 
16.119, p < 0.001), Fairness (z = 17.186, p < 0.001), Liberty (z = 16.869, p < 0.001), Loyalty (z = 12.197, p < 
0.001), Authority (z = 12.975, p < 0.001), and Sanctity (z = 16.895, p < 0.001). This observation assured
that ensuing contrasts between moral versus non-moral vignettes re�ect neural activity relevant to
participants’ judgments of moral wrongness. There was also a main effect of vignette condition on
response times (RT; χ2(7) = 74.088, p < 0.001). Ratings of moral transgressions were slower than were
ratings of non-moral transgressions (Fig. 1c): Physical Care (z = 4.923, p < 0.001), Emotional Care (z = 
4.351, p < 0.001), Fairness (z = 4.092, p = 0.001), Liberty (z = 5.624, p < 0.001), Loyalty (z = 8.869, p < 
0.001), Authority (z = 7.086, p < 0.001), and Sanctity (z = 6.632, p < 0.001). These �ndings suggest that
judging moral transgressions, as compared with non-moral social norm violations, may involve a deeper
evaluation of individuals’ actions and how they relate to one’s own values (Parkinson et al., 2011).

Identifying brain regions that encode moral foundations.
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We examined the neural activation underlying the moral judgment across different moral foundations
with a univariate General Linear Model (GLM), contrasting each type of moral violation with the social
norm violations (Fig. 2a–g). We also computed contrasts for the binding (Loyalty, Authority, Sanctity)
versus the individualizing (Physical Care, Emotional Care, Fairness) foundations (Fig. 2h), and for all
moral foundations versus social norm violations (Fig. 2i). For each contrast, participants’ statistical
parametric maps were used to perform group-level analyses. To correct for multiple comparisons, images
from the group-level analyses were subjected to a voxel-wise threshold of p < 0.001 (uncorrected) and a
cluster extent threshold ensuring q < 0.01 (false discovery rate (FDR)-corrected).

Moral judgment of each moral foundation versus social norms (Fig. 2a –g) recruited multiple regions
(cluster peaks are summarized in Supplementary Table 1), demonstrating that no foundation is encoded
in a single area but distributed throughout the brain. To identify whether any neural system was uniquely
activated across each of the seven moral foundation versus social contrasts (Fig. 2a –g), we combined
the corresponding thresholded statistical maps and determined which voxel preferentially responded to
only one of the seven moral foundations. We found that each moral foundation evoked dissociable
neural activation (see Supplementary Fig. 1), con�rming that each moral foundation relies partially on
separable brain systems. Notably, the Sanctity foundation recruited most areas not evoked by any other
moral foundation, including the Thalamus and bilateral caudate nucleus, highlighting its neurological
distinctiveness from other moral domains (Parkinson et al., 2011; Wasserman et al., 2017; Young & Saxe,
2009).

Next, we examined which neural systems were commonly activated across each of the seven moral
foundation versus social contrasts (Fig. 2a –g) by performing a conjunction analysis of the
corresponding thresholded statistical maps (Nichols et al., 2005). We �nd common activation in
dorsomedial prefrontal cortex (dmPFC), posterior cingulate cortex (PCC) and precuneus (PC), bilateral
temporoparietal junction (TPJ), supplementary motor area (SMA), and primary visual cortex (V1).
Previous studies have only shown independent activation in dmPFC when reasoning through harmful,
disgusting, and dishonest versus neutral scenarios (Parkinson et al., 2011). Here we �nd that evaluating
violations of moral foundations versus social norms not only jointly recruits the dmPFC, but multiple
additional areas commonly observed in the moral neurosciences (Eres et al., 2018; FeldmanHall & Mobbs,
2015). Furthermore, these areas largely overlap with the theory of mind (ToM) network, which has been
attributed a central function in moral judgment studies (FeldmanHall & Mobbs, 2015; Greene & Haidt,
2002; Tsoi et al., 2018; Wasserman et al., 2017; Young, & Dungan, 2012).

Contrasting binding versus individualizing foundations also indicated that binding foundations
correspond to greater activity in regions relating to ToM (Fig. 2h). While every vignette only described an
action without explicitly stating an agent’s intention or ensuing outcomes, group-based moral
foundations may have triggered spontaneous mental state inference (Young & Saxe, 2009) to assess
hidden goals and determine whether an action will have harmful consequences. In contrast, violations of
individualizing foundations may be quickly categorized as blatant moral wrongs without eliciting deeper
mentalizing processes, for instance, because they will directly result in physical harm. This notion is
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supported by both faster RTs and higher moral wrongness ratings for individualizing violations compared
to slower RTs and lower moral wrongness ratings for binding violations (Fig. 2b–c). Analogously, Amit
and Greene (2012) showed that high-level action construals (abstract, goal-focused) favor utilitarian
moral judgment, whereas low-level action construals (concrete, means-focused) facilitate deontological
moral judgment. Although speculative, violations of binding foundations may have elicited more abstract
construals, whereas transgressions of individualizing foundations may lend themselves more to low-
level, concrete construals.

Moral foundations elicit dissociable cortical activation patterns.

Univariate analyses are useful to examine which brain regions are more engaged during moral (versus
social) judgment. However, these approaches cannot determine whether the brain, individual networks, or
speci�c regions show convergence of multivoxel patterns for moral foundations. Hence, we employed a
multivariate pattern analysis approach, training a support vector machine (SVM) to examine whether
moral foundations elicit shared or dissociable neural activation patterns. To this end, we �rst averaged
the runwise, whole-brain statistical parametric maps (beta estimates) for each vignette condition and
participant from the GLM reported earlier, creating one average beta map per condition and participant.
We then used a leave-one-subject-out (LOSO) cross-validation procedure to evaluate the performance of
our SVM model in classifying which of two vignette conditions a participant was judging using data from
the rest of the participants (a “forced-choice” test). Forced-choice tests compare the relative pattern
expression of the model between brain maps within the same participant and are particularly well suited
for fMRI because they do not require signals to be on the same scale across individuals (Wager et al.,
2013). Moreover, pairwise classi�cation–as opposed to classifying between all moral foundations–
allowed us to determine whether every pair of foundations can be reliably decoded.

The SVM was able to accurately distinguish between all moral versus social vignette conditions within
each participant (all forced-choice accuracies ≥ 98%, p < 0.001; Fig. 3a). Compellingly, within the moral
space, the SVM also accurately distinguished between every one of the moral foundations (all forced-
choice accuracies ≥ 89%, p < 0.001), suggesting that moral foundations are indeed distinctly represented
in the brain. Speaking to the validity of the model, performance was relatively lower for moral
foundations that have been argued to be similar in content and function: Physical Care versus Sanctity
(96.87%) and Fairness versus Liberty (89.06%).

Next, we examined whether morally-relevant activation patterns are distributed throughout the brain, or
localized to speci�c networks or regions identi�ed in the literature. To this end, we created a mask from a
meta-analytic map associated with the term “moral” from Neurosynth (uniformity test map, thresholded
at PFDR < 0.01, Fig. 3c; Yarkoni et al. 2011). This mask was chosen to select voxels that are presumably
activated in moral judgment studies. Furthermore, we selected regions of interest (ROI) commonly
reported in moral neuroscience (Eres et al., 2018) from an independent parcellation based on meta-
analytic functional coactivation of the Neurosynth database (Yarkoni et al. 2011; see Supplementary
Fig. 2). We then retrained the SVM using only the averaged beta estimates from voxels of each of these
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masks. Notably, the SVM trained solely on the Neurosynth mask (Nvoxels = 1,595) approached the
accuracy of the whole-brain (Nvoxels = 238,955) model (mean difference in forced-choice accuracy: 1.1%,
t(28) = 1.52, p = .134; Fig. 2b). This �nding validates that voxels commonly recruited during moral
judgment may not only be consistently activated during moral judgment, but do contain relevant
information to distinguish moral foundations. As expected, individual ROIs comprising the moral brain
also contained information to reliably decode each pair of moral foundations (Fig. 3b). Yet, none of the
functionally-parcelated networks reached the accuracy of the moral mask or whole-brain model. This
provides compelling evidence that moral foundations are not encoded within isolated “moral hotspots”,
but distributed across the human cortex.

To corroborate these �ndings, we trained a multiclass SVM to distinguish between all MFV conditions,
applying both a leave-one-run-out (LORO) within-subject classi�er (WSC) and LOSO between-subject
classi�er (BSC) using only voxels from Neurosynth’s moral mask. The WSC was able to discriminate
between all vignette conditions with high accuracy (average classi�cation accuracy: 83.14%; chance
level: 12.5%; t(64) = 89.82, p < .000), demonstrating that cortical activation was dissociable across MFV
conditions within each participant (Fig. 3d). As expected, social norms were most accurately classi�ed.
The BSC also accurately discriminated across all MFV vignette conditions, but with even higher accuracy
than the WSC classi�er (average classi�cation accuracy: 92.94%; chance level: 12.5%; t(64) = 139.43, p 
< .000), likely due to the greater number of training samples available. These results undergird that neural
activation patterns for each moral foundation can reliably be decoded in morally relevant voxels, both
within and across participants.

Neural representational mapping of moral foundations.

Having established that moral foundations elicit dissociable neural activation patterns raises the
question how these patterns are organized in the high-dimensional activity space. We used
representational similarity analysis (RSA; Kriegeskorte et al., 2008) to examine the cortical structure and
hierarchical division of moral foundations. We �rst created conceptual representational dissimilarity
matrices (RDMs) denoting different theoretical predictions about the representational geometry of moral
foundations (Fig. 4a). Speci�cally, we computed four conceptual models that monotonically increase the
nested hierarchy across moral foundations: (1) independent (no similarity); (2) ind/bind/social (similarity
within individualizing foundations, binding foundations, and social norms, but dissimilarity between
these clusters); (3) ind:bind/social (individualizing foundations similar to binding foundations but
dissimilar to social norms); (4) moral/social (moral foundations similar to each other but dissimilar to
social norms. Additionally, we created behavior-based RDMs based on participants’ moral wrongness
ratings and response times. Next, we obtained runwise statistical maps for each vignette condition and
participant from the GLM reported earlier. These statistical maps were then used to compute neural
reference RDMs (Fig. 4b). We constrained the neural RDMs to independent parcels implicated in moral
judgment as well as Neurosynth’s moral mask, and also examined visual cortex (V1) to study
representations of moral intuitions in a lower-order processing system.
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In a �rst exploratory step, we computed the whitened cosine similarity (Diedrichsen et al., 2020) across
conceptual, behavior-based, and neural RDMs and subjected the resulting similarity matrix to a
hierarchical clustering algorithm (Fig. 4c, left panel). This revealed that the representational geometry of
moral foundations is more similar within ROIs of the same functional network as indexed by clusters
spanning ToM (vmPFC, TPJ, PCC/Precuneus, PCC/Superior LOC, and STS) and executive control/con�ict
monitoring networks (dlPFC, dACC). Compellingly, the cluster solution of dmPFC and Neurosynth’s moral
mask suggests that the neural population codes of moral foundations is highly similar for both cortical
structures, undergirding the central role of dmPFC for representing moral information in larger, more
distributed moral judgment networks (Parkinson et al., 2011). Visual inspection of a t-distributed
stochastic neighbor embedding (t-SNE; Fig. 4c, right panel) of RDM similarities revealed that the visual
cortex represents moral foundations distinctly from other brain networks. Notably, the close proximity of
V1 to conceptual models predicting distinct representations of individualizing, binding, and social norms
indicates that the vignettes may have elicited qualitatively different mental imaginations. This aligns with
research demonstrating that visual cortex is activated not only during visual perception but also during
visual imagery (O’Craven & Kanwisher, 2000), and that this activation correlates with the vividness of the
imagery (Cui et al., 2007). Considering that the MFV were extensively pretested to ensure “the ease with
which a vivid image could be formed from each vignette” and only differed in the described moral action
(Clifford et al., 2015), it is likely that differences in low-level action representation are most salient along
the visual stream. These results also corroborate the importance of morally relevant information in
directing perceptual awareness (Gantman & Van Bavel, 2015; Gantman et al., 2020) and suggest that
distinctions between moral versus non-moral stimuli are formed early in the visual system.

Importantly, the close proximity of the moral judgment RDM to V1 indicates that visual representations of
moral foundations informed moral wrongness ratings, undergirding the role of visual cortex and imagery
in moral judgment (Amit & Greene, 2012; Caruso & Gino, 2011; Kahane et al., 2012). In contrast,
(dis)similarities in response times were rather re�ected in ROIs involved in problem solving (dACC, dlPFC)
and mentalizing (dmPFC, PCC). Given that individualizing foundations and social norms were judged
faster than binding intuitions (Fig. 1c), moral judgment of group-oriented foundations may have recruited
deeper mentalizing and intent inference processes. In line with this reasoning, the Loyalty/betrayal
foundation–which is strongly concerned with tribalism and “us versus them” thinking–showed the most
distinct neural representations across ToM networks (PCC/Superior LOC, STS, and Neurosynth’s moral
mask).

To con�rm these descriptive results, we conducted statistical inference on the RDMs (Fig. 5). We �rst
compared the performance of every candidate model in each ROI against chance to determine whether
there is a statistically signi�cant association between model and neural RDM. We found that conceptual
models denoting hypothetical structures across moral foundations were signi�cantly related to neural
representations of moral foundations in the majority of our a priori ROIs, con�rming that these networks
represent theoretically-speci�ed patterns of moral foundations. Yet, in parcels of the insula and in
TPJ/Parietal Operculum, most conceptual models did not reach statistical signi�cance.
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Next, we compared the performance of models in each ROI to adjudicate whether some models explain
the neural representations of moral foundations better than others. Across conceptual models, we found
that the nested hierarchy structure across moral foundations (ind:bind/social) as well as a rigid split
between moral versus social norms (moral/social) better predicts neural patterns in V1 than models
denoting either complete independence or a rigid division into individualizing, binding, and social norms
(ind/bind/social). In vmPFC and Neurosynth’s moral mask, the independent model performed better than
the ind/bind/social model, but other conceptual model comparisons were not signi�cant. In contrasting
behavior-based models, we �nd that response times were a signi�cantly better predictor for neural
representations in ToM networks including vmPFC, dmPFC, TPJ/Angular Gyrus, PCC/Precuneus,
PCC/Superior LOC, STS, and Neurosynth’s moral mask than were participants’ self-reported moral
wrongness ratings. In contrast, we �nd that the moral judgment RDM was a signi�cantly better predictor
in V1 than the response time RDM. These �ndings undergird that variability in response times for
reaching a moral judgment is more closely re�ected in brain networks associated with spontaneous
mental state inference, whereas the visual representation of moral foundations may better predict the
assigned moral wrongness rating.

Political ideology modulates neural responses to moral foundations.

Research on MFT consistently reports that liberals (progressives) endorse individualizing intuitions more
than binding, whereas conservatives endorse all foundations more or less equally (Graham et al., 2009;
Kivikangas et al., 2020). We examined this ‘moral foundations hypothesis’ (Graham et al., 2009)
combining neural responses to the vignettes with self-report and behavioral data. Participants indicated
their political ideology using a slider from “very liberal” (0) to “very conservative” (100; Fig. 6a) and also
reported their sensitivity towards each moral foundation via the Moral Foundations Questionnaire (MFQ;
Graham et al., 2009). Participants’ moral wrongness ratings for the MFV were used as behavioral markers
for moral judgment. Starting with the self-report data, we largely replicated Graham and colleagues’
(2009) initial result, �nding that conservatives rated the individualizing foundations of the MFQ as less
relevant to their moral judgment than did liberals, whereas conservatives rated the binding foundations
as more relevant to their moral judgment than did liberals (Fig. 6b). Controlling for age and gender
revealed that political ideology remained the only signi�cant predictor for the endorsement of each moral
foundation as indexed by the MFQ with the exception of Care, for which gender was a stronger predictor.
We observed similar patterns for responses to the MFV (Fig. 6c): The positive slopes for the binding
foundations mean that conservatives rated these vignettes as more morally wrong than did liberals,
whereas the negative slopes for Physical Care and Liberty mean that conservatives rated these as less
morally wrong than did liberals. Interestingly, the positive slopes for Fairness and Social Norms suggests
that conservatives also rated these vignettes as more morally wrong than did liberals, whereas no
differences emerged for vignettes pertaining to Emotional Care. We also �nd that political ideology
remains a signi�cant predictor for moral wrongness ratings for each vignette condition–with the
exception of Emotional Care–when controlling for age and gender.
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Next, we examined whether liberals and conservatives show differential neural activity while processing
moral foundations. For each participant, we �rst retrieved the seven t-contrast images from the previous
GLM that modeled each type of moral violation versus social norm violations (Fig. 2a–g). In a second
step, we divided participants into either “liberal” or “conservative” groups by performing a median split on
the political orientation scale (median = 41). We then entered the contrast estimates into a 2 x 7 repeated-
measures ANOVA and performed an F-test for the group-type × condition-type interaction. While
conservative correction for multiple comparisons (voxelwise p < .001, (uncorrected); FDR q < .05) revealed
no signi�cant clusters, using a more lenient threshold (voxelwise p < .005 (uncorrected), k > 10)

showed that liberals and conservatives differentially processed moral foundations in several networks
related to semantic and affective processing (Fig. 6d; for cluster peaks, see Supplementary Table 3),
including the lingual gyrus, PC, left orbitofrontal cortex (OFC), and anterior prefrontal cortex (aPFC), as
well as the temporal pole. Particularly PC and OFC have been involved in idiosyncratic processing of
political debates between liberals and conservatives (van Baar et al., 2021). Analogously, the aPFC exerts
robust meta-analytic functional coactivation with the medial prefrontal cortex (r = 0.48; Yarkoni et al.,
2011), a region that has been linked to “neural polarization” in liberal versus conservative leaning
individuals (Leong et al., 2020). Furthermore, the likely function of the temporal pole for binding complex,
highly processed perceptual inputs to visceral emotional responses (Olsen et al. 2007) underlines that
liberals and conservatives may have differential affect-laden imagery of moral transgressions that
in�uence ensuing moral judgments.

Discussion
We reported an fMRI experiment that offers a neurobiological account of the distinguishable nature of
moral judgment across moral foundations as outlined in Moral Foundations Theory (MFT). Replicating
previous studies (Clifford et al., 2015), we showed that people deemed vignettes displaying
transgressions of moral foundations–as opposed to conventional social norms–as more morally wrong.
Each evaluation of a moral foundation versus social norms was associated with separable and
overlapping brain systems, suggesting that moral foundations have specialized and shared neural bases.
The common involvement of dmPFC, PCC/PC, and TPJ across all moral foundations and in past
neuroimaging studies of moral judgment con�rm that moral foundations are encoded in mental faculties
that are characteristic of human moral cognition. Corroborating the group-based nature of binding moral
intuitions, we demonstrated that transgressions of Loyalty, Authority, and Sanctity, compared to
individualizing intuitions of Care and Fairness, resulted in greater activity in regions associated with
processing of others, as opposed to self (Van Overwalle, 2009; Northoff et al., 2006).

The conjoined activation of dmPFC, PCC/PC, bilateral TPJ, SMA, and V1 across the spectrum of moral
foundations may suggest that moral foundations are uni�ed in these brain systems, and thus not
modular enough to be treated as separate cognitive modules. However, simultaneous activation for a set
of stimuli does not imply that the stimuli are phenomenologically uni�ed in the brain. For instance,
viewing images of houses and cats reliably activates the ventral temporal cortex, yet the multivariate
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activation patterns of these stimuli are highly dissociable (Haxby et al., 2001). Analogously, we showed
that a cross-validated multivariate pattern classi�er can accurately distinguish the neural signatures
between all and every pair of moral foundations. This demonstrates that moral foundations indeed elicit
dissociable cortical activation patterns. In line with MFT’s “massive modularity hypothesis” (Sperber,
2005), we showed that morally-informative voxels are distributed throughout the brain and not limited to
any single region. In fact, morally relevant, a priori regions discriminated slightly less accurately between
moral foundations compared to a distributed, whole-brain model. Going forward, illuminating the
speci�city and sensitivity of these moral signatures beyond text-based moral vignettes has relevant
implications for the study of morality and for identifying biomarkers for pathological moral judgment
(Woo et al., 2017).

By studying the representational geometry of moral foundations, we showed that the neural organization
of moral foundations aligns with MFT’s predicted organizational structure in core regions of the moral
brain. The observation that moral foundations are more similar in functionally-connected areas spanning
ToM and executive control/con�ict monitoring networks corroborates that these networks encapsulate
distinct aspects of moral judgment (e.g., spontaneous mental state attribution versus blame
computation). Rigid hierarchical divisions of moral foundations into binding and individualizing
categories emerged in early visual cortex and moral wrongness ratings, undergirding that visual imagery
facilitates low-level construals of moral actions which subsequently inform moral judgment (Amit &
Greene, 2012; Caruso & Gino, 2011; Kahane et al., 2012). These �ndings provide a fertile ground for richer
delineations of the moral space by moving beyond taxonomies limited to harm versus purity (Tsoi et al.,
2018; Wassermann et al., 2018).

Moreover, our results shed light on the neural systems that modulate liberals’ and conservatives’
idiosyncratic responses to individualizing and binding moral intuitions. Previous studies have shown that
individualizing is linked to increased volume in dmPFC and reduced volume in bilateral PC, whereas
increased adherence to binding foundations was positively related to bilateral subcallosal gyrus volume
and reduced volume in ACC and LPFC (Lewis et al., 2012; Nash et al., 2017). Here we showed that liberals
and conservatives exert differential neural responses when evaluating moral foundations in PC, OFC, and
aPFC, as well as lingual gyrus and right TP, suggesting that political ideology moderates the social-
affective experience of moral violations. These �ndings con�rm that moral foundations modulate neural
polarization processes (Leong et al., 2020) and may offer solutions for message interventions that re-
align representations of core human values across political divides (van Baar et al., 2021).

Taken together, we showed that MFT’s moral foundations robustly recruit mental systems commonly
observed in the moral neurosciences, albeit the multivariate patterns associated with moral foundations
are highly dissociable and distributed throughout the cortex. We encourage the use of the MFV as a
controlled localizer for tracing neural signatures of moral foundations and for illuminating the space of
moral violations that separate political camps.

Online Methods
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Participants.

Healthy volunteers were recruited from the University of California Santa Barbara (UCSB) Department of
Communication participant pools and from the local Santa Barbara community. Exclusion criteria
included a history of systemic or neurological disorders, psychiatric disorders, psychoactive medication
or drug use, and pregnancy. For the fMRI study, we recruited 64 participants (33 males; mean age 20.78
years; 63 right-handed; 63 native English speakers), who completed a moral judgment task divided across
three runs in the fMRI scanner. No statistical methods were used to predetermine sample size, but our
sample size is well above those reported in previous fMRI studies using similar moral judgment tasks
(Parkinson et al., 2011; Tsoi et al., 2018; van Baar et al., 2019). No participants were excluded from
analyses, but one run for a single participant could not be completed due to issues with stimulus
presentation.

Procedure.

The study took place at UCSB’s Brain Imaging Center and was approved by the institutional review board
of the University of California at Santa Barbara (protocol number: 21-17-0123). Participants completed a
battery of online trait questionnaires approximately 1 week before the MRI session. After providing
informed consent upon arrival to the laboratory, participants underwent a �rst fMRI scan, divided across
three runs, while completing the moral foundation vignettes paradigm (Clifford et al., 2015). Thereafter,
participants completed two additional fMRI scans not reported here. Before departing the laboratory all
participants completed debrie�ng questionnaires.

Moral judgment task.

Participants were presented with the moral foundation vignettes (MFVs; Clifford et al., 2015) while
undergoing fMRI. The MFVs span 120, one sentence descriptions (14 –17 words) detailing the violation of
one (and only one) of seven moral foundations: Physical Care, Emotional Care, Fairness, Liberty, Loyalty,
Authority, and Sanctity. The vignettes also contain a non-moral, social norm transgression category. Each
of the eight conditions features 15 vignettes. Vignettes were organized in an event-related design,
randomly distributed over three approximately 8-minute functional runs, with �ve vignettes of each
category in each of the three runs. Participants viewed one vignette at a time and were instructed to
vividly imagine the described scene. While the vignette was on screen, participants were asked to make a
judgment of how morally wrong the action described in the vignette was using an MRI-safe button box (1 
= not morally wrong to 4 = extremely morally wrong). After 8 seconds, the vignette disappeared but the
scale remained on screen and participants could still respond during the inter-trial interval (ITI). ITIs were
on average 4 seconds long, with a jitter of +/- 2.16 seconds (jitter length was calculated so that each trial
would begin at exactly the beginning of the scanner’s collection of the next volume).

Behavioral analyses.
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Behavioral analyses were conducted in R (version 3.6.3) and Python (version 3.7.10). Moral judgments
were analyzed using cumulative link mixed models with an ordinal response term (from a scale of 1–4).
Mixed models were run using the package “ordinal” (Christensen, 2015). We were primarily interested in
understanding whether ratings differed across vignette conditions (physical care, emotional care,
fairness, liberty, loyalty, authority, and sanctity, and social norm transgressions). Our full model included
only vignette condition as a predictor. Participant and item were included as random effects, and we �t an
intercept for each participant and for each item, allowing the intercept to vary across individuals and
items. To assess the importance of our predictor, we performed likelihood ratio tests (LRTs) to test
whether the model including the vignette condition would provide a better �t to the data than a model
without that term. Response times were analyzed using linear mixed effect models using “lme4” (Bates et
al., 2015) in R, with the same predictor and random effects as the analyses for ratings above.
Participants’ responses to the Moral Foundations Questionnaire (MFQ; Graham et al., 2011) and the MFV
were regressed onto their political orientation (0 = extremely liberal; 100 = extremely conservative) using
the statsmodel (https://www.statsmodels.org/) package.

fMRI acquisition and preprocessing.

fMRI scanning was performed on a 3-Tesla Siemens Magnetom Prisma with a Siemens head coil, at the
Brain Imaging Center of the University of California, Santa Barbara. Functional images were taken using a
multiband echo-planar gradient sequence (repetition time = 720 ms, echo time = 37 ms, �ip angle = 52°,
�eld of view = 208 mm, acceleration factor = 8). Volumes consisted of 72 interleaved slices (2 mm
isotropic) acquired with an angle of ~ 20º relative to the AC-PC plane, so that the slices are acquired more
dorsally near the eyes relative to the back of the brain (in that fashion we were able to acquire the entire
brain volume including the cerebellum for every participant). High-resolution T1-weighted whole brain
acquisitions were collected prior to functional image acquisition (repetition time = 2500 ms, echo time
2.22 ms, �ip angle = 7°, �eld of view = 241 mm, .9 mm isotropic resolution).

Results included in this manuscript come from preprocessing performed using fMRIPrep 20.2.1 (Esteban,
Markiewicz, et al. (2019); RRID:SCR_016216), which is based on Nipype 1.5.1 (Gorgolewski et al., 2011;
Gorgolewski et al. 2018); RRID:SCR_002502). The pipeline description below was copied from the
fMRIprep boilerplate text, leaving out unused components.

The T1w image was corrected for intensity nonuniformity with N4BiasFieldCorrection (Tustison et al.
2010), distributed with ANTs 2.3.3 (Avants et al. 2008, RRID:SCR_004757), and used as T1w-reference
throughout the work�ow. The T1w-reference was then skull-stripped with a Nipype implementation of the
antsBrainExtraction.sh work�ow (from ANTs), using OASIS30ANTs as target template. Brain tissue
segmentation of cerebrospinal �uid (CSF), white-matter (WM) and gray-matter (GM) was performed on
the brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, Zhang, Brady, and Smith 2001).
Volume-based spatial normalization to one standard space (MNI152NLin2009cAsym) was performed
through nonlinear registration with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both
T1w reference and the T1w template. The following template was selected for spatial normalization:
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ICBM 152 Nonlinear Asymmetrical template version 2009c [Fonov et al. (2009), RRID:SCR_008796;
TemplateFlow ID: MNI152NLin2009cAsym].

For each of the three BOLD runs per subject, the following preprocessing was performed. First, a reference
volume and its skull-stripped version were generated using a custom methodology of fMRIPrep. The
BOLD reference was then co-registered to the T1w reference using �irt (FSL 5.0.9, Jenkinson and Smith
2001) with the boundary-based registration (Greve and Fischl 2009) cost function. Coregistration was
con�gured with nine degrees of freedom to account for distortions remaining in the BOLD reference.
Head-motion parameters with respect to the BOLD reference (transformation matrices, and six
corresponding rotation and translation parameters) are estimated before any spatiotemporal �ltering
using mc�irt (FSL 5.0.9, Jenkinson et al. 2002). BOLD runs were slice-time corrected using 3dTshift from
AFNI 20160207 (Cox and Hyde 1997, RRID:SCR_005927). The BOLD time-series (including slice-timing
correction when applied) were resampled onto their original, native space by applying the transforms to
correct for head-motion. These resampled BOLD time-series will be referred to as preprocessed BOLD in
original space, or just preprocessed BOLD. The BOLD time-series were resampled into standard space,
generating a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its
skull-stripped version were generated using a custom methodology of fMRIPrep. Several confounding
time-series were calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS and
three region-wise global signals. FD was computed using two formulations following Power (absolute
sum of relative motions, Power et al. (2014)) and Jenkinson (relative root mean square displacement
between a�nes, Jenkinson et al. (2002)). FD and DVARS are calculated for each functional run, both
using their implementations in Nipype (following the de�nitions by Power et al. 2014). The three global
signals are extracted within the CSF, the WM, and the whole-brain masks. The head-motion estimates
calculated in the correction step were also placed within the corresponding confounds �le. The confound
time series derived from head motion estimates and global signals were expanded with the inclusion of
temporal derivatives and quadratic terms for each (Satterthwaite et al. 2013). Frames that exceeded a
threshold of 0.5 mm FD or 1.5 standardised DVARS were annotated as motion outliers. Gridded
(volumetric) resamplings were performed using antsApplyTransforms (ANTs), con�gured with Lanczos
interpolation to minimize the smoothing effects of other kernels (Lanczos 1964).

fMRI GLM analysis.

Whole-brain univariate GLM analyses were conducted in SPM12 www.�l.ion.ucl.ac.uk/spm) using
custom scripts written in Nipype (Gorgolewski et al., 2011). Each run started with a tail of 11 TRs which
were discarded. Thereafter, preprocessed images were spatially smoothed using a Gaussian �lter (full-
width half-maximum = 6 mm kernel) and analyzed using a general linear model (GLM). A GLM was
constructed for each participant using boxcar regressors for each of the eight vignette conditions. For
each trial, a 7.92-second window (11 TRs) of volumes of interest was included as an event, capturing the
time the vignette text was displayed on screen. The three runs were modeled by separate regressors in the
same GLM. To account for residual variance, the temporal derivative of each condition regressor was
added to the model as well as a constant regressor for each entire run. The resulting GLM was convolved

https://www.statsmodels.org/
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with SPM’s canonical hemodynamic response function. The model was corrected for temporal
autocorrelations using a �rst-order autoregressive model. In addition, we included DVARS (D, temporal
derivative of time courses; VARS, RMS variance over voxels), framewise displacement, six anatomical
component-based noise correction (CompCor) components and four cosine drift terms as well as a
standard high-pass �lter (90s cutoff) to exclude low-frequency drifts. Planned contrasts then modeled
activation unique to each moral violation (e.g., Fairness versus Social). These contrasts were then
analyzed at the second level using a mixed-effect model. To correct for multiple comparisons, images
from the second-level analyses were subjected to a voxelwise threshold of p < 0.001 (uncorrected) and a
cluster extent threshold ensuring q < 0.01 (false discovery rate (FDR)-corrected). The conjunction analysis
tested the minimum-statistic/conjunction null hypothesis (MS/CN; Nichols et al., 2005). Accordingly, we
determined common activations across all seven moral versus social contrasts by creating the
intersection of the thresholded statistical maps. Coordinate tables and region labels from statistical
parametric maps were retrieved using AtlasReader (Notter et al., 2019). Signi�cant activations were
projected onto a cortical surface via Surfplot (Gale et al., 2021).

The interaction analysis between political orientation (liberals vs. conservative) and moral vignette
condition (seven moral categories) proceeded as follows. For each participant, seven differential t-
contrast images modeling each moral foundation versus social norms were collected from the previous
univariate GLM analyses. Participants were then assigned to a liberal or conservative group depending on
whether their self-reported political orientation fell below or above the median of the political orientation
scale. We then entered the t-maps into a 2 x 7 repeated-measures ANOVA including participant, group,
and condition as main effect and group × condition as interaction effect. The resulting statistical
parametric map for the F-test of the interaction effect was then thresholded at p < .005, k > 10.

Multivariate pattern analysis.

Multivariate pattern classi�cation was performed using the NLTools package version 0.4.5
(http://github.com/ljchang/nltools) and nilearn package version 0.7.1
(https://github.com/nilearn/nilearn). We �rst obtained each participant’s mean vignette condition activity
map by averaging over the corresponding GLM beta maps for the three runs. We then mean-centered
these maps across all voxels within each beta map.

Next, we trained a linear Support Vector Machine (SVM) to discriminate between each of the 28 pairwise
vignette conditions and used a leave-one-subject-out (LOSO) cross-validation procedure, ensuring that
every subject served as both training and testing data (Chang et al., 2015). This allowed us to evaluate
how a model trained on 63 participants could classify between two vignette conditions from the left-out
participant. To evaluate the accuracy of the SVM, we used forced-choice methods from receiver operating
characteristic curves (ROC). Forced-choice accuracy examines the relative expressions of the model
between two brain images collected from the same participant and is well suited for fMRI as the input
images are unlikely to be on the same scale across individuals. We performed hypothesis tests using a
two-tailed independent binomial test for forced-choice classi�cation accuracy.
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To evaluate the multivariate response patterns in voxels commonly activated in moral judgment studies,
we created a mask from a meta-analytic map associated with the term “moral” from Neurosynth (Yarkoni
et al. 2011) and thresholded the mask at PFDR < 0.01. Furthermore, we selected a priori regions of interest
(ROI) commonly reported in moral neuroscience (Eres et al., 2018) from a parcellation created using a
whole-brain parcellation based on meta-analytic functional coactivation of the Neurosynth database
(Yarkoni et al., 2011) (parcellation available at https://neurovault.org/images/395092/ and displayed in
Supplementary Fig. 2). We then retrained and evaluated the SVM using only features (voxels) from these
masks and ROIs.

Representational similarity analysis (RSA).

Representational similarity analysis was performed using the Python Representational Similarity Analysis
toolbox (https://github.com/rsagroup/rsatoolbox). We computed candidate representational dissimilarity
matrices (RDMs) denoting MFT’s predictions about the hierarchical structure of moral foundations as
well as behavioral responses for all vignette conditions. We then obtained runwise beta maps for each
vignette condition and participant from the previously reported GLM. These beta maps were then used to
compute the neural reference RDMs. Neural RDMs were estimated using cross-validated squared
Mahalanobis (crossnobis) distances by multiplying pattern estimates for stimuli of the same condition
across runs (Walther et al., 2016). We constrained the neural RDMs to the same ROIs described for MVPA
as well as Neurosynth’s moral mask. To conduct statistical inference on the RDMs, we computed the
whitened cosine similarity between each subject’s neural reference RDM and candidate RDM and
averaged the resulting cosine similarities across subjects (Schütt et al., 2021). To perform statistical
comparisons and estimate the uncertainty of a model’s performance, we randomly sampled the subjects
2,000 times. In addition to comparing models to each other, we compared models to chance performance
and to a noise ceiling (Nili et al., 2014). The noise ceiling provides an estimate of the performance the
true (data-generating) model would achieve.

Data availability.

The behavioral data that support the �ndings of this study are available at The Open Science Framework
platform (https://osf.io/dfmu6/). The fMRI data are available from the corresponding author upon
reasonable request.
 

Code availability.

All custom code required to reproduce the results in this paper can be found at
https://github.com/medianeuroscience/mft_vignettes. 
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Figure 1

Moral judgment task and behavioral results. (a) In the fMRI study, participants (n = 64) rated the moral
wrongness of 120 vignettes (Clifford et al., 2015). Each vignette described a violation of one of seven
moral foundations or a social norm transgression. Vignettes were randomly distributed across 3 runs,
with 5 vignettes per condition per run. Participants viewed one vignette at a time and were instructed to
vividly imagine the described scene. While the vignette was on screen, participants were asked to make a
judgment of how morally wrong the action described in the vignette was. The selected rating was
highlighted in red. After 8 seconds, the vignette disappeared but the scale remained on screen and
participants could still respond during the inter-trial interval (ITI). (b) Mean moral wrongness ratings were
signi�cantly higher for each moral foundation compared to social norms (χ2 (7) = 202.29, p< 0.001). (c)
Mean response times (in seconds) until a moral judgment was made were signi�cantly slower for each
moral foundation compared to social norms (χ2 (7) = 74.088, p < 0.001). Each dot in (b) and (c)
represents the mean response for each vignette.
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Figure 2

Results of whole-brain univariate analyses. (a)–(i) Statistical parametric t-maps for group analysis (N =
64) are projected onto a cortical surface for visualization. Contrasts were computed for every moral
foundation versus social norms (a–g), for binding versus individualizing foundations (h), and for all
averaged moral foundations versus social norms (i). For all images, cluster-level correction (FDR, q <
0.01) was applied. (j) A conjunction analysis identi�ed voxels that survived FDR in each of the seven
moral foundation versus social norm contrasts (a–g).
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Figure 3

Multivoxel pattern classi�cation of moral foundation vignettes. A linear support vector machine (SVM)
was trained via leave-one-subject-out (LOSO) cross-validation to classify which of two vignette conditions
an individual was judging. (a) Forced-choice accuracy is reported in heatmaps, with bright (dark) colors
denoting higher (lower) performance. (b) Average performance for forced-choice tests across different
feature (voxel) sets. (c) Cortical projection of the meta-analytic map associated with the term “moral”



Page 23/25

from Neurosynth (uniformity test map, thresholded at PFDR < 0.01). (d) Within-subject classi�cation
accuracy for leave-one-run-out (LORO) multiclass SVM and (e) between-subject classi�cation accuracy
for LOSO multiclass SVM. Bars show classi�cation accuracy for each vignette condition, averaged across
subjects. Dots represent classi�cation accuracy for each participant. Error bars indicate 95% CI of the
mean based on 5,000 bootstrap iterations. Dashed line denotes chance level (0.125). amPFC: anterior
mPFC; mInsula: mid Insula; daInsula: dorsal anterior Insula; vaInsula: ventral anterior Insula.

Figure 4

Neural representational mapping of moral foundations. (a) Candidate models. Representational
dissimilarity matrices (RDM) for categorical models (black) predict vignette condition structures. RDMs
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for behavioral models (red) denote moral judgment (wrongness ratings) and response times. (b)
Reference models. Neural reference RDMs were computed using runwise beta maps for each condition
derived from a �rst-level GLM. All RDMs show group-averaged crossnobis distances. (c) Left:
Hierarchically-clustered heatmap of RDM similarities for group-averaged RDMs based on whitened cosine
similarity. Right: t-distributed Stochastic Neighbor Embedding (t-SNE) of RDM similarities. Each point
represents an RDM, and distances between the points approximate the similarities (whitened cosine
similarity) among the RDMs.

Figure 5

Ability of each candidate RDM to predict reference RDMs. Bars show across-subject means of whitened
cosine similarity between each neural reference RDM and candidate model. Gray rectangles represent the
noise ceiling, which indicates the expected performance of the true model given the noise in the data.
Error bars show the SEM (95% con�dence interval over 2,000 bootstrap samples). Pairwise differences
are summarized by arrows (FDR q < 0.01), indicating that the model marked with the dot performed
signi�cantly differently than the model the arrow points at and all models further away in the direction of
the arrow. Dots along the noise ceiling mark models that are signi�cantly different from the noise ceiling.
Models marked with nswere not signi�cantly different from chance performance (Bonferroni-corrected for
6 models).
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Figure 6

Political ideology shapes processing of moral foundations. (a) Sample distribution of self-reported
political orientation and a�liation. Black dashed line re�ects the median of political orientation (41).
Slope estimates for regressing political ideology onto averaged responses to categories of the Moral
Foundations Questionnaire (b) and Moral Foundation Vignettes (c). Shaded areas in b and c re�ect 95%
con�dence intervals based on 1,000 bootstrap iterations. (d). Group × condition interaction map
displaying F-values thresholded at p< .005 (uncorrected), k > 10.
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