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Abstract
Understanding the molecular mechanisms associated with aging is important to improve the longevity of
healthy individuals. Herein, we performed untargeted lipidomics to elucidate the relationship between
aging and lipid metabolism in 13 mouse tissues at various life stages (2, 12, 19, and 24 months), in
which sex and microbiome dependencies (speci�c pathogen free/germ free) were investigated. By
analyzing 2,817 unique molecular pro�le data of 121 lipid subclasses, we characterized the common and
tissue-speci�c lipidome changes associated with aging. For example, bis(monoacylglycerol)phosphate
containing polyunsaturated fatty acids was enriched in various organs during aging, while other
phospholipids containing saturated and monounsaturated fatty acids were decreased. In addition, we
discovered an age-dependent increase of sulfonolipid (SL), which is biosynthesized in Alistipes and
Odoribacter genera. SL molecules were absent in germ-free mice. Furthermore, the molecules appeared to
be translocated from the intestinal lumen to various tissues such as the liver, kidney, and spleen. In the
kidney, the associations of glycolipids such as galactosyl ceramides (GalCer), galabinosyl ceramides
(Gal2Cer), trihexosyl ceramides (Hex3Cer), and mono and digalactosyl diacylglycerols were found in male
mice, in which two lipid classes Gal2Cer and Hex3Cer were signi�cantly enriched in aged mice. Integrated
analysis of the kidney transcriptome revealed uridine diphosphate galactosyltransferase UGT8a,
alkylglycerone phosphate synthase, and fatty acyl-CoA reductase 1 as potential enzymes responsible for
male-speci�c glycolipid biosynthesis in vivo, which would be relevant to sex dependency in kidney
diseases. Our lipidome results will become an important resource, led to the understanding of the
molecular mechanisms underlying cellular senescence and age-related diseases.

Introduction
Lipids are diverse and multifunctional in living organisms and serve as signaling molecules, energy
storage molecules, and cellular membranes1. These functions involve thousands of lipid species in
mammalian cells, and the dysregulation of lipid metabolism is associated with various diseases such as
atherosclerosis2, cancer3, non-alcoholic steatohepatitis4, and chronic kidney disease5. Undoubtedly, the
risk of chronic diseases is related to aging processes, and the understanding of changes in lipid
metabolism is likely to illuminate the biological mechanisms associated with aging6-9. 

            To date, the potential link between aging and lipid metabolism has been studied. For example, an
increased activity of sphingomyelinase that convert sphingomyelin to ceramide results in accumulation
of ceramides in the elderly patients in a human cohort study10. Additionally, low serum ceramide levels
are associated with a reduced risk of dementia and Alzheimer’s disease in elderly women11. The
biosynthetic pathway and regulation of neutral lipids are also linked to longevity. De�ciency of
diacylglyceride acyltransferase 1 improves longevity and leanness in female mice, where age-onset
obesity and in�ammation in white adipose tissue are protected12. Furthermore, the ratio of saturated fatty
acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) is associated
with the susceptibility of the cellular membrane to peroxidation. The accumulation of reactive oxygen
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species during aging leads to lipid peroxidation, which damages cellular membrane components13.
Nevertheless, the relationship between fatty acid properties and longevity is tissue-speci�c, sex-linked,
and species dependent. For example, lipidomic studies investigating human erythrocyte and lymphocyte
membranes showed that centenarians have more PUFAs than that of the other aged group14,15, while the
concentration of phospholipids containing docosahexaenoic acid in longest-living rodents (naked mole-
rats) is lower than that of mice16. In addition, recent studies have shown an association between aging
and microbiota, in which lipid metabolism is highly affected by the composition of the microbiome and
food intake conditions17-21. These results strongly indicate the importance of understanding the
metabolic changes in diverse lipid molecules in various mammalian tissues under sex- and microbiota-
dependent conditions. 

             Untargeted lipidomics has great potential to reveal the diversity of lipidomes, covering
approximately 1000 lipid molecules per single specimen22,23. Although an untargeted approach results in
higher false positive annotations compared to the targeted approach, the false discovery rate (FDR) can
now be well controlled using current state-of-the-art computational mass spectrometry techniques23.
Therefore, we applied untargeted lipidomics using liquid chromatography coupled with tandem mass
spectrometry (LC-MS/MS) to elucidate the changes in lipidomes in tissues during aging (Fig. 1a).
Thirteen biological samples (kidney, liver, lung, spleen, muscle, bone marrow, plasma, skin from ear, skin
from back, mesentery, small intestine, large intestine, and feces) were examined in this study. The
lipidome was investigated in males and females of different ages (2, 12, 19, and 24 months) in the
presence (speci�c pathogen-free; SPF) or absence of microbiota (germ-free; GF). Although there are
several studies that have applied a lipidomic technique to speci�c tissues24-29 (e.g., a study
encompassing the metabolome atlas of brain tissue during aging30), the current study is the �rst to
comprehensively investigate the lipidome of multiple organs with differences in sex and the microbiome.
Furthermore, a multi-omics approach using transcriptome and lipidome data was used to reveal the
relationship between gene expression and the lipid pro�le of the kidney. 

            The signi�cance of our study is that it offers comprehensive lipidomic changes associated with
aging in mice from four different backgrounds: male and SPF (male/SPF), male and GF (male/GF),
female and SPF (female/SPF), and female and GF (female/GF). Furthermore, to examine the details of
the mouse lipidome, we updated our software program MS-DIAL 423, which is a MS data processing
environment in which 17 lipid subclasses containing several gangliosides, sterols, and glycolipids were
newly introduced into the lipid annotation platform, covering 136 lipid subclasses that contain
microbiota- and tissue-speci�c lipid molecules. We used the platform of untargeted lipidomics to reveal
that certain common lipid changes are not affected by male/female and SPF/GF differences, e.g.,
accumulation of PUFA containing complex lipids, such as bis(monoacylglycerol)phosphate (BMP).
Moreover, we discovered that the microbiota-derived sulfonolipid (SL) was associated with aging and that
the molecule appeared to be translocated to various organs, while most of the microbiota lipids were only
detected in the fecal matter. Furthermore, male-speci�c accumulation of glycolipids, including galactosyl
ceramide (GalCer) and monogalactosyldiacylglycerol (MGDG), was observed in the kidney, and a uridine
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diphosphate (UDP) galactosyltransferase, UGT8a, was considered responsible for the metabolic
regulation. 

Materials And Methods
Mouse experiment

All animal experiments were performed in accordance with the ethical protocol approved by the RIKEN
Center for Integrative Medical Sciences (2019-015(2)). Four-week-old male and female C57BL/6N mice
were purchased from CLEA (Tokyo, Japan). The GF mice were housed in GF isolators at the animal
facility at RIKEN. All the mice were fed the chow of AIN-93M (CLEA Japan, Tokyo, Japan). The kidney,
liver, lung, spleen, skeletal muscle, bone marrow, plasma, ear skin, back skin, mesentery, small intestine,
large intestine, and feces were harvested. Tissues were frozen immediately after dissection and stored at
−80°C until lipid extraction. The details of the time-course experiments are described in Supplementary
Table 1. 

 

Lipid extraction

Lipid extraction was performed according to a previously reported method, in which a mixed solvent
containing methanol, chloroform, and water (MeOH:CHCl3:H2O, 1:2:0.2, v/v/v) was utilized. Details of the
solvent volumes and internal standards used in this study are described in Supplementary Tables 2 and
3. Brie�y, the tissues were homogenized using a multi-bead shocker (YASUI KIKAI, Japan) with a metal
cone (YASUI KIKAI, Japan) at 2500 rpm for 15 s × 2, and MeOH was added to the homogenate according
to the tissue weight. After the solvent was homogenized again at 2000 rpm for 10 s, the appropriate
amount of MeOH (<100 μL) solving 1–5 mg tissue weight was transferred to a 2-mL glass tube. After the
solvent was added to 175 μL of MeOH, 25 μL of MeOH containing internal standards was added to the
solvent, and the mixture was sonicated for 2 min. For bone marrow cells and plasma samples, 175 μL of
MeOH containing 106 cells and 20 μL, respectively, were prepared without the homogenization process.
After the solvent was incubated for 2 h on ice, 100 μL of chloroform was added, and the mixture was
sonicated for 2 min. After the solvent was incubated for 1 h at room temperature (set to 20°C), 20 μL of
Milli-Q water was added, and the mixture was vortexed for 10 s. After 10 min of incubation at room
temperature, the solvent was centrifuged at 2000×g for 10 min at 20°C, and the supernatant was
transferred to an LC-MS vial (Agilent Technologies). 

 

Reverse phase liquid chromatography tandem mass spectrometry

The experimental details are described in a previous study31. Brie�y, the LC system consisted of a Waters
Acquity UPLC system. Lipids were separated on an Acquity UPLC Peptide BEH C18 column (50 × 2.1 mm;
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1.7 μm) (Waters, Milford, MA, USA). The column was maintained at 45°C and a �ow rate of 0.3 mL/min.
The mobile phases consisted of (A) 1:1:3 (v/v/v) acetonitrile (ACN):MeOH:water with ammonium acetate
(5 mM) and 10 nM ethylenediaminetetraacetic acid (EDTA) and (B) 100% isopropanol with ammonium
acetate (5 mM) and 10 nM EDTA. A sample volume of 0.5−3 μL, according to the biological samples, was
used for the injection, and the volume was optimized so that the highest peak of lipids was less than the
upper detection limit of the MS. The separation was conducted under the following gradient: 0 min 0%
(B), 1 min 0% (B), 5 min 40% (B), 7.5 min 64% (B), 12 min 64% (B), 12.5 min 82.5% (B), 19 min 85% (B), 20
min 95% (B), 20.1 min 0% (B), and 25 min 0% (B). The temperature of the samples was maintained at
4°C.

The MS detection of lipids was performed using a quadrupole/time-of-�ight MS (TripleTOF 6600; SCIEX,
Framingham, MA, USA). All analyses were performed in high-resolution mode in MS1 (~35,000 full width
at half maximum (FWHM)) at high sensitivity mode (~20,000 FWHM) in the MS2. Data-dependent
MS/MS acquisition was performed. The parameters were as follows: MS1 and MS2 mass ranges, m/z
70–1250; MS1 accumulation time, 200 ms; MS2 accumulation time, 70 ms; collision energy, +40/–42 eV;
collision energy spread, 15 eV. Mass calibration was automatically performed using an APCI-
positive/negative calibration solution via a calibration delivery system. All other parameters have been
described in a previous report31.

 

Hydrophilic interaction chromatography (HILIC) phase liquid chromatography tandem mass spectrometry

The DCpak P4VP column (150 × 2.1 mm; 3.0 μm) (DAICEL, Japan) was used. The column was
maintained at 40°C and a �ow-rate of 0.2 mL/min. The mobile phases consisted of (A) 95:5 (v/v)
MeOH:water with ammonium acetate (10 mM) and 0.2% acetic acid and (B) 95:2:3 (v/v/v)
ACN:MeOH:water with ammonium acetate (10 mM) and 0.2% acetic acid. A sample volume of 2 μL of
kidney lipid extract was used for injection. Separation was conducted under the following gradient: 0 min
100% (B), 30 min 0% (B), 31 min 0% (B), 31.1 min 100% (B), and 40 min 100% (B). The other LC-MS
parameters were the same as those used for reverse-phase LC-MS analysis. The temperature of the
samples was maintained at 4°C. C17 galabiosyl ceramide, C17 lactosyl (β) ceramide, C18 galactosyl (β)
ceramide, and C18 glucosyl (β) ceramide were purchased from Avanti Polar Lipids and used to con�rm
RTs. 

 

MS-DIAL analysis

The in silico reference spectra of 17 lipid subclasses were created according to a previously described
method23. The MS/MS spectra of gangliosides were experimentally con�rmed by analyzing authentic
standard compounds. For the other lipid subclasses, MS/MS spectra were obtained from the literature
(Supplementary Table 4). A decision tree (rule-based) algorithm considering the existence of diagnostic
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fragment ions for lipid annotation was implemented. The expected RTs were predicted using our
XGBoost-based machine learning methodology, which has been described in a previous report23. The
summary of fragment ion annotations is also available at our website
(http://prime.psc.riken.jp/compms/msdial/lipidnomenclature.html).

The version 4.20 algorithm of MS-DIAL was utilized for the analysis. The data processing parameters for
minimum amplitude (for peak picking) and RT tolerance (for lipid annotation and peak alignment) were
set to 500, 2.0 min, and 0.1 min, respectively. Other parameters are listed in Supplementary Table 5. RT
�ltering for lipid annotation was not utilized for HILIC lipidomics data. The annotated results were curated
manually. The representative adduct forms used for lipid quanti�cation are shown in Supplementary
Table 6. The lipid molecules were semi-quanti�ed using internal standards according to a previously
described method: the value of lipid quanti�cation was provided in pmol/mg tissue, pmol/μL plasma, or
pmol/106 cells. Pairs of lipid subclasses and internal standards are described in Supplementary Table 6.
The lipidome results are available in Supplementary Data 1.

 

Transcriptome analysis

Tissue samples were homogenized in 700 µL of TRIzol reagent (Thermo Fisher Scienti�c, USA) per 50 mg
of tissue in a glass tube. The supernatant was collected after centrifugation of the cell lysate for 10 min
at 12000 × g at 4°C. After adding 100 µL of chloroform to 500 µL of the supernatant, the mixture was
incubated for 3 min at room temperature (set to 22°C) and centrifuged for 15 min at 12000 × g at 4°C.
Then, 120 μL of 70% ethanol (w/w) was added to 120 µL of the supernatant and suspended. Total RNAs
was extracted from the mixture using the RNeasy Plus Mini Kit (Qiagen, Hilden, Germany), according to
the manufacturer’s protocol. Quality checks were performed using a bioanalyzer (Agilent Technologies,
USA) in accordance with the Agilent RNA 6000 Nano Assay protocol. RNA integrity number of the
samples was con�rmed to be 6.9–9.1 (with an average of 8.6). Subsequently, the library was synthesized
using the NEB Next Ultra RNA Library Prep Kit for next-generation sequencing. The pooled libraries were
sequenced on an Illumina HiSeq 2500, and 50 bp single-end reads were generated. The reads were
aligned using STAR software onto a transcript reference based on UCSC_mm10 (mouse reference). After
the genes in which the minimum value of read count is less than 10 or the gene name contains “rik” were
excluded, differentially expressed genes were calculated using the R/Bioconductor package, DESeq2
(1.28.1). The transcriptome data is available in Supplementary Data 2.

 

Statistical analysis

Statistical analysis and data visualization were performed using the R language environment (version
4.1.2). 
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Results
The optimal amounts of plasma (~20 μL), cells (~106 cells), and tissues (~5 mg) were subjected to lipid
extraction followed by LC-MS/MS analysis (Fig. 1b). Lipid annotation in MS-DIAL was performed using
the MS/MS characterization system of lipids and 2.0 min RT tolerance to the predicted RT database. The
annotation results were manually curated. After the peak alignment was performed by the RT tolerance of
0.1 min and m/z tolerance of 0.015 Da, the semi-quanti�cation values were calculated by the internal
standards (see Materials and Methods). The molecules in plasma (408) and kidney (~ 961) were
characterized per biospecimen. In total, 2,817 unique molecules from 121 lipid subclasses were
annotated and used for data interpretation. 

            Principal component analysis (PCA) using auto-scaled values was performed to examine the
major variances of the lipidomic datasets (Figure 2). Individuals of each group were mapped at a
topology similar to that of the PCA score plots, indicating that our lipidomics output obtained from a long
experimental procedure from mouse bleeding to MS data analysis is valuable for further statistical
analyses. We observed that the largest variances, i.e., at the �rst PC (PC1), in the kidney and feces
re�ected the sex and microbiome backgrounds, respectively. The results of the fecal lipidome changes
indicated that many lipid molecules are biosynthesized and/or degraded by intestinal microbiota.
However, the SPF and GF differences were not re�ected signi�cantly in PCA by the host lipidomes in the
small and large intestines. Furthermore, the plasma lipidome of young GF mice was clearly distinguished
from the others, in which triglycerides (TG) were enriched in young GF mice according to the loading
values (Supplementary Figure 1). A previous study investigating serum, liver, and adipose tissue of young
mice (aged 12–14 weeks) reported that the serum TG level was lower in SPF mice than in GF mice, while
the TG lipids were increased in the liver and adipose tissue of SPF mice32. Our results are consistent with
the previous observations (Figure 3). Moreover, sex-speci�c lipidome differences were clearly observed in
the kidneys at PC1. In addition, age-dependent lipid changes were re�ected in the PCA score plots of
several tissues, such as the kidney, liver, mesentery, plasma, bone marrow, and skin. We also observed a
larger individual difference in aged mice (1.5–2 years old mice), indicating that many biological and
environmental factors accumulate during aging. 

In contrast to unsupervised mathematical analysis such as PCA, the supervised chemometrics approach
is useful for extracting lipidome changes with aging. We applied orthogonal partial least squares
regression (OPLS-R) to investigate lipid changes during aging (Figure 3). Importantly, we used the entire
lipidome data, which contained four different backgrounds (SPF/male, GF/male, SPF/female, and
GF/female) as the variables for OPLS-R. The Q2 values calculated by 6-fold cross validations indicated
that the prediction of age states is possible using the information of the lipid metabolome. Among the
tissues examined, the Q2 values in the kidney, lung, mesentery, muscle, spleen, ear skin, and large
intestine exceeded 0.70, indicating that a large proportion of lipids was associated with aging in these
organs. Of these, the highest Q2 value was observed in the kidneys. We investigated the variable
importance for prediction (VIP) values, which indicate the important metabolites used for OPLS-R model
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creation. The top 10 VIPs, whose chromatogram peak shape of metabolites was of good quality (for
quanti�cation), were used for the interpretation of lipid changes. Decreases in phosphatidylcholine (PC),
phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), diacylglycerol (DG),
and TG containing SFA and MUFA were observed in the lungs, mesentery, muscle, ear skin, large intestine,
and plasma. In contrast, these lipid classes containing PUFAs, particularly 20:4 and 22:6, were increased
in the liver, lung, muscle, bone marrow, and small intestine. An increase in the PUFA/MUFA ratio during
aging has been reported in human and Caenorhabditis elegans9, indicating that our aging-lipidomics
study investigated the changes in lipids that have previously been unknown. BMP-containing PUFAs
clearly increased with aging in the kidney, liver, muscle, spleen, and small intestine. Because BMP lipids
are enriched in the late endosome and lysosome and promote acidic sphingomyelinase activity, the BMP
lipid signature may explain the accumulation of ceramides during aging in mammalian organisms33,34.
Increases in cholesteryl esters (CE) have also been observed in several tissues, such as the kidney, lung,
spleen, and large intestine. Furthermore, decrease in ceramides, epidermal acyl ceramides, SHexCer
(sulfatide), gangliosides (NGcGM3, GD3), and cardiolipin (CL) were observed, which may be linked to the
functional defect of cell organelles such as mitochondria, endoplasmic reticulum, Golgi body, and
endosome systems. Importantly, these common or tissue-speci�c lipid changes can be considered as
common metabolic signatures associated with aging because the OPLS-R model was constructed using
the entire lipidome data that contained all mice groups examined in this study. 

We next explored age-dependent lipid changes in�uenced by sex and the gut microbiota (Fig. 4a). The
quantitative value of each lipid subclass was calculated by summing the quantitative values of
molecules annotated by the same lipid subclasses. The fecal lipidome indicated that the pro�les of many
lipid subclasses were affected by the gut microbiota, and the orange circle indicates that the lipid
subclass was enriched in SPF mice compared to GF mice. Greater than four-fold increases in
unconjugated bile acid (BA); acyl diacylglyceryl glucuronide (ADGGA); several ceramide subtypes
(Cer_ADS, Cer_AP, Cer_BDS, and Cer_EBDS); glycolipids such as MGDG, digalactosyl DG (DGDG), and
NGcGM3; fatty acid esters of hydroxy fatty acid (FAHFA), PE and phosphatidylglycerol (PG), ceramide PE
and PI (PE_Cer and PI_Cer); SL; and N-acyl glycine, glycylserine, and ornithine (NAGly, NAGlySer, NAOrn)
were observed in SPF mice than in GF mice. In contrast, glycine- and taurine-conjugated BAs were
substantially elevated in GF mice owing to the absence of intestinal bacteria responsible for BA
deconjugation. We also observed sex-speci�c lipid pro�les in several lipid subclasses, such as TG, lyso-
PG, and glycolipids in the fecal lipidome. Interestingly, sex speci�city in lipid metabolites was
substantially observed in the kidney, where the glycolipids containing dihexosyl Cer (Hex2Cer), trihexosyl
Cer (Hex3Cer), MGDG, DGDG, and the alkylacyl types (Ether MGDG and Ether DGDG) were enriched in
male mice, and the percentage, i.e., the value of male/(male + female) was >80%. Furthermore, Hex2Cer
and Hex3Cer levels in the kidney increased with aging. The major acyl chain properties of these
glycosylceramides were 18:1;O2/16:0, 18:2;O2/16:0, 18:1;O2/24:0, and 18:2;O2/24:0, where the
sphingobase moiety is considered sphingosine (18:1(4E);1OH,3OH) and sphingadienine
(18:2(4E,14Z);1OH,3OH) according to a previous study35. Interestingly, MGDG and DGDG molecules,
known as plant thylakoid membrane lipids, were detected in the kidney. Although such



Page 10/31

glycosyldiacylglycerols are ubiquitous as a minor component of the brain and other nervous tissues36,37

and are enriched in oligodendrocytes, our results indicated that both diacyl- and alkylacyl-type
glycosyldiacylglycerols were present in the kidney, and the molecules were enriched in male mice and not
affected by the gut microbiome. Furthermore, we found that SLs, known as microbiota-derived lipids,
were detected in peripheral tissues, whereas most of other microbiota-derived lipids were not detected
(Fig. 4b and 4c). The major component of SL was SL 17:0/17:0;O in peripheral tissues, which increased
with aging. Two bacterial genera, Alistipes and Odoribacter, are producers of SL. Several bioactivities of
SL have been reported, including antagonistic action on von Willebrand factor receptors, cytotoxicity in
cancer cells, inhibition of DNA polymerase, and anti-in�ammatory effect38. Overall, our aging lipidome
atlas clearly demonstrates lipid diversity and its unique pro�les during aging. Of these, we believe that it
is important to investigate the mechanism of kidney lipidome changes, because the kidney lipidome
showed a characteristic pro�le depending on sex, the presence of intestinal bacteria, and a strong age-
dependent variation.

We performed RNA-seq analysis of the kidney tissue of the same mice used for lipidome pro�ling.
According to the PCA score plot, male and female transcriptome data were separated by PC1 with a
contribution ratio of 57.3% (Fig. 5a). This result indicates that kidney gene expression is highly affected
by sex, as supported by previous studies39,40. Similar tendency was observed in the volcano plot of male
and female comparisons where 601 and 1,102 genes were up and downregulated, respectively, with the
condition of >0.5 log2 fold change and <0.05 adjusted p-value (Fig. 5b). Contrastingly, only 18 and one
gene were recognized as up and downregulated genes, respectively, between SPF and GF groups,
indicating less effect of microbiome on the transcriptome in the kidney. Between aged (24 months) and
young (two months) mice, we detected 32 upregulated and 100 downregulated genes. Previous studies
have reported that aldehyde dehydrogenase 1 family member A1 (ALDH1A1), a key enzyme of retinoid
metabolism, is one of the most prominently upregulated proteins and genes in aged kidney41. This result
suggests that our kidney transcriptome data are comparable to those in previous literature and will
provide useful information for subsequent data interpretation using sex, aging, and microbiota-
dependent transcriptome pro�les. 

Gene ontology (GO) analysis using the signi�cant genes described above was performed by g:Pro�ler42,
which provided the GO terms of molecular function, biological process, and cellular component, in
addition to the pathway enrichments in the KEGG and Reactome databases (Fig. 5c). According to the top
�ve enriched ontology terms for each source, we observed the enrichment of terms related to stress and
immune responses in aged mice owing to the signi�cant increase in gene expression, including vascular
cell adhesion molecule 1, a chaperone protein resistance to inhibitors of cholinesterase 3, poly(ADP-
ribose) polymerase family member 3, solute carrier family 11 member 1, tumor necrosis factor receptor
superfamily member 1 B, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta, and
ALDHs (see Source data). Moreover, we observed many terms related to “metabolism” including lipid-
related metabolisms when upregulated genes in male mice were applied to g:Pro�ler application. The
genes included many of UDP glycosyltransferases (UGTs), cytochrome P450s (CYPs), acyl-coenzyme A
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(CoA) oxidases, peroxisomal trans-2-enoyl-CoA reductase, phytanoyl-CoA 2-hydroxylase, ALDHs, etc. In
contrast, the terms related to the kidney’s main functions, including the renin-angiotensin system, drug
metabolism, and regulated calcium reabsorption, were enriched in female mice. They include glutathione
S-transferases, the kallikrein gene family, and serine proteases for proteins related to blood pressure
reduction. The severity of acute and chronic kidney injury is generally higher in males and lower in
females43, and these differences in gene expression may contribute to the phenotypic differences in the
kidney.

Furthermore, we investigated the transcription factors (TFs) and histone modi�cations (HMs) that would
regulate the signi�cant changes in males versus females and in aged versus young mice using ChIP-
Atlas44 (Fig. 5d). Interestingly, signal transducer and activator of transcription 3 (STAT3), vitamin D
receptor (VDR), androgen receptor (AR), and hepatocyte nuclear factor 4-alpha (HNF4a) were commonly
detected as signi�cant TFs between males and females and between aged and young mice. HNF4a is the
main TF for drug-metabolizing enzymes in the kidney45 and regulates peroxisome proliferator-activated
receptor (PPAR)-α and γ, which are highly associated with lipid metabolism46. Sex differences in renal
metabolism are mediated by testosterone, involving AR-dependent signaling pathways in male, but not
female, kidneys47. In addition, STAT3 activity increases with age in epithelial compartments of the renal
cortex48. Furthermore, the AR N-terminal domain is activated by the cytokine interleukin 6, which is
mediated through the STAT3 signal transduction pathway, and androgen-STAT3 activation might
contribute to sex disparity in human simple renal cyst disease48,49. In addition, renal vitamin D
metabolism is regulated by estradiol and testosterone, and age-dependent dysfunction of vitamin D
metabolism, including de�ciency of VDR activation, is also related to chronic kidney disease50,51. The TF
results are further discussed along with the lipid pathway map in the discussion section. Furthermore, the
prediction of HMs in the kidney suggested that three major active histone marks, acetylation to the 9th

and 27th lysine residues on histone H3 (H3K9ac, H3K27ac) and trimethylation to the 4th lysine residue on
histone H3 (H3K4me3), were enriched in male and aged mice, indicating that these HMs may act as
regulators of the unique TF pro�les of the kidney. However, only three genes (ALDH1a7, CYP2D12,
CYP2D13) and two genes (apelin receptor APLNR, NYN domain, and retroviral integrase containing
NYNRIN) were commonly upregulated and downregulated in both male and aged mice, respectively (Fig.
5e). The results of transcriptome analysis, including TF predictions, indicate that many aging- and sex-
associated genetic changes in the kidney are related to lipid metabolism. 

Next, we performed an integrated analysis of the transcriptome and lipidome data of the kidney using
weighted correlation network analysis (WGCNA)52 to investigate the associations between gene
expression and lipid metabolites during aging (Fig. 6a). In total, 16 and 24 clusters were established from
lipidome and transcriptome data, respectively. As expected, half of the clusters were signi�cantly
associated with aging or sex differences. In contrast, only one lipid cluster (group 11) consisting of SL,
bile acids, and phospholipids containing odd carbon chains was associated with the existence of the
microbiome. We focused on lipid clusters 1, 4, 5, 8, and 15 located in the same cluster region of the lipid
dendrogram, whose groups were highly associated with sex, aging, and gene clusters. The lipid pro�le
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containing 619 molecules was applied to the lipid ontology enrichment analysis using the LION/web
application (Fig. 6b)53. The ontology terms were evaluated by the analysis of variance values in four
groups that contained M24/male, M24/female, M2/male, and M2/female SPF mice, where M24 and M2
denote 24-month-old (aged) and 2-month-old (young) mice, respectively. As a result, the terms related to
glycolipid metabolism including “simple glc series,” “dihexosylceramides,” and “hexosylceramides” were
signi�cantly enriched. Furthermore, terms related to alkylacyl phospholipid metabolism, in addition to
steryl esters, were characterized as signi�cant ontologies. Therefore, we performed a pathway analysis of
these lipid metabolisms, along with the pro�les of related genes. 

The lipid metabolism related to glycosyl ceramides was investigated using lipid and transcriptome
pro�les (Fig. 7a). Interestingly, the abundance of HexCer, Hex2Cer, Hex3Cer, and SHexCer was
substantially higher in male mice than in female mice, and an age-dependent increase in Hex2Cer and
Hex3Cer was observed. In fact, sex-speci�c differences in Hex2Cer in the kidney have also been
highlighted in a reference map of sphingolipids54. By exploring the gene expression pro�les related to
metabolism, we identi�ed UGT8a, an enzyme that converts ceramide to GalCer, as the gene expression
was signi�cantly different between male and female mice. These results indicate that sex-dependent
UGT8a expression may affect galactosyl ceramide metabolism by providing GalCer, sulfatide, and
Gal2Cer in the kidneys with aging. Furthermore, our untargeted lipidomics characterized MGDG, DGDG,
and their ether-linked types (ether MGDG and ether DGDG) in the kidney, whose pro�les were also
affected by sex differences (Fig. 7b). Although the enzymes responsible for MGDG and DGDG have not
been fully identi�ed in mammalian organisms, the expression pro�les of UGT8a and other signi�cantly
changed UGT-related genes, such as UGT2b37, UGT2b38, and UGT2b5, offer novel insights for identifying
the machinery responsible for glycosyl glycerolipid metabolism in animals (Fig. 7c). In fact, two previous
studies reported that the overexpression of rat UGT8a in Chinese hamster ovary (CHO) cells increases
MGDG lipid levels, which has been con�rmed by thin layer chromatography methods55,56. Thus, our
�nding showing an association between UGT8a and MGDG pro�les strongly supports the involvement of
UGT8a in the biosynthesis of MGDG and other glycoglycerolipids in vivo. We also found age-dependent
decreases in ether-bond glycerolipids, such as ether DG, ether TG, ether MGDG, ether PC, ether PI, and
ether PS, and these metabolites were enriched in males. We identi�ed two genes as candidates for
explaining the lipid pro�les: alkylglycerone phosphate synthase (AGPS), the enzyme that converts acyl-
dihydroxyacetonephosphate (DHAP) to alkyl-DHAP, and fatty acyl-CoA reductase 1 (FAR1), the enzyme
responsible for the reduction of fatty acids to fatty alcohols. As our kidney transcriptome data also
showed signi�cant changes in genes related to peroxisome metabolism, the changes in peroxisome-
related lipid metabolism during aging may contribute to our understanding of the molecular mechanisms
of various kidney diseases. An age-dependent increase in CE, but not in free cholesterol (ST 27:1;O), was
also observed where there was no sex dependency (Fig. 7d). 

            To examine the stereochemistry of glycosyl HexCer and Hex2Cer, we analyzed the kidney tissue
using HILIC (Fig. 7e). As expected, galactosyl ceramide was substantially enriched in male mice, whereas
the ion abundance of glucosyl ceramide was mostly the same in male and female mice. Interestingly,
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Gal2Cer chromatographic peaks were absent in female mice (at least under the limit of detection), and
the ion abundance of Gal2Cer was substantially higher than that of lactosylceramide. Although the
substrate of globotriaosylceramide (Gb3, described as Hex3Cer) is known as lactosylceramide, this result
suggests that the substrate of Hex3Cer in the kidney is likely to be Gal2Cer. Overall, our integrated
analysis clearly shows the unique regulatory mechanism of lipid pro�le, which is associated with sex-
and age-dependent differences.

Based on the WGCNA results, only lipid cluster 11 was signi�cantly associated with SPF/GF and aging
parameters. The lipid cluster contained molecules that are likely to be microbiota-derived, including sterol
sulfates, bile acids, SLs, and PC containing odd chains. Because the lipid cluster was highly associated
with gene clusters 8 and 19, we further investigated the association between microbiota-derived lipid
molecules and related genes (Fig. 8). Most of the lipid molecules contained in the cluster were
signi�cantly affected by the SPF/GF parameter; one sterol sulfate (ST 28:1;O;S), two SLs (SL 17:0;O/16:0
and SL 17:0;O/17:0;O), and one PC (PC 17:1_18:2) were recognized as prominent molecules associated
with aging. Indoxyl sulfate is a typical urinary toxic metabolite that causes the progression of chronic
kidney disease. Intestinal bacteria produce indole from tryptophan, and sulfotransferase 1A1 (SULT1A1)
activity adds the sulfate moiety57. In contrast, steroid sulfotransferases such as SULT2B1b are
responsible for producing cholesterol sulfate, which have various biological activities such as the
inhibition of serine proteases (e.g., pancreatic trypsin and chymotrypsin) and PI3K activities58. Our results
indicate that the production of sterol sulfate is also affected by the microbiome, and microbiota-speci�c
sulfolipids, including SLs, may contribute to homeostasis in the kidney. Furthermore, the genes contained
in clusters 8 and 19 were highly associated with lipid metabolism. The association between the lipids in
cluster 11 and the genes in clusters 8 and 19 has not yet been reported. In fact, some bile acids, including
chenodeoxycholic acid, regulate a variety of metabolic functions by modulating nuclear receptors such
as farnesoid X receptor (FXR), whose activation is important for reducing in�ammation and oxidative
stress in the kidney59. The bromodomain genes adjacent to the zinc �nger domain, such as 2 B,
centrosomal protein 250 kDa (CEP250), integrator complex subunit 1, transmembrane protein 199,
microtubule-associated protein, RP/EB family, member 2, adaptor-related protein complex 2 mu 1 subunit,
succinate dehydrogenase complex subunit C integral membrane protein 15 kDa, and tyrosyl-DNA
phosphodiesterase 2 (TDP2), are predicted to be the target genes of the FXR TF60. Moreover, the
associations of Midasin AAA ATPase 1, phosphatidylinositol transfer protein membrane associated 2
(PITPNM2), and BAF chromatin remodelling complex subunit 11b (BCL11b) with the microbiome have
also been reported61,62. The age-dependent changes in PITPNM2, BCL11b, TDP2, and CEP250 were
observed. Therefore, our results contribute to the understanding of the mechanism of host-microbiome
interactions from the viewpoint of lipidomes.

Discussion
We demonstrated untargeted lipidomics for 13 biological samples, including tissues, cells, and plasma,
with aging. These results provide the largest lipidome landscape to investigate metabolic changes
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associated with aging from the viewpoint of sex differences and commensal bacterial dependence. The
FDR of MS-DIAL-based automatic lipid annotation was 2–3% with a RT �ltering of 2.0 min23. We
manually curated the annotated results by considering the basis of the equivalent carbon number model
of lipids, in which the elution behavior of molecules in reverse phase LC depends on the length of acyl
chains and the number of double bonds in lipids. In addition, our results highly compensate for recent
reports encompassing the mouse brain metabolome changes associated with aging30.

            The results of OPLS-R demonstrated that (1) the ratio of PUFA/MUFA in complex lipids increased
in many organs, (2) the abundance of phospholipids containing MUFA decreased, (3) the abundance of
TG and phospholipids containing PUFA increased, and (4) the most prominent change in the lipidome
was found in the kidney with aging. Although similar results of PUFA/MUFA ratio have been reported in
plasma and serum lipidomics studies, our results indicate that the tendency of PUFA and MUFA
metabolism is a common phenomenon of aging in organs examined in this study. The unique enrichment
of BMP-containing PUFAs is worth noting because only few reports have investigated the age
dependency of BMP. BMP lipid is enriched in late endosomes and lysosomes, and it promotes the
enzymatic activity of acidic sphingomyelinase (ASM) by direct binding63. Cellular senescence is
associated with lysosomal homeostasis. Cytosolic pH change is associated with cellular senescence
induced by lysosomal membrane damage64, and ASM activity is elevated with aging65. Therefore, the
age-dependent increase in BMP may be related to lysosomal membrane homeostasis and subsequent
cellular senescence in tissues. 

            We identi�ed many unique changes in the lipidome during aging in a sex- or microbiome-
dependent manner. Microbiota-dependent lipid changes were observed in the feces, small intestine, and
large intestine. Interestingly, microbiome-dependent changes in BA and SL were observed in remote
organs, except for the bone marrow. It is well known that cleavage of conjugated moieties in bile acids is
usually performed by the gut microbiota. Thus, the difference in the SPF/GF ratio between conjugated
and unconjugated bile acids is likely to re�ect the effect of the enzyme activities of the microbiome. The
mechanism of the unique translocation of SL into various tissues is unclear when considering the fact
that most of the other microbiota-derived lipids such as N-acyl amides, PI ceramides, and PE ceramides
were not detected in remote organs. The genera Alistipes and Odoribacter produce SLs, whose molecules
have bioactivities, such as antagonistic action on von Willebrand factor receptors, cytotoxicity in cancer
cells, inhibitory functions of DNA polymerase, and anti-in�ammatory effect38. Alistipes is relevant to
dysbiosis and disease, and contrasting evidence of its pathogenicity has been reported; it has protective
effects against liver �brosis, colitis, and cardiovascular disease and is associated with colorectal cancer
and mental signs of depression66. To investigate the mechanism in detail, the development of databases
organizing the pair of commensal lipids and their producers is indispensable, along with metagenome
sequences for multiple organs. Moreover, MS-imaging should provide new insights into the local
distribution and biological importance of SL for the understanding of host and microbiome relationships. 
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            Integrated analysis of the kidney transcriptome and lipidome revealed the relevance between
gene expression and lipidome from the viewpoint of SPF/GF and male/female differences. Age-
dependent decreases in ether-linked glycerolipids, including ether PC, ether PI, ether PS, ether DG, and
ether MGDG, were clearly observed in male kidneys, and their pro�les correlated with the expression levels
of AGPS and FAR1. Based on the pro�le of PE species in which the alkyl and alkenyl types can be
distinguished by the ESI(+)-MS/MS spectrum, the ether link often consists of an alkenyl (plasmalogen)
type whose vinyl ether moiety has antioxidant activity67. The decrease of these metabolites in aging is
considered the functional attenuation of cellular organelle peroxisomes as enriched in the GO analysis of
male-speci�c transcriptome data. In addition, our results indicate that galactosyl lipid metabolism in the
kidney is highly correlated with the expression level of  UGT8a. Although the machinery responsible for
MGDG and DGDG biosynthesis in mammalian cells is not fully understood, recombinant expression of
UGT8a in CHO cells tends to enrich the MGDG lipid55,56, indicating that both galactosyl ceramides and
galactosyl glycerides can be synthesized via UGT8a enzymatic activity. While Ugt8a knock-out mice
exhibit pronounced tremor and progressive ataxia, no major morphological or functional defects are
reported in the kidney68,69. The biological importance of MGDG in the kidney should be investigated in the
future. 

Furthermore, gene expression is regulated in the kidney by TFs including AR and STAT3 and active
histone marks (H3K9ac, H3K27ac, and H3K4me3) according to the proposal of ChIP-Atlas. Of these,
STAT3 was identi�ed as the most signi�cantly enriched TF in the ChIP-Atlas program, and human FAR1
and UGT8 are predicted to be target genes of STAT360. However, the UGT8 gene is not predicted to be the
target of other STAT family members. We further ascertained the consistency of the sequences
recognized by STAT3 in humans and mice, whose matrix IDs of JASPAR are MA0144.2 and MA0144.1,
respectively70. Based on the sequence information of the promoter regions of human UGT8 and mouse
UGT8a, a high-scoring STAT3-binding sequence was detected using the JASPAR program. These results
indicate that the substantial changes in glycolipids between male and female mice may be explained by
the age- and sex-dependent AR-STAT3 TF activity that regulates the expression pro�le of UGT8a in the
kidney. Moreover, age-dependent increases in Gal2Cer and Hex3Cer were observed. As observed in Fabry
disease, which is caused by de�ciency or decreased activity of α-galactosidase A (GLA), an intracellular
lysosomal enzyme, the abnormal accumulation of Hex3Cer causes severe renal damage71. Given that the
gene expression level of GLA did not change between males and females and between aged and young
mice, the accumulation of these glycolipids may be due to activity increase of the biosynthetic enzymes,
dysfunction of intracellular organelles such as lysosomes, or other mechanisms that maintain metabolic
homeostasis. While a few changes in gene expression between SPF and GF were observed in the kidney,
we identi�ed several correlations between microbiota-derived lipids and the host transcriptome, the
causality of which will be investigated in the future.

            This study provides new insights into the potential link between lipid metabolism and aging. While
the biological importance of lipid metabolites described in this study will be further investigated, other
layers of omics data, such as proteomics and metagenomics, will be required to examine the harmonized
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mechanism of host and bacterial lipid metabolism. In particular, it is important to perform integrated
analysis also in the liver and intestinal tract, since the functions of these organs are considered to be
substantially in�uenced by aging and intestinal microbiota72. It is also important to translate the results
of mice to human to consider the extensibility of our �ndings. Moreover, annotation of unknown spectra
is needed because more than 200 unique and highly abundant peaks remain unknown in the present
study. The open sharing of MS raw data will facilitate further annotation with the updates of
computational mass, which is an active research �eld in metabolomics and lipidomics73,74. Further data
accumulation, biochemical validation, and informatics research will lead to a better understanding of the
molecular mechanisms underlying cellular senescence and age-related chronic diseases, and will
contribute to build a foundation for establishing a healthy and long-living society. 
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Figure 1

Summary of experimental design and lipid pro�ling in this study. (a) Four types of mice were prepared:
male and SPF (speci�c pathogen-free), male and GF (germ free), female and SPF, and female and GF.
Total 13 biospecimens were harvested at 2 months, 12 months (1 year), 19 months, and 24 months (2
years). (b) The lipid extraction was performed for the optimal volume of biological samples. The
untargeted lipidomics data was obtained by our experimental condition. The mass spectrometry data
was analyzed by the MS-DIAL 4.20 algorithm with the updated lipid libraries.
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Figure 2

Results of principal component analysis for 13 biological samples. The auto-scaling was performed prior
to the calculation of the PCA score and loading values. The X and Y axes describe the �rst and second
PCs with the contributed ratios. The blue and red color gradients indicate SPF and germ-free mice (with
aging), respectively. The circle and diamond symbols indicate male and female, respectively.
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Figure 3

Investigation of age-related lipid changes using orthogonal partial least square regression (OPLS-R). The
auto-scaled lipidome data was subjected to the OPLS-R model construction. The model was evaluated by
the R-square (R2) and Q-square (Q2) values. The top 10 variable importance for prediction (VIP) values of
metabolites whose chromatographic peak shape retained singlet and better symmetry were described.
The same symbol and color gradients as those of PCA were used.
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Figure 4

The overview of lipidomes. (a) X-axis and y-axis show lipid subclass and sample name, respectively. The
circle size re�ects the fold changes of 24 months over 2 months. The gradient color from green to orange
represents the ratio of SPF and GF. The number in each circle shows the ratio of male/(male + female),
and the red outline indicates the ratio of >80% or <20%. The values were calculated by the semi-
quantitative values of lipids. (b) The pro�le and MS/MS spectra of sulfonolipid (SL) containing
sphingobase 17:0;O and N-acyl chain 17:1;O in fecal sample were described. (c) The lipid pro�les of SL
17:0;O/17:0;O, which is the most abundant molecule in all tissues, were described. The p-value was
calculated by Dunnett's test. *P < 0.05, **P < 0.01, and ***P < 0.001 against 2 months.
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Figure 5

Data interpretation of kidney transcriptome. (a) The score plot of PCA using the kidney transcriptome
data. The data normalization was performed by the DEseq2 package, and the auto-scaling was used for
the data transformation. X and Y axes show the �rst and second principal components. (b) The volcano
plots show male versus female, SPF versus GF, and aged (24 months; M24) versus young (two months;
M2) mice. The X and Y axes show the log2 transformed fold change and minus log10 transformed p-
value, respectively. The upregulated genes in male, SPF, and M24 represent the positive value on the X-
axis. Red circle indicates signi�cance that is de�ned at the condition of >0.5 of log2 fold change and
<0.05 adjusted p-value. The p-value was adjusted by Benjamini-Hochberg method. (c) The result of gene
ontology (GO) analysis.The signi�cant genes in the volcano plots (Fig. 5c) were applied to the g:Pro�ler
program. The gene ontology source of molecular function, biological process, and cellular component, in
addition to the pathway ontology source of KEGG and Reactome databases, were shown. The top �ve
signi�cantly enriched ontology teams in each GO source were described with the p-value. (d) The
investigation of transcription factors (TFs) and histone modi�cations that regulate the signi�cant
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genes.The enrichment analysis of ChiP-Atlas was used at Mus musculus (mm 10) and the cell type of
kidney with the default parameter setting, and the top 10 enriched terms were described. The TF name
and the data source index were described. (e) The investigation of commonly up or downregulated genes
in male and aged mice. The result was described as the Venn diagram.

Figure 6

The integrated analysis of transcriptome and lipidome data. (a) The weighted correlation network
analysis was used to integrate the lipidome and transcriptome data. The statistical signi�cance for the
parameters of aging, SPF/GF, and male/female was evaluated by the median pro�le of molecules
contained in the same cluster. The p-value was adjusted by the false discovery rate method. The results
of the p-values for the difference between the sexes and the presence or absence of intestinal bacteria
were considered signi�cant if the value was less than 0.05. Yellow color indicates elevation in SPF or
male mice, and blue color indicates elevation in GF or female mice. The clusters highlighted by blue color
were applied to the ontology analysis, and the clusters highlighted by red color were used in the
correlation analysis of microbiota related genes and lipids (Fig. 8). The signi�cance of gene and lipid
correlations was evaluated by +R2 > 0.4 and ++R2>0.6. For year (aging) property, the p-value was
calculated by the partial correlation analysis adjusted by sex and microbiome properties. +P < 0.05, ++P < 
0.01, and +++P < 0.001. (b) The result of lipid ontology enrichment analysis. The data matrix consisting
of lipid metabolites represented by blue clusters in Figure 6a was applied to the LION/web. The
enrichment terms were evaluated by the analysis of variance values from four groups M24/male,
M24/female, M2/male, and M2/female.
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Figure 7

The lipid metabolic pathways of glycolipids and sterol esters. (a) The metabolic pathway of glycosyl
ceramides. The quanti�cation of each lipid subclass was performed by summing the quantitative values
of lipid molecules classi�ed to the lipid subclasses. Both the lipid- and gene pro�les with the metabolic
pathways were mapped as dot plots. (b) The metabolic pathway of glycosyl glycerolipids. (c) The
metabolic pathway of ether-linked (alkylacyl) glycerophospholipids, the signi�cant genes related to the
alkylacyl phospholipids, and the other UGT genes, which were expected to be related to glycosyl lipid
metabolism. (d) The pathway of sterol and steryl ester metabolism. The de�nition of symbol and color in
the dot plot is the same as Figure 1. The p-value was calculated by Dunnett's test. *P < 0.05, **P < 0.01,
and ***P < 0.001 against 2 months. (e) Blue and pink colors represent the extracted ion chromatograms
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(EICs) of authentic standards β-glucosyl ceramide 18:1(4E)(1OH,3OH)/18:0 and β-galactosyl ceramide
18:1(4E)(1OH,3OH)/18:0 at the top-left panel, respectively. Same colors represent the EICs of β-lactosyl
ceramide 18:1(4E)(1OH,3OH)/17:0 and β-galabiosyl ceramide 18:1(4E)(1OH,3OH)/17:0 at the top-right
panel, respectively. Black and red colors indicate the EICs of ammonium adduct form of HexCer
18:1;2O/16:0 for male and female mice at the bottom-left panel, respectively. Same colors indicate the
EICs of ammonium adduct form of Hex2Cer 18:1;2O/16:0 for male and female mice at the bottom-right
panel, respectively. Three technical and biological replicates were prepared for authentic standards and
kidney tissue extracts, respectively.

Figure 8

The correlation of genes with the lipid metabolites associated to gut microbiota.The de�nitions of
statistical signi�cances with year (aging), SPF/GF, and gene-lipid correlation are the same as those of
Figure 6. Several bile acids were identi�ed by the authentic standards. Dot plots indicate the signi�cantly
changed genes only in SPF mice with aging. . The p-value was calculated by Dunnett's test. *P < 0.05, **P 
< 0.01 against 2 months.
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