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Abstract

With the amount of data generated by Internet of Things (IoT) devices
increase dramatically, the insufficient computing ability of terminal
devices becomes obvious when processing massive computing tasks. The
computing tasks need to be offloaded from resource-constrained devices
to edge servers with stronger computing capability. It is a challenge
for computing offloading to achieve global optimization with multi-
ple objectives such as minimizing task completion times, optimizing
energy consumption and maintaining load balancing as the network
state and task demands dynamically change. This paper presents opti-
mized edge computing offloading algorithm for software-defined IoT.
First, to provide global state for making decisions, a software defined
edge computing (SDEC) architecture is proposed. The edge layer is
integrated into the control layer of software-defined IoT, and multi-
ple controllers share the global network state information via east-west
message exchange. Moreover, an edge computing offloading algorithm
in software-defined IoT (ECO-SDIoT) based on deep reinforcement
learning is proposed. It enables the controllers to offload the comput-
ing task to the most appropriate edge server according to the global
states, task requirements, and reward. Finally, the performance met-
rics for edge computing offloading were evaluated in terms of unit
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task processing latency, load balancing of edge servers, task pro-
cessing energy consumption, and task completion rate, respectively.
Simulation results show that ECO-SDIoT can effectively reduce task
completion time and energy consumption compared with other strategies.

Keywords: Edge computing, Computing offloading, Software defined
network, Internet of things, Deep reinforcement learning

1 Introduction

The amount of data generated by Internet of Things (IoT) devices has
increased dramatically in recent years. Usually, these IoT devices have limited
computational ability and therefore need to offload computational tasks from
the resource-constrained device to the edge servers with more computational
power to meet the needs of low latency and bandwidth saving[1]. However, the
computational resources of edge servers are equally limited compared to cloud
servers. As more and more data needs to be analyzed, processed and stored
on the edge servers, computing tasks need to be offloaded to the appropri-
ate edge servers for fast processing of large volumes of tasks. Typically, edge
computing applications can be divided into multiple subtasks[2]. When the
local edge server lacks sufficient computing power, the divided subtasks must
be offloaded to a different edge server for execution, and the results must be
returned after execution.

Previous edge computing offloading approaches either consider only mini-
mizing latency, ignoring the energy consumption of the offloading[3], or only
minimizing energy consumption, ignoring the time constraints that the com-
puting task can tolerate[4]. Some researchers have proposed edge computing
offloading methods that minimize the system cost, but they only acquire com-
putational resources from other edge servers through local message requests,
and cannot offload flexibly and intelligently from a global perspective[5, 6].

It is a challenge for computing offloading to achieve global optimization
with multiple objectives such as minimizing task completion times, optimiz-
ing energy consumption and maintaining load balancing as the network state
and task demands dynamically change. When the network and task change
rapidly, it is difficult for the heuristic algorithm to obtain or accurately pre-
dict the comprehensive statistics, the offloading performance may degrade,
and it is difficult to make adaptive adjustments. The proposed intelligent com-
puting offloading algorithms[7–9] still have much room for improvement in
environment perception, task modeling and parameter optimization.

In order to enable computing offloading to be handled in an adaptive and
intelligent manner, this paper achieves efficient offloading based on a software-
defined IoT architecture. Software Define Network (SDN) architecture enables
the separation of hardware and software through virtualization and abstrac-
tion, with the benefit of being able to define and extend the functionality of
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the entire system in a flexible manner[10]. Software-defined edge computing in
the IoT environment decouples upper layer IoT applications from the under-
lying physical resources and builds dynamically reconfigurable intelligent edge
services[11]. The advantage of this new architecture lies in the logical central-
ized control of distributed network nodes. SDN architecture allows for a global
view and flexible reprograming. SDN-based traffic engineering[12] and routing
optimization[13], and other aspects have received increased attention. How-
ever, there has been little research on edge computing offloading under the
SD-IoT architecture. To the best of our knowledge, however, the problem of
edge computing offloading in Software-Defined IoT has been little addressed.

Currently, researchers have proposed intelligent algorithm-based edge
computing offloading strategies.

Compared with previous work, this paper has two differences, as follows:

1. The problem of edge computing offloading in an IoT environment is
addressed in this paper, and the overall architecture is designed using
software-defined thinking. The architecture supports deep reinforcement
learning algorithms for training optimal offloading decisions. Currently, we
are not aware of any published work that uses the same idea to address the
offloading problem of edge computing.

2. Our proposed algorithm obtains environmental information via SDN and
creates appropriate rewards that can feed back information about energy
consumption, latency, and offload failure of the computed offload policy.
The agent is trained multiple times to update the deep neural network in
order to derive the optimal offloading policy.

In this paper, we propose a deep reinforcement learning-based offloading
method for edge computing in software-defined IoT, ECO-SDIoT, aiming to
obtain a task offloading scheme with low latency and energy consumption.
We evaluated the performance of the task offloading scheme proposed in this
paper and compared it with other offloading schemes. Simulation results show
that this scheme can effectively reduce the task completion time and energy
consumption. The main contributions of this paper are as follows:

1. To obtain global information, enabling the selection of the best edge server
from multiple edge servers to offload tasks a software-defined edge com-
puting framework is proposed. By fusing the control layer with the edge
layer, global information about edge servers, network status, and tasks can
be obtained. For some IoT devices that cannot support the OpenFlow pro-
tocol, this paper introduces the S-MANAGE protocol[15] as a southbound
interface protocol between the controller and the data layer to collect net-
work state. The actions output by the agent are parameterized and control
messages are sent to the edge server via the interactive interface. The syn-
chronization of state information between edge servers is addressed via the
SDN’s east-west protocol.

2. To effectively reduce task completion time and energy consumption, a deep
reinforcement learning-based compute offloading algorithm, ECO-SDIoT,
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is proposed for SD-IoT. Deep reinforcement learning is applied to the edge
computation offloading problem in SD-IoT. We take advantage of the global
view of SDN to design state space that can fully reflect the dynamic changes
of network resources In the ECO-SDIoT, the task model is established
to describe the complex task requirements, and the reward is designed to
reflect the energy consumption and latency of task offloading, task overload,
and task timeout. The prioritised experience replay approach is designed
to continuously adjust parameters to get the optimal computational offload
solution.

3. To evaluate the performance of our scheme, we chose fault diagnosis in
the Industrial Internet of Things (IIoT) as the application background and
conducted extensive experiments. Simulation results show that compared
with three offloading schemes, namely: distributed computational offload-
ing (DTOS)[16] which does not utilize the SDN architecture, delay-aware
computational offloading (LATA)[17] which utilizes the SDN architecture,
and task offloading (RJCC)[9] which employs both SDN and deep reinforce-
ment learning, our proposed algorithm can reduce the task completion time
as well as the energy consumption.

The remainder of the paper is organized as follows. Section 2 presents a
briefly review of related work. Section 3 presents the software-defined architec-
ture, SDEC. Section 4 introduces the deep reinforcement learning-based task
offloading algorithm, ECO-SDIoT. Section 5 shows the performance evaluation
and simulation results. Finally, Section 6 concludes the paper.

2 Related Work

2.1 Distributed Controller Architecture in SDN

At present, some relatively large networks are usually divided into several
smaller subnets when SDN architecture is constructed. Each subnet has an
SDN controller, and the controller can only store the local network view[18].

The current view exchange approaches for SDN can be divided into two
main categories, namely hierarchical and horizontal architectures[19–22]. The
hierarchical architecture is characterized by the fact that there are no east-west
interfaces between regional controllers, and the data interaction between them
is done through an upper-level controller[19]. The horizontal architecture has
east-west interfaces between each of the controllers to complete the necessary
data interactions[20–22].

With the distributed controller architecture, the controllers are able to
obtain global view information in multiple SDN domains. In this paper, we use
the global view information in the controller to perform reinforcement learning
and find the optimal edge computing offloading strategy.
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2.2 Edge Computing Offloading

Computing offloading is one of the main researches in edge computing, which
makes up for the deficiency in computing power and storage resources of end
devices and improves task processing in edge computing[23, 24]. Due to the
limited computing capacity of the edge server, when the edge server enters a
high load state in the face of a large number of offloading requests, the task
needs to be offloaded to other edge servers or federate the cloud center for
processing[25].

Offloading tasks to other edge servers means that tasks can be offloaded
to other edge servers with abundant computing resources for execution when
the computing resources of current edge servers are insufficient, to meet the
computing resource requirements of tasks[26–28]. Energy consumption and
transmission delay are the main considerations in the current computing
offloading scheme. Energy consumption is considered as the main factor of
edge task offloading in the background of wireless sensor networks[29, 30]. Such
methods aim to minimize the total energy consumption while meeting the
delay tolerance. Transmission delay is the primary consideration when dealing
with computationally-intensive and delay-sensitive tasks[5, 31], and most of
the existing distributed joint task offloading and resource allocation schemes
ensure delay limitation first.

Furthermore, the global optimization enabled by SDN provides a lot of
space for optimizing edge computing offloading. The current research work
mainly exploits the characteristics of SDN global scheduling for dynamic task
scheduling[32] and combines other algorithms to solve the problems of resource
allocation and energy sensing in edge computing.

Some researchers have studied the problem of edge computing offload-
ing based on SDN, and the main application backgrounds are task offloading
and resource allocation in vehicular networks[33], computing resource sharing
for IoT devices in the context of blockchain[34], and forest fire scenarios[21].
Most of the above methods are based on elaborate heuristics but ignore the
lack of adaptive and intelligent handling in the face of dynamic changes in
computational demand, network state and resource distribution. To solve this
challenging problem, this paper adopts SDN architecture to enhance the con-
trol and management of the edge environment, which is greatly enhanced in
terms of flexibility and intelligence by balancing many factors such as task exe-
cution energy consumption, response time limit, and edge server load balancing
degree through deep reinforcement learning.

2.3 Computing Offloading Strategies Based on Deep
Reinforcement Learning

Reinforcement learning (RL) introduces ambient intelligence to IoT systems by
providing a class of approaches to solve closed-loop problems. And edge com-
puting, a key technology for processing and analyzing massive amounts of IoT
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data, requires decisions for offloading computational tasks to edge servers. Cur-
rently, Deep Reinforcement Learning (DRL) has been used to solve a number
of difficult sequential decision problems by combining Reinforcement Learning
(RL) with Deep Learning (DL)[9, 35].

The decision optimization for computing offloading in existing work is task-
centric and considers the selection of edge servers during task offloading. In
this optimization model, the DRL algorithm can be used to make adaptive
offloading decisions and optimize the wireless channels[36]. Joint task offload-
ing and bandwidth allocation[37] can also be performed based on DQN to
evaluate the total offloading cost and make offloading decisions considering
energy consumption, computing capacity and delay.

The Q value of the current state in the Deep Q-Network (DQN) algorithm
is estimated as the maximum of the Q values of the next state, which leads
to overoptimism due to estimation errors. Van Hasselt et al.[14] proposed an
improved Double DQN algorithm, which changes the calculation method of
the target value and alleviates the overestimation problem in the DQN algo-
rithm. Therefore, this paper addresses the computing offloading problem in
edge environments based on the Double DQN algorithm.

3 Software-Defined Edge Computing
Architecture (SDEC)

We extend the idea of software definition to the IoT with edge computing, and
the proposed SDEC architecture realizes the global information transfer in the
edge environment through the east-west interface of SDN. SDEC mainly makes
use of the advantage of SDN to master the state of the whole network, so that
the processing of tasks between different edge servers is more efficient, and the
specific architecture is shown in Fig.1. The computing, storage and bandwidth
resources of these edge servers are abstracted and virtualized through network
mapping techniques. Ultimately, edge computing tasks are offloaded by the
SDEC controller.

SDEC architecture fully utilizes the east-west interface of SDN, making
the connection between controllers into a fast information exchange network.
SDEC architecture integrates the controllers and edge server in the same layer,
so the controllers can get the distribution of edge computing resources by
sharing the global view.

In the SDEC framework, the controller obtains the topology information
of the local region through LLDP protocol. In addition, by using SDN-enabled
edge devices, information such as remaining computing resources and CPU
frequency is updated as uplink messages and uploaded to the controller in
the form of flow tables through the Openflow switch. After the PACKET IN
message enters, the controller performs pipeline processing and checks the
matching information, packet modification and forwarding rules contained in
the flow table. After the above process, a global view of the local edge envi-
ronment is formed in the controller. Each controller exchanges the local view
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Fig. 1 SDEC architecture. The SDEC architecture has three layers, converging the appli-
cation, control and data layers of the software-defined architecture with the cloud, edge and
end of the edge computing architecture.

information through the east-west protocol to construct the global network
view. The global view of the network under SDEC consists of the following
main aspects:

1. Network status information, including the status information of controllers,
Openflow switches, and wireless sensor devices, as well as the status,
bandwidth, and throughput of links.

2. Reachability of edge servers, each controller is connected to the edge servers
in its own area. This part mainly includes the status information and
reachability of the edge servers.

3. Quality of Service (QoS) of the network, which includes the transmission
delay of the network, packet loss rate of the links, delay variation, and cost.

The edge network global view messages contain the information of con-
troller, link, port, edge server, etc. Using a uniform format and encapsulating it
into an XML file for east-west delivery makes the format of the network global
view message flexible and easily extensible. In this paper, the S-MANAGE
protocol[15], East-West Bridge module[38] and Double DQN module are added
to achieve the acquisition of the global view of SDN, the interaction of east-west
and the perception of edge environment information, as shown in Fig.2.

The modules included in the SDEC controller proposed in this paper can
be divided into four categories as follows:

1. Traditional controller-owned modules, such as Network Virtualization
Module, Rest API, and so on.
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Fig. 2 Computing task offloading based on SDEC. Three main modules are included: 1)
East-West Interface Extension Module; 2) Southbound Interface Module; 3) Computing
Offloading Module based on Deep Reinforcement Learning.

2. East-West interface expansion module, the East-West Bridge module[38] in
Fig.2, is used to enable the East-West interface in all types of controllers.

3. Southbound interface module, it is used to manage and configure underlying
network. If IoT devices cannot support the OpenFlow protocol, this paper
implements the information interaction by introducing the S-MANAGE
protocol[15] as the southbound interface protocol between the SD-IoT con-
troller and the data layer. If IoT devices support the OpenFlow protocol,
the SDEC controller receives sensor-centric services via OpenFlow protocol
to obtain current edge environment information as state data set for deep
reinforcement learning, otherwise it is received via S-MANAGE protocol.

4. Computing offloading module based on deep reinforcement learning. Each
SDN controller can be regarded as an agent, which takes the data obtained
by the southbound interface as the input of the environment state and
obtains the best action, namely the best task offloading strategy, through
the deep reinforcement learning algorithm. The specific design of deep rein-
forcement learning is introduced in Section 4.4. The deep reinforcement
learning module is shown in Fig.3. The controller, acting as an agent,
obtains the current state of the environment from the edge environment,
performs actions and observes rewards, and deposits ⟨state, action, reward⟩
samples into the experience replay buffer. Sampling is then performed
according to priority for training.

At the beginning of training, in order to avoid overestimation of Q value,
we adopted the Double DQN algorithm[14] and designed the deep reinforce-
ment learning module with two deep learning models, called Q-network and
target network, where the Q-network is used to predict the optimal values
corresponding to each action of the agent in the current environment, while
the target network is used to evaluate the optimal values predicted by the
Q-network. There is a certain difference between the results obtained by the
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Fig. 3 Double DQN module. This module has two deep neural networks: 1) Q-network; 2)
target network.

Q-network and the target network, and the loss function obtained by calcu-
lating this difference. The value of loss function is fed back to the Q-network
to update the parameters. In addition, the Q-network and the target network
are two similar networks, and a delayed parameter update scheme is used, i.e.,
the model parameters of the target network are updated periodically by the
Q-network.

After controllers discover each other, each controller acquires the address
of the other controller. Controllers exchange and share global view information
periodically or event-driven.

The SDN controller can be regarded as an agent, and outside the agent is
regarded as the environment, and the environment changes can be obtained
from the SDN global view. Under the SDEC architecture, the controller is able
to know the resource distribution in the whole IoT environment in time and
find out the optimal edge computing offloading strategy.

4 Deep Reinforcement Learning-based
Computing Offloading Algorithm

Before a task is offloaded, it needs to be evaluated. If the resource required by
the task exceeds the capacity of the whole edge server, the task is transferred
to the cloud platform. Due to limited space, the evaluation process is not
described in this paper.

4.1 Delay Model

In this paper, we use Tall to represent the completion time of a task. If the task
is not executed locally, Tall needs to contain the time the task is transmitted
to the edge server (Tsend), the time the task is executed on the edge server
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(Texe), the queuing delay (Tque), and the time the task execution result is
transmitted back to the local device (Tret).

Then the completion time of the task Tall satisfies:

Tall = Tsend + Tque + Texe + Tret (1)

where Tsend, Tque, Tret can be obtained by counting the network data
respectively. Texe indicates the execution time of the task on the edge server,
and its value is determined by the CPU processing frequency of the edge
server. If there are heterogeneous edge servers in the network, Texe is defined
as follows:

Texe = Wtask/fedge (2)

whereWtask denotes the computational workload of the edge task and fedge
denotes the working frequency of the processing units of the edge server.

4.2 Energy Consumption Model

In the SDEC architecture, the underlying sensor network only undertakes data
collection and data forwarding, and the computation and processing tasks are
performed by the edge server. Therefore, the overall energy consumption is
divided into two parts: wireless transmission energy consumption and task
processing energy consumption.

4.2.1 Wireless Transmission Energy Consumption

Most of the IoT end devices are energy constrained, so we need to monitor the
sending energy consumption Esend consumed by the end to send tasks to the
edge server, and the receiving energy consumption Ercv consumed by the end
to receive the computing results from the edge server.

According to the [31], the transmitting energy consumption of the wireless
sensor is:

Esend = Eelec + εamp × d2s (3)

where Eelec denotes the energy consumption caused by transmitting and
receiving data, εamp denotes the power amplifier power consumption required
to boost the transmitting power of the wireless sensor. The energy consumption
of the wireless sensor to receive data is shown in formula (4), where the energy
consumption of the sensor to receive data is independent of the distance.

Ercv = Eelec (4)

4.2.2 Task Processing Energy Consumption

When tasks are offloaded to the edge server, the energy consumption of
the edge server to process the tasks depends mainly on the CPU power
consumption of the edge server and the execution time of the tasks.
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The energy consumption for task processing is:

Eexe = Pcpu × Texe (5)

where Pcpu denotes the power consumption of the CPU of the edge server,
which is positively related to its operating frequency. The power consumption
of the CPU can be calculated by:

Pcpu = λV 2fedge (6)

where λ denotes a constant, which is determined by the process and design
of the processing unit. V denotes the voltage during operation, and fedge
denotes the operating frequency of the processing unit on the edge server.

The energy consumption Eall generated during task offloading is defined
as the sum of the wireless transmission energy consumption of the task and
the task processing energy consumption. The transmission energy consump-
tion is considered as the transmit energy consumption Esend and the receive
energy consumption Ercv consumed by the end devices, while the computa-
tional energy consumption Eexe is mainly generated in the edge servers. and
thus Eall can be expressed as:

Eall = Esend + Eexe + Ercv (7)

The transmission energy consumption of the edge servers is not consid-
ered in this paper because it is negligible for the other energy consumption
generated by the servers.

4.3 Task Model

There are some properties exist within the edge tasks themselves, including
the computational resources required by the tasks, the deadline of the tasks,
and the priority levels, etc.

The deadline of the task can indicate the urgency of the edge task. We
define the task priority Pr to reflect the importance of different edge tasks and
the sensitivity to latency. This paper comprehensively describes the current
edge tasks from multiple perspectives. We construct the task model with the
following components:

(1) Cneed, the computational resources required by the task,
(2) ddl, the current task completion deadline,
(3) Pr, the priority of the current task.

The task model can be represented as follows:

task = {Cneed, ddl, Pr} (8)

Selecting task offloading schemes based on the characteristics of the tasks
and the distribution of edge resources is the main research objective of this
paper. To address the problem of computational resource differentiation in
edge environments, the above model is constructed to describe the network
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performance and task requirements using a multidimensional perspective and
to make fast decisions using deep reinforcement learning to minimize the
execution cost of edge tasks.

4.4 Computing Offloading Problems

The nearest edge server to the task may not have abundant remaining com-
putational resources, so the information about the computational capacity,
remaining computational resources, and transmission distance of the candi-
date edge servers in the environment needs to be input into a deep neural
network for learning to obtain the optimal task offloading action. This paper
proposes a scheme (ECO-SDIoT) to solve the problem of offloading optimisa-
tion of edge tasks under multiple controllers. By observing the computational
resources and network states in the edge environment, task offloading actions
are selected based on deep reinforcement learning to maximize their cumula-
tive rewards. When an edge task to be offloaded is generated, the algorithm
needs to select the target edge server so that the edge devices can offload the
task to the corresponding edge server for execution. We assume that the num-
ber of uninstalled tasks is N and the total number of edge servers is M . The
selection of actions in different environments is achieved by deep reinforcement
learning, and this process has the following key elements.

4.4.1 Objective Function Des

The objective function Des consists of the following two components, which
are the total completion time Tall for the task to be offloaded to the edge server
j and the total energy consumption Eall during the task offloading process,
calculated as follows:

Tall =

M
∑

j=1

(

T j
send + T j

que + T j
exe + T j

rcv

)

(9)

Eall =

M
∑

j=1

(

Ej
send + Ej

exe + Ej
rcv

)

(10)

The optimization objective of the computational offloading strategy is to
minimize task completion time and energy consumption as the network state
and task demand dynamically change, and the objective function is:

Des = argmin
S,A

(Tall + Eall) (11)

In this paper, the convergence of total energy consumption and total delay
or episode=20,000 is set as the end condition of deep learning iteration state.

4.4.2 State Space S

The state is the information about the algorithm’s perception of the environ-
ment, and the state space S can be composed of the following parts:
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(1) Cj
rem, remaining computing resources of edge server j,

(2) f j
edge, operating frequency of the processing unit of edge server j,

(3) di,js , transmission distance from task i to edge server j,
(4) bwi,j , link bandwidth from task i to edge server j obtained from the global

view,
(5) plr, packet loss rate in the current network topology,

The state space S can be expressed as:

S =
{

Cj
rem, f j

edge, d
i,j
s , bwi,j , plr

}

(12)

The remaining computing resources of the jth edge server can be defined
as follows:

Cj
rem = 1− Lj

ave/
(

N j
cpu × PNmax

cpu

)

(13)

where Lj
ave denotes the average number of processes of the jth edge server

system, N j
cpu denotes the number of CPUs of the jth edge server, and PNmax

cpu

denotes the maximum number of processes per CPU. The smaller the value of
Cj

rem, the fewer computing resources remain on the edge server, and when the
value of Cj

rem is less than 0, the system enters overload.

4.4.3 Action Space A

The action space A contains a series of actions, consisting of a set of binary
values, denoted by ai,j whether end task i is offloaded to edge server j. It can
be defined as follows:

A =
{

a1,1, a1,2, · · · , ai,j , · · · , aN,M
}

(14)

where ai,j ∈ {0, 1}, ai,j = 0 means that end task i isn’t offloaded to edge
server j. Conversely, ai,j = 1 means that end task i is offloaded to edge server
j. The actions are initially generated randomly by the algorithm and finally
the optimal action is derived by deep reinforcement learning.

4.4.4 Reward R

Agents in reinforcement learning rely on rewards to evaluate the effectiveness
of actions and to further improve strategies, and different actions usually imply
that different rewards will be obtained. According to the target function of the
computing offloading problems, the reward R of deep reinforcement learning
considers the total energy consumption and the completion time of computing
offloading, and is defined as:

R =







0 , if task lose
1

Tall
+ 1

Eall
, if task accomplished

−1 , if task timeout
(15)

From formula (15), it can be seen that the reward R decreases as the total
completion time and total energy consumption of the current task increases.
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When a task timeout occurs, the reward is set to -1 to generate negative
feedback. If a task is lost due to the saturation of the edge server computational
queue, the reward R is set to 0.
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Fig. 4 The improved Double DQN model. Both the Q-network and the target network are
three-layer neural network structures. The improved Double DQN model is based on the
SDN structure to obtain multidimensional state information and rewards, which are stored
in an experience buffer. Priority-based sampling information and task information are used
as input to derive optimal actions based on the ECO-SDIoT algorithm.

The improved Double DQN model contains three layers of architecture
as shown in Fig.4. The input layer feeds the current environment features
obtained from the global view as well as the task model into the neural network.
Different from the traditional Double DQN, the state information involved in
this paper does not contain two-dimensional pictures, so instead of using a
convolutional layer, the hidden layer is designed as a fully connected structure
where each node is connected to all nodes in the previous layer to synthe-
size the feature information extracted from the previous layer. The purpose
of designing the fully connected structure in the hidden layer is to map the
features of distributed network into the sample labeling space, approximating
the action value function Q(s, a). The value of Q(s, a) is the expected future
reward for taking action a in state s. The agent’s purpose is to interact with
the environment by choosing actions that maximize future rewards. Therefore,
the optimal action value function Q∗(s, a) is defined as the maximum expected
reword obtained by following any strategy π under some sequence s and then
performing some action a[43].

Q∗(s, a) = max
π

E [Rt | st = s, at = a, π] (16)
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In order to solve the overestimation problem, Double DQN uses two sets
of Q-networks for network parameter updating. Q-network is responsible for
selecting actions, with parameters θ. Target network is responsible for calcu-
lating updated target values with parameters θ′. The output layer obtains the
Q(s, a) values for each action of the current environment based on the features
mapped in the hidden layer. To estimate the action value function, it is com-
mon to use a function approximator, Qtarget(s, a) ≈ Q∗(s, a). The action with
the maximum value in the Q-network is used to calculate the action value func-
tion of the target network Qtarget(s, a). At time step t, Qtarget(s, a) is defined
as follow, where γ represents the discount rate.

a∗ = argmax
a

Q (st+1, a, θ) (17)

Qtarget (st, at, θ
′) = Rt + γ ×Qtarget (st+1, a

∗, θ′) (18)

The update of deep neural network parameters in the algorithm requires
defining the loss function and then updating the parameters by gradient
descent. Comparing the estimated value Q(s, a) obtained from the deep neural
network and the target value Qtarget(s, a) calculated from the target network.
The loss function is calculated and the model parameters in the Q-network
and the target network are updated. The loss function is calculated as follows:

L(θ) = E

[

(Qtarget (s, a, θ
′)−Q(s, a, θ))

2
]

(19)

The specific deep reinforcement learning-based computing offloading pro-
cess in IoT is shown in the ECO-SDIoT algorithm. The algorithm can obtain
the computational resources and the performance of the edge server, etc. from
the global view of the controller. To begin with, N tasks ordered by priority,
network computing resources, and network state are all imputed to ECO-
SDIoT. Then we define a three-layer fully connected layer as the hidden layer
of the Q-network and the target network, replicate the Q-network model to
the target network after creating it, and initialize the network with randomly
generated weights θ.

In addition, we select a random action with probability ε, or select an
action that maximizes the value of Q(s, a). The action at is executed in the
simulation under the network state st and the rewardRt is calculated according
to formula (15), then the network state is updated as st+1. Furthermore, we
store st, at, Rt, st+1 into the experience replay buffer. The initial value of the
priority of each sample is set to P . If the experience replay buffer is full, the
earliest data items will be deleted.

When the offloading policy of N tasks is trained, a batch sample is taken
from the experience replay buffer according to the priority. For each sample,
Qu

target(s, a) represents the target network action function value of task u, and
it is calculated based on formula (18). We compute the loss function between
Qu(s, a) and Qu

target(s, a) and update the parameters θ based on the gradient
descent. As well as, the prioritized experience replay mechanism[39] is used to
sample by priority and to maintain the independent homogeneous distribution
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of the neural network training set. We recalculate the priority of current sample
and update it to the experience play buffer. After the fixed times of update,
the model parameter θ is updated to θ′.

Algorithm 1 ECO-SDIoT

Input: Given N tasks that have been sorted and need to be offloaded on edge
servers; Given global view information (including edge server information
and network status) in tuple form

Output: The optimal task allocation scheme
1: Total reward is defined as 0
2: Random initialization of model parameter θ
3: Initialize target network parameters θ′ = θ
4: Initialize random data ε
5: Define priority parameter η and integer ξ
6: Initialize experience priority as P
7: for episode = 1, E do
8: for h = 1, H do
9: With probability ε select a random action ah

10: Otherwise select ah = argmax
a

Q (s, a, θ)

11: Execute task offloading action ah in emulator
12: Calculate the reward Rh according to the input task model and the

definition of the reward equation (15)
13: Collect the state sh+1 through global view after the action is

performed
14: Store transition (sh, ah, Rh, sh+1, Ph) in experience replay buffer,

where Ph = P
15: end for
16: for t = 1, T ; u = 1, N ; t = u do
17: Extract b experiences based on priority from the experience replay

buffer

18: CalculateQu
target (st, at, θ

′) =

{

Rt , if st+1 is terminal

Rt + γ ×Qu
target (st+1, at, θ

′) , otherwise

19: Calculate the absolute error ωt = |Qu
target(st, at, θ

′)−Qu(st, at, θ)|
20: Calculate the loss function
21:

L(θ) = E

[

(

Qu
target (st, at, θ

′)−Qu (st, at, θ)
)2
]

22: Update model parameter θ = θ − α∇θL(θ)

23: Calculate the priority of this round Pt =
(|ωt|+ξ)η

∑
b
k=1

(|ωk|+ξ)η

24: Store experience (st, at, Rt, st+1, Pt) to the experience replay buffer
25: return Optimal task allocation policy
26: end for
27: Periodically update target Q-network parameters θ′ = θ
28: end for
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After completing the offloading decision, the controller passes the param-
eterized command to the terminal device, which sends the task to the edge
server specified in the decision for execution. At the same time, the global view
needs to be updated via an east-west protocol between controllers to ensure
its consistency.

5 Simulation Results and Analysis

In this section, we conduct simulation experiments on computing offloading
under software definition. The experimental process is divided into three parts:

(i) Investigate the variation of the loss function during the iteration of this
deep reinforcement learning algorithm.

(ii) The proposed ECO-SDIoT is compared with three algorithms, which
are distributed computing offloading (DTOS)[16], delay-aware computing
offloading (LATA)[17] and reinforcement learn-based computing offloading
(RJCC)[9].

(iii) Investigate the impact of task data size on the computing offloading
performance.

5.1 Experimental Setup

We use the EdgeCloudSim[40] to simulate the edge computing environment.
EdgeCloudSim is a simulation environment provided for edge computing sce-
narios, in which experiments can be conducted considering both computational
and network resources. This experiment simulates different numbers of edge
servers running at the same time, and the performance of edge devices and
the congestion of the link will be randomly generated. The experiments sim-
ulate the global view passing of SDN east-west architecture with NS3, and
the global view information generated by the simulation is encapsulated into
a configuration file, and the configuration is read by the network module of
EdgeCloudSim. To implement deep Q-network, this paper uses the TensorFlow
and Keras libraries under Python, running under a multi-core CPU server
equipped with a 48-core Intel XeonGold 5118 processor.

In ECO-SDIoT algorithm, the current state of edge environment in the
document encapsulated by global view, task model and samples sampled from
experience playback pool are taken as input, alternative actions are taken as
output layer, the optimal actions are saved as parameters, and EdgeCloudSim
executes the optimal task offloading scheme. For the hidden layer, various
choices can be made depending on the information of the input layer. In this
paper, a three-layer fully connected internal product layer is used as the hidden
layer of the deep neural network. The ReLU function is used as the activation
function in the deep neural network, and the deep neural network is applied to
the simulation environment of edge computing to verify the efficiency of task
processing. The settings of the simulation parameters are shown in Table 1.

The training process of deep neural networks requires a large set of tasks,
and we use fault diagnosis in the Industrial Internet of Things (IIoT) as
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Table 1 Key Simulation Parameters

Parameter Value

Number of Edge Server 20
Transmission bandwidth [100-300] Mbps
Average task data size 50MB
Required CPU cycles of computation task [0.5-4] Gcycle/s
The maximum delay constraint [0.2-1] s
Greed 0.90
Learning efficiency 0.80
Attenuation degree 0.90
Hidden size 128
Replay memory buffer size 200GB
Batch size 64MB

an application scenario for this paper. The MFPT bearing fault diagnosis
dataset[41] is invoked to randomly generate 10,000 independent tasks with an
arrival rate of 0-10 per second. According to the randomly generated edge
server computing capacity of EdgeCloudSim, the corresponding computing
resources are allocated in the server, and these independent tasks are offloaded
to the virtual edge server according to the method in this paper, and deep
neural networks based on Gaussian Bernoulli restricted Boltzmann machines
(GBRBMs-DNN)[42] are deployed in the virtual edge server to process and
analyze the bearing failure data and make decisions based on the analysis
results. The performance indicators in Section 5.2 are the simulation results
when the fault diagnosis accuracy reaches 98%.

With the increasing number of training rounds, it can be found that the loss
function between the Q-network and the target Q-network decreases during
the selection of the optimal computing offloading strategy, and the generated
reward stabilizes at a higher value as the number of training rounds increases to
a certain level. As shown in Fig.5, this paper compares the Q-network reward
enhancement for three different learning rate α, and it can be found that as the
learning rate increases, the reward can be maintained at a higher level more
quickly. When the learning rate of the deep reinforcement learning algorithm
is 0.5, it takes about 1000 rounds of training to maintain the reward at a high
level. When the learning rate is 0.9, only 400 rounds of training are needed to
quickly make the reward converge to a higher value.

State, action, next state, reward, and experience priorities are updated to
the experience replay buffer after each training. According to the priority of
batch sampling, the agent can learn more important experience, and improve
the sampling efficiency. In addition, we improve the sampling efficiency by
running multiple controllers as multiple agents simultaneously through a dis-
tributed parallel sampling approach. After continuous optimization feedback,
the accuracy of the controller to obtain the optimal action in the current
environment is improved, and therefore the reward function is also improved.
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5.2 Performance Evaluation

In this section, we compare the ECO-SDIoT algorithm with the distributed
task offloading strategy (DTOS)[16], the delay-aware task offloading strat-
egy (LATA)[17], and the reinforcement learning-based joint communication
and computational resource offloading mechanism (RJCC)[9]. We evaluate the
performance of the ECO-SDIoT algorithm by comparing four performance
indicators of computing offloading: unit task processing latency (UTPD), edge
server load balancing degree (ELBD), task processing energy consumption
(TPEC), and task completion rate (TCR), respectively.

5.2.1 Comparison Objects

Distributed task offloading strategy (DTOS)[16] is a method to offload dis-
tributed tasks to a cluster of low-load base stations in a mobile edge computing
environment. DTOS solves the distributed task offloading problem in edge
environments by modeling the communication and computational resources of
local low-load base station clusters using a game-theoretic approach.

Latency-aware task offloading policy (LATA)[17] is a method to make task
offloading decisions through SDN to reduce task processing delays. LATA is
characterized by its full consideration of network load and load balancing to
improve the efficiency of edge task offloading.

The reinforcement learning-based joint communication and computational
resource offloading mechanism (RJCC)[9] is divided into two parts when per-
forming task offloading, the Q-learning-based online offloading algorithm and
the Lagrange-based migration algorithm. It transforms the long-term opti-
mization problem to two sub-problems through Lyapunov optimization theory
to jointly optimize the computing tasks in the edge environment offloading.

Reinforcement learning is used in both the RJCC and the ECO-SDIoT
algorithm proposed in this paper. At the same learning rate (0.9), we compare
the reward of the ECO-SDIoT and RJCC during training and find that the
reward of ECO-SDIoT converges faster and converges to a higher value. Fig.6
demonstrates that the reward of ECO-SDIoT algorithm converges after only
700 training rounds, whereas the RJCC converges after 1000 training rounds.
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It is due to the fact that the RJCC uses Q-learning to find the optimal Q
value, which decreases the querying speed when the state space grows larger. In
addition, the RJCC does not consider the overestimation problem, and the final
convergence value of reward is smaller than the ECO-SDIoT. ECO-SDIoT is
based on the idea of Double DQN, which uses deep neural networks to compute
Q(s, a), uses two deep neural networks to solve the overestimation problem,
and uses prioritized experience replay for sampling, so that the reward reaches
convergence faster and has a higher convergence value than RJCC.

5.2.2 Unit Task Processing Delay (UTPD)

UTPD is the time interval between the start of computing offloading and
the complete the task (ms). The UTPD contains two components, the task
offloading time and the task computation time. In the ECO-SDIoT algorithm,
the task offload time in UTPD includes the decision time of the task offload and
the task transfer time, while the task computation time is spent by the edge
server to execute the task. We compare the UTPD of four methods, DTOS,
LATA, RJCC, and ECO-SDIoT, from the perspectives of both the number of
tasks and the amount of computation per task, and the experimental results
are shown in Fig.7 and Fig.8.
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Fig. 7 The relationship between the number
of tasks and the unit task offloading time

100 2000 4000 6000 8000 10000
50

100

150

200

U
n
it
ta
s
k
c
o
m
p
u
ti
n
g
ti
m
e
(m
s
)

Number of tasks

DTOS

LATA

RJCC

ECO-SDIoT
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As illustrated in Fig.7 that the delay of the four methods in the offloading
and computation phase increases with the increase of the number of offloading
tasks. Among them, ECO-SDIoT has the most gradual growth, which is more
noticeable in terms of computation delay. DTOS distributes the task to local
low load base station clusters, making the task offloading time the shortest
when the number of tasks is less. Meanwhile, as shown in Fig.8 when the num-
ber of tasks increases, the task computation time of DTOS increases rapidly
due to task load unbalance. Although the LATA also offloads tasks through
the controller based on the SDN global view, it only offloads tasks to the edge
servers with lower load. The ECO-SDIoT algorithm takes into account the
computational power of the edge server in the state and the time consumption



Springer Nature 2021 LATEX template

Article Title 21

during task transfer in the reward, so its UTPD is lower than LATA. When
the number of tasks is small, the decision time of RJCC is less than that of
ECO-SDIoT. However, as the number of tasks increases, the expansion of the
Q-table leads to a rapid increase in query time for the Q-learning based RJCC
algorithm.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

500

1000

1500

U
n
it
ta
s
k
o
ff
lo
a
d
in
g
ti
m
e
(m
s
)

Average computations per task(gigacycles)

DTOS

LATA

RJCC

ECO-SDIoT

Fig. 9 The relationship between unit task
calculation volume and the unit task offload-
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Fig. 10 The relationship between unit task
calculation volume and the unit task comput-
ing time

Then we vary the amount of computation per task to investigate the impact
of task complexity on the computational offload policy. As shown in Fig.9
and Fig.10, the computing time ECO-SDIoT has a more pronounced advan-
tage over the other three algorithms as the computational volume of the task
increases, indicating that ECO-SDIoT is able to make better decisions as the
task’s demand for computational resources increases. Despite RJCC further
optimises the task offload solution after offloading tasks using a Lagrangian-
based migration algorithm, the cost of task migration is also reflected in the
task offload time.

5.2.3 Load Balancing Degree for Edge Servers (ELBD)

ELBD is the degree of task load balancing among the edge servers in one or
more regions, and this parameter reflects whether the computational resource
of multiple edge servers is distributed in a balanced manner. ELBD is calcu-
lated as shown in formula (20), where SLi represents the load rate of the ith
edge server and the SL represents the average load rate of the edge servers in
the edge environment.

ELBD =

∑M

i=1

(

SLi − SL
)2

M − 1
(20)

We compared the ELBD of four methods, DTOS, LATA, RJCC, and ECO-
SDIoT, by varying the number of tasks and the average task computation, and
the experimental results are shown in Fig.11 and Fig.12.

As the number of tasks gradually increases from 100 to 10,000, the Load
balancing degree for edge servers (ELBD) of ECO-SDIoT, RJCC, and LATA
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Fig. 12 The load balancing degree for edge
servers in different average task computations

all remain lower than 0.08, while DTOS increases rapidly as the number of
tasks increases. This is because both ECO-SDIoT- and LATA consider the
server workload in the edge environment holistically through the SDN global
view, while DTOS only considers the local base station group load situation.
As the number of tasks increases, the load of tasks is gradually non-uniform,
resulting in a higher ELBD for DTOS. In addition, we find that when the
number of tasks is small, the optimization effect of ECO-SDIoT is not obvious
compared with LATA and RJCC, and even when the number of tasks is less
than 2000, the ELBD of the ECO-SDIoT is higher than that of LATA. The
reward model in the ECO-SDIoT algorithm considers the task overload. When
the number of tasks is small, the chance of task overload is low, and as the
number of task increases, task overload is able to provide feedback through
the reward. RJCC designs a Lagrange-based task migration algorithm that
balances the workload between edge nodes by migrating tasks from high-load
edge nodes to relatively low-load nodes. Therefore, RJCC’s ELBD is close to
ECO-SDIoT.

5.2.4 Task Processing Energy Consumption (TPEC)

By varying the size of the average task computation and the average amount
of data, we evaluate the impact of task complexity on the energy consumption
of the computational offload policy.

The processing energy consumption of the task contains the energy con-
sumption generated by the task transmission and execution. In this part of the
experiment, we compare the difference in total energy consumption between
the four methods, DTOS, LATA, RJCC, and ECO-SDIoT, when completing
the edge tasks.

As can be seen in Fig.13 and Fig.14, the ECO-SDIoT outperforms the
other algorithms in terms of processing energy consumption of the task. The
reason is that the operating frequency of the processing units on the edge
server, the transmission distance from the edge device to the edge server, and
other factors also be considered in the state space of ECO-SDIoT, so that it
can continuously adjust the computing offloading decision according to the
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rewards and losses. The energy consumption is also considered in the reward
function to reduce the unnecessary energy consumption generated by the task
during the offloading process.

5.2.5 Task Completion Rate (TCR)

TCR is the probability that a task does not time out or get lost during offload-
ing and execution. This parameter is used to determine whether the task is
offloaded to the appropriate edge server in a timely manner. We compared
the TCR of four methods, DTOS, LATA, RJCC, and ECO-SDIoT, and the
experimental results are shown in Fig.15 and Fig.16.
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By varying the packet loss rate and the number of tasks, we evaluate the
task completion rates of four algorithms.The results show that ECO-SDIoT
has a significantly better TCR than DTOS and LATA. When the packet loss
rate is low, the task completion rates of four methods are at a high level, and
as the packet loss rate gradually increases, the task completion rates of DTOS,
LATA, and RJCC all have a significant downward trend, and only the TCR of
ECO-SDIoT is relatively stable. Because ECO-SDIoT utilizes the global view
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of SDN, it can obtain the link condition of the edge network more effectively
and input it into the deep neural network as the current state of the network,
which further improves the TCR.

ECO-SDIoT not only models the remaining computational resources of the
edge server into the state space, but also feeds back task timeouts or losses
through rewards and uses a prioritised experience replay approach to contin-
uously adjust parameters to get the optimal computational offload solution.
Therefore, as shown in Fig.16, the TCR of ECO-SDIoT decreases the slowest
among the four methods as the number of tasks increases.

6 Conclusion

In order to achieve the optimization goals of low energy consumption, low
latency, and load balancing for edge computing offload policies in an environ-
ment where the network state and task demands are dynamically changing,
we propose a software-defined edge computing architecture and present a com-
pute offloading algorithm named ECO-SDIoT to offload computing tasks to
the optimal edge server.

First, we propose a software-defined edge computing framework in the IoT
environment. The controller in the framework is able to obtain a global view to
generate the state of the environment, and the controller has the programmable
capability to become an agent to provide support for deep reinforcement learn-
ing. Moreover, our proposed algorithm obtains environmental information via
SDN and creates appropriate rewards that can feed back information about
energy consumption, latency, and offload failure of the computed offload pol-
icy. The agent is trained multiple times to update the deep neural network
in order to derive the optimal offloading policy. Finally, the simulation results
show that the proposed algorithm achieves better performance in terms of
unit task processing delay, load balance of edge servers, task processing energy
consumption, and task completion rate compared with the three related works.

In our future work, we intend to investigate the controller cooperative task
allocation strategy in the software-defined IoT edge computing framework.
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