
A Searchable Encryption Scheme with Hidden
Search Pattern and Access Pattern on Distributed
Cloud System
Shengchen Duan

Beijing University of Posts and Telecomunications
Hong Liu (liliary@163.com)

Chongqing University of Posts and Telecommunications
Lize Gu

Beijing University of Posts and Telecomunications

Research Article

Keywords: Dynamic Searchable Encryption, Search Pattern, Access Pattern, Paillier Encryption, Optimised
Padding

Posted Date: October 18th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-2158129/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-2158129/v1
mailto:liliary@163.com
https://doi.org/10.21203/rs.3.rs-2158129/v1
https://creativecommons.org/licenses/by/4.0/

A Searchable Encryption Scheme with Hidden Search
Pattern and Access Pattern on Distributed Cloud System

Abstract

Dynamic searchable encryption methods allow a client to perform searches and updates over encrypted

data stored in the cloud. However, existing researches show that the general dynamic searchable

symmetric encryption (DSSE) scheme is vulnerable to statistical attacks due to the leakage of search

patterns and access patterns. Although the traditional Oblivious Random Access Machine (ORAM) can

hide the access pattern, it also incurs significant communication overhead and cannot hide the search

pattern. To overcome this limitation, a DSSE scheme called obliviously shuffled incidence matrix

DSSE (OSM-DSSE) is proposed in this paper to access the encrypted data obliviously without using

ORAM. The OSM-DSSE scheme realizes efficient search and update operations based on an incidence

matrix. In particular, a shuffling algorithm using Paillier encryption combines the 1-out-of-n

obliviously transfer (OT) protocol to hide access pattern and an optimized padding scheme to obfuscate

the search pattern with small storage overhead. Besides, a formalized security analysis and

performance analysis of the proposed scheme is provided, which indicates that the OSM-DSSE scheme

achieves high security, efficient searches, and low storage overhead. Also, this scheme not only

completely hides the search and access patterns but also provides adaptive security against malicious

attacks by adversaries. Furthermore, experimental results show that the OSM-DSSE scheme obtains 3-

4x better execution efficiency than the state-of-art solutions.

Keywords: Dynamic Searchable Encryption, Search Pattern, Access Pattern, Paillier Encryption,
Optimised Padding

1 Introduction

The rise of cloud service provides vast benefits to society and the IT industry. Storage-as-a-
Service is one of the most common cloud services available, which allows the client to store data
online remotely and access data everywhere, reducing the cost of data management and maintenance.
Despite the merits, Storage-as-a-Service also brings significant security and privacy issues. Once data
is outsourced, a client loses the ability to control the data. Also, a malicious user may be tampered with
or stolen sensitive information. Although the client can encrypt data with standard encryption schemes
(e.g., AES) to ensure confidentiality, basic operations (e.g., search/update) on the encrypted data could
not be performed. Furthermore, the substantial computational overhead is incurred, which greatly
reduces the benefits of the cloud service.

To solve the above problems, in 2000, Song et al. [1] first proposed the concept of searchable
symmetric encryption (SSE). As new encryption primitive, searchable encryption enables the user to
search for a keyword over the ciphertext. However, the application was limited to searching on static
encrypted data and could not resist the simple adversary attack. In 2003, Goh et al. [2] formally defined
the secure incidence and developed a security model called the "semantic security" for adaptive
selective keyword attacks. However, the accuracy of the query result was limited due to the use of the
Bloom filter. In 2006, Curtmola et al. [3] proposed two new security models called "adaptive security"
and "non-adaptive security", introducing a single-keyword-search SSE with a formal security definition.
Due to the limitations of the SSE proposed earlier and the dilemma between ensuring user privacy and
efficient data usage on the cloud, Kamara et al. [4] introduced the dynamic searchable symmetric
encryption (DSSE) method, which enabled the user to perform search and update operations on
encrypted data.

The general searchable encryption algorithm improves the search efficiency at the cost of leaking
information about files or queries to the server, such as the search pattern and the access pattern. It is
generally acknowledged that the searchable encryption scheme is secure unless it does not reveal user

data and query information other than the information disclosed by the leakage profile. However, in the
real world, an adversary can exploit these leakages to launch statistical attacks to recover user data and
query information. For instance, Islam et al. [5] and Cash et al. [7] firstly exploited access pattern
leakage and prior knowledge about the dataset to recover the user's query information. Liu et al. [6]
exploited the search pattern to launch attacks and obtained users' query information. Zhang et al. [8]
completely exposed the client's query and recovered user data and query information through the file
injection attack. Simon et al. [44] leveraged both access and search pattern leakages to recover the
keywords of queries. Therefore, an important direction for future research is to focus on the
suppression of information disclosure rather than setting it as default.

Although some solutions have been proposed for the leakages and attacks described above, most
of the research focuses on forward-secure and backward-secure methods [9-11]. The ORAM can
address the problem of access pattern leakage [12,13,45], but it was impractical for widespread
adoption. Garg et al. [14] exploited ORAM and garbled RAM (Random Access Memory) to hide the
search pattern. Kamara et al. [15] proposed a general scheme for suppressing search pattern leakage.
The united structured encryption (SE) based on ORAM made the scheme more efficient than ORAM,
but the scheme was static. To overcome the shortcomings of ORAM, Wang et al. [16] proposed a
scheme that can hide the search pattern without utilizing ORAM and has high efficiency. However,
search operation needs to be done using the auxiliary server, leading to extra costs. Dauterman et al.
[17] leverage linear scans to build a system that can achieve better performance for excepted workloads,
but they do not implement features expected from a search engine such as finding non-exact matches,
ranking results, or providing summaries. In principle, solutions that do not leak any information to the
server can be built on powerful techniques such as secure two-party computing, full homomorphic
encryption (FHE), etc., but they are often impractical.

To achieve more secure searchable encryption, both the search pattern and the access pattern must
be hidden. The above-proposed solutions solve either the search pattern leakage or the access pattern
leakage but not both. Although the method proposed by Hoang et al. [18,19] exploited distributed data
structures to hide the search pattern or the access pattern, it is usually necessary to consider whether
there is collusion between servers. Akavia et al. [20] proposed a secure search using FHE on an
encrypted data structure. This scheme can seal the leakages of the search pattern and the access pattern,
but it is difficult to deploy in real environments. In addition, these solutions only address the
information leakage on the incidence (explicit) without considering the information leakage in
accessing the file (implicit).

This paper proposes a new dynamic searchable encryption scheme called oblivious shuffle
incidence matrix DSSE (OSM-DSSE) to access encrypted data obliviously under a single server. OSM-
DSSE can hide both explicit and implicit search patterns in addition to the access pattern, contributing
to a higher level of security. The contributions are as follows:
1. This paper proposes a shuffling algorithm with Paillier encryption [22,23] to address the problem

of access pattern leakage, which can shuffle the data in the incidence matrix to change the access
path.

2. This paper performs the search based on the group query and efficient 1-out-of-n OT protocol,
ensuring the privacy of the server and the client. At the same time, random tokens can be
generated to combine with the shuffling algorithm to hide the explicit search pattern.

3. Since searching the same keyword always returns the same file set, exposing the response length
is disclosed. This paper utilizes an optimized padding scheme to hide the response length.
Meanwhile, a database padding algorithm is proposed, which uses the combination of optimal
padding and clustering algorithm to reduce the redundant storage of data and hide the search
pattern completely with the minimum storage overhead.
The rest of this paper is organized as follows. The related work is presented in Section 2. The

preliminaries are presented in Section 3. The overview of the proposed scheme is described in Section
4. A detailed description of the algorithms is provided in Section 5. The experiment and analysis are
provided in Section 6. The conclusion is in Section 7.

2 Related Work

Song et al. [1] first proposed the concept of static searchable encryption, making search encrypted
data possible. Curtmola et al. [3] proposed the concept of adaptive security and the first scheme with
optimal search complexity, where the number of documents containing the keyword w. Many
improvements have been made in their subsequent work [24-26]. Chase and Kamara proposed
structured encryption to support queries on arbitrary-data-structure. Kamara et al. [4] proposed the
concept of dynamic searchable encryption, making searchable encryption no longer limited to static

operations. Although subsequent research efforts focused on effectiveness [15,27,28], dynamics
[9,29,30], localization [31,32], security [33-35], and complex functions [36-38], they still suffer from
leaking some important information. Attackers can use these leakages to attack and recover data and
cause more serious information leakages [5-8].

At present, some solutions have been proposed to deal with these leakages and attacks, but these
researches primarily focused on forward-secure and backward-secure properties. Forward-secure refers
to the ability to break the link ability of newly added data and query keywords; backward-secure means
that the server can no longer match and retrieve the deleted data. Stefanov et al. [9] proposed the first
solution to support forward-secure property, but it exhibits a linear time complexity for the search. Bost
et al. [10] proposed a scheme relying on primitives such as constrained pseudorandom functions and
puncturable encryption to achieve fine control of the opponent's power, preventing the adversary from
evaluating functions on selected inputs, or decrypting specific ciphertexts for forward and backward
security. Sun et al. [11] proposed the first practical, non-interactive backward-secure SSE scheme using
symmetric punctured encryption. However, the forward-secure and backward-secure methods mainly
aim at the information leakage in the update phase without considering the information leakage of the
access pattern and the search pattern. As a result, the problem of information leakage was not
completely solved.

Oya et al. [21] point out that, beyond access pattern, SSE also leaks search pattern leakage which
can further be leveraged to realize query recovery. However, the effectiveness of this attack relies on a
strong assumption of fully knowing the query frequency in the real world. Besides, the accuracy of
their attack based on maximum likelihood estimation is also probabilistic, and it significantly depends
on the query distribution. Recent attacks do not require strong knowledge assumptions on plaintext data,
but the volume pattern is essential for their accuracy.

The oblivious random access machine (ORAM) can hide the access pattern by confusing each
access process to make it indistinguishable from random access. The access pattern refers to the
sequence of operations and memory addresses. The ORAM was first proposed by Goldreich et al. [12]
to ensure that any data block in memory did not permanently reside at a physical address and that two
accesses are unrelated. Goldreich et al. also proposed an ORAM model, giving a square root (Square-
Root) and a layered solution. Zhang et al. [13] proposed a method based on ORAM access pattern
protection in the cloud storage environment. Garg et al. [14] proposed a TWORAM scheme that
reduces the client storage overhead while hiding the file access pattern with ORAM. Demertzis et al.
[45] present SEAL, a framework for encrypted databases with improved security via a light use of
ORAM and padding. It is open whether our attack applies in such modified settings. However, the
researches have shown that using ORAM to eliminate information leaks leads to high overhead and
low execution efficiency [39-41].

To overcome the shortcomings of ORAM, many researchers proposed schemes which can hide the
search pattern with high efficiency. Wang et al. [16] hide the search pattern in order to guarantee
trapdoor and keyword privacy. They used a particular type of additive homomorphic encryption to
accomplish the conjunctive keyword searchable encryption. To meet the privacy aims of the strategy,
they proposed two servers: a cloud server and an auxiliary server. They also used random polynomials
to improve user security. Their approach ensures a higher level of protection for cloud users. However,
search operation needs to be done using the auxiliary server, making this method not so efficient.

3 Overview of OSM-DSSE Scheme

3.1 System goal

We aim to effectively perform a privacy-protected keyword search and file update on an encrypted
cloud database. The main objectives of this system are as follows:

 Hide the access pattern
We utilize Paillier encryption to shuffle the incidence matrix. This algorithm can randomize
the position of keywords in the incidence matrix, confuse access paths, and hide access
patterns.

 Hide the search pattern
1) Based on the group query, the server utilizes the two-level map to obtain the target

data block containing multiple pieces of data. Furthermore, it executes an efficient 1-
out-of-n OT protocol with the client to obtain the target. In this process, the 1-out-of-n
OT protocol makes the server unable to distinguish which keyword the client is
searching for. The client also does not know the server's other messages except for the

searched keyword. This protocol protects the privacy of the client and server
simultaneously. Besides, the shuffling is performed after each search, which makes the
row position of the keyword in the incidence matrix change. It can also convert the
deterministic token into a random token (explicit search pattern). The adversary
cannot launch an attack by analyzing the search frequency.

2) If the client searches for the same keyword, it always returns the same size file. The
adversary can launch an attack by analyzing the response length. Therefore, this paper
utilizes an optimised padding strategy based on cluster algorithm to hide the response
length (implicit search pattern).

3.2 System model

Our system utilizes the client-server model (refer to Fig. 1). The client extracts the keywords of
the file and constructs an incidence matrix between the keywords and the file, encrypts the inci
dence matrix and the file, and sends them to the server. The client issues search and update requests to
the server. The server stores the encrypted incidence matrix and responses to the client's search and
update requests. Note that we consider a semi-honest (honest but curious) server. Even though data
files are encrypted during the access, the cloud server may try to derive other sensitive information
from users' search requests. Thus, although the server can faithfully follow the protocol, it can learn
information.

Fig 1 OSM-DSSE system model

3.3 System overview

The design goal of this system is to hide the search pattern and the access pattern of the searchable
encryption scheme. Search and update are two core operations in the system.

3.3.1 Hiding the access pattern

The access pattern refers to the user's access path, where the same access path easily identifies a
repeated query. When the client sends a search request to the server, repeated searches also lead to

javascript:;
javascript:;

disclosing the access pattern. The attacker can track the access path to obtain the query keyword and
the information of the incidence matrix.

It is challenging to hide the access pattern while significantly reducing the computational and
communicational cost of the searchable encryption scheme. The existing schemes [18,41] usually use
the "fetch-decrypt-reencrypt-upload" strategy to hide the access pattern, since data volume of
searchable encryption schemes is usually huge, it causes high communication and computation
overhead. Although we can adaptively utilize "fetch-decrypt-reencrypt-upload" strategy, e.g., just
reencrypt the access path for one search and several dummy access paths instead of the whole data
structure, it leaks important information by statistical attack. Fortunately, the matrix data structure
ensures us to only uploads the confusion matrix to the server, and the server performs homomorphic
calculation between the confusion matrix and the incidence matrix. The shuffling process is divided
into two stages: shuffling and homomorphic decryption, shown in Fig. 2.

Fig. 2 Shuffling process. The yellow lock indicates homomorphic encryption, and the blue lock indicates the symmetric

encryption

The specific procedure of shuffling is as follows. On the left in Fig. 2, the client calculates the
confusion matrix based on the permutation matrix and the diagonal matrix, and the confusion matrix is
encrypted with the Paillier pk . Here, some formulas are given to facilitate the calculation of the

confusion matrix.
1) Matrix-based data shuffling. Given a data sequence

1(,...,)nB B B= and a n n× permutation

matrix π , the position of the data block is changed by B π⋅ . For example, the blocks in

1

2

B
B

B

=

 can be changed with the permutation matrix
01

10
π

=

：

 1 2

2 1

01

10

B B
B

B B
π

⋅ = ⋅ =

 (1)

2) Matrix-based data scaling. Given a data sequence
1(,...,)nB B B= and a n n× diagonal matrix C ,

the matrix multiplication C B⋅ can scale B with C . For example, given 1

2

B
B

B

=

 and scaling

matrix
20

03
C

=

, it can be obtained:

 1 1

2 2

220

03 3

B B
C B

B B

⋅ = ⋅ =

 (2)

3) Based on the formulas (1) (2), the confusion matrix can be obtained:
 M Q P= ⋅ (3)

4) The client encrypts the confusion matrix with the Paillier public-key pk :

 ()' pkM E M← (4)

On the right in Fig. 2, the server performs the homomorphic calculation between the encrypted
confusion matrix and the incidence matrix to obtain the shuffled incidence matrix.

 ' 'I M I←% e (5)

The row position in the incidence matrix is changed when the shuffling phase is over.
Homomorphic decryption is performed subsequently. The incidence matrix on the server is encrypted
with homomorphic encryption after shuffling. It can be seen from the property of Paillier encryption
that two parties involved in the calculation are homomorphic encryption and non-homomorphic
encryption. Therefore, to facilitate the next shuffle operation, the server needs to decrypt the incidence

matrix with sk of the Paillier before the next search is performed. It should be noted that the client

generates different public/private key pairs (),pk sk of Paillier to resist malicious attacks by the server.

The server performs homomorphic decryption with sk to get the symmetric encrypted incidence

matrix.

 ()'' skI D I← % (6)

3.3.2 Hiding the search pattern

Simon et al. [21] pointed out that the search pattern can be divided into the explicit and the
implicit. The explicit means searching for the same keyword always generates the same deterministic
token, while the implicit means searching for the same keyword always returns the result set of the
same size. Attackers can perform query recovery attacks using the query volume and the frequency
leakages. It is challenging to hide the search pattern while significantly reducing the communicational
cost of the searchable encryption scheme. Originally padding scheme can effective hides implicit
search pattern, but it pads result set of every keyword to the maximum length which means it causes
huge storage overhead. This paper proposed an optimized padding scheme by using a cluster algorithm
and calculating the optimal padding length without leaking private information.

Therefore, both the explicit and the implicit search patterns are hidden in this paper.
Implicit search pattern hiding In this paper, we design an optimized padding scheme which
significantly reduces server storage overhead to hide the implicit search pattern. We will introduce
details of the optimized padding scheme as follow.

Padding the response length of each keyword to their maximum response length is a native
approach to designing a volume-hiding encryption scheme. It is easy to see that this hides the response
lengths. Unfortunately, it also induces a non-trivial storage overhead. So we propose an optimized
padding method to overcome this shortcoming.

Assuming that the number of keywords in the database is N, and to prevent attacks based on
response length, the database owner can pad the real responding volume distribution by inserting
dummy files. More formally, when responding to a query for the keyword w, the CS will see that it

matches o r p

w w wN N N= + files, where r

wN is the number of real files matched by w, and p

wN is the number

of confused files used to pad. Similarly, the total number of files in the padded database is o r pN N N= + ,

where rN is the number of real files, and pN is the number of disturbing files. Then the observed

probability o

we , real probability r

we , and confusion probability p

we of keywords can be expressed as

[]
o

o w
w o

N
e E

N
= , []

r
r w
w r

N
e E

N
= , and []

p
p w
w p

N
e E

N
= . We denote γ representing the ratio of the inserted dummy file

to the real file:
r

p

N

N
γ = . By combining this with o r p

w w wN N N= + , we can obtain the relationship between o

we ,

r

we , and p

we :

1 1 1

(1)
1 1

o r p p o r

w w w w w we e e e e e
γ

γ γ γ γ
= + ⇔ = + −

+ +
 (3.1)

Since
p
we must be between 0 and 1, the lower bound of γ can be obtained:

max{ , }
1

r o r o

w w w w

o o
w W

w w

e e e e

e e
γ

∈

− −
≥

−
.

In order to achieve the optimal padding to minimize γ , we utilized the classical k-means

clustering algorithm to cluster keywords according to their response length. For a given optimal cluster

1(,...,)mG GΓ = , when
iw G∈ ,

max()

r

ie represents the maximum value of r

we , and
min()

r

ie represents the

minimum value of
r

we . According to Equation (3.1), the minimum value of γ can be calculated:

min
1

(,) max{ , } max{max{ , }}
1 1i

r o r o r r

w w w w w i w i

o o
w W i m w G

w w i i

e e e e e e e e
e

e e e e
γ

∈ ≤ ≤ ∈

− − − −
Γ = =

− −

 max() min()

max()
1

1

1
max{ , } 1 () 1

1-

r r m
i i r

i i
i m

ii i

e e
G e

e e≤ ≤
=

−
= − = −∑

 (3.2)

Therefore, γ is the minimum when max() min()1-

1-

r r

i i

i i

e e

e e
=

: i.e., in order to achieve the optimal padding, the

expected observed probability of each cluster should be max()

1

r

i

i

e
e

γ
=

+
 . Note that the keyword will pad to the

expected observed probability ie with the group to which it belongs. For example, the database

{ }1 28,...,I I I= can be represented by seven result sets of keywords. According to the response length of

keywords, they can be divided into two categories: {1,2,2} and {5,5,6,7}. Equation (3.2) gives us

min

3

14
γ = , then 1

1

17
e = , 2

7

34
e = . The database { }1 28,...,I I I= will be padded with { }1 34,...,oI I I= , and the

response length of the seven keywords will be padded with {2,2,2} and {7,7,7,7}.
An optimized padding scheme (, , ,)OptPad ResNum Cluster PadNum Pad= is a tuple that consists of six

polynomial-time algorithms:
 ()L ResNum I← is a probabilistic algorithm to calculate the length of result set of each keyword.

It takes a random incidence matrix I as input and output the L which
iL is the length of

result set of a keyword
iw .

 ()Cluster LΓ← is a probabilistic algorithm to cluster keywords according to their response

length, it takes L as input and output optimal cluster 1(,...,)mG GΓ = .

 ()pn PadNum← Γ is a probabilistic algorithm to calculate the number of dummy files of each

keyword
iw according to equation 3.2, it takes Γ as input and output number of dummy files

of each keyword pn .

 ' (, ,)I Pad pn I F← is a probabilistic algorithm to implement optimized padding. It takes pn , I

and F as input, determines positions j of dummy files of each keyword jw by

pseudorandom function, appends dummy files
idf to F and set 1[,]I i j = . It outputs the

random incidence matrix 'I which after optimized padding.

Fig. 3 Hidden search pattern diagram

Explicit search pattern hiding The group query is performed in this paper. It should be noted that if
similar semantic keywords are grouped, the adversary can use similar semantics to infer the
relationship between the keywords, causing a partial privacy leakage. So, the secure incidence is
constructed where the pseudo-random function determines the location of keywords and files to ensure
the randomness of the storage location. In this case, the attacker cannot infer the relationship between
the keywords in the subsequent group queries.

For search, the two-level map and the efficient 1-out-of-n OT protocol are utilized to hide the
explicit search pattern. After the search, the server performs the shuffling operation (shown in Fig. 2) to
change the row position of the incidence matrix. Since the search token is related to the keyword's
position, the shuffling also converts the deterministic search token into a random one.

The client utilizes the pseudo-random function and hash to randomly locate the keywords before
performing the group query. The search process is as follows. The client obtains the line number of the

search keyword according to the dictionary D and calculates the block number l to which the

keyword belongs. Then, the client's selection σ is combined to generate a search token and send it to

the server. Once the server receives the search token, it retrieves the two-level map Ω to obtain a row
number group of size ν according to the search token, and then retrieves the incidence matrix

according to the row number group to obtain a data block of size ν . After that, the server and the client

execute an efficient 1-out-of-n OT protocol. The server returns the search results to the client for
decryption. The client obtains the file identifier set containing the searched keyword.

After the search, the incidence matrix needs to be shuffled with the shuffling algorithm to
generate the random search token. The diagram of the hidden explicit search pattern is shown in Fig. 3.

4 Details of the Proposed OSM-DSSE Scheme

4.1 Data structure

 Incidence matrix. The incidence matrix is used to build an encrypted incidence, and its
elements represent the correspondence between keywords and files. Specifically, the row
indicates the keyword w , and the column indicates the file id . If the keyword of the i-th line

appears in the file file of the j-th column, [,] 1I i j = ; otherwise [,] 0I i j = . Search and update

operations access a row or column of the incidence matrix. I is encrypted with the IND-CPA
tuple (, ,)Gen Enc Decε .

 Two hash tables
fT and

wT . The location of files and keywords in I is determined when

constructing the incidence matrix for search or update operation.

1) File hash table: (), ,
jf id jT s y st , where ()

2jid k js G id← is the key and G is a pseudo-random

function;
iid

s indicates a file with an identifier
iid , and the column incidence { }1,....,jy n∈

is equal to the position of
jid

s in
fT ; st means status, and st = 1 means add while st = 0

means delete.

2) Keyword hash table. (),
iw w iT s x , where ()

2iw k is G w← is the key, and
iw indicates the

keyword; the row incidence { }1,....,ix m∈ is equal to the position of
iw
s in

wT .

 Dictionary D . The dictionary stores key-value pairs []D w x= , recording keywords and the

corresponding line numbers.
 Two-level map (),Mw AΩ . It consists of an address map table and an array. For the address map

table (),Mw l i , the server searches the array incidence i based on the block number l , where

[]A i represents the value corresponding to the position of 1i + . This value is used to

determine the row of the search keyword.
The two-level map is constructed through the following three steps:

a) The dictionary D is partitioned into ν -blocks
1,..., tI I and

tI is padded up to ν

elements if necessary.
b) The block number is taken as the key of the

wM , and the value corresponding to the key

is the starting incidence of each data block in the array A .
c) Store the row number of the incidence matrix in the array A .

 Address map table (),idMf s j . For the update, the server determines the column j where the

update file is located according to the update token.

4.2 Construction of OSM-DSSE

This section defines the OSM-DSSE scheme, consisting of the four algorithms

(), , ,Setup Search pathShuffing Update presented in the subsections below.

 () (), , , ,K I C Init Fκ σ← : various parameters are input to obtain the public parameters.

Firstly, the client generates public parameters by .DSSE KeyGen . These parameters include the

symmetric key
FK to encrypt files and the key

IK to encrypt incidence.

Secondly, the client constructs a secure random incidence matrix by .DSSE BuildIndex . As shown in

Algorithm 1, the client generates a random key
IK . The client extracts the keywords ()1,..., mW w w= from

the file set { }1,..., nF f f= (each file has a unique identifier ()1,..., nid id).

Thirdly, the client divides the keyword set W into data blocks of size ν . The last data block is

padded up to ν elements if necessary, and it is numbered as ()1, 2,..., mν

 . The client constructs a two-

level map (),Mw AΩ and encrypts the key of Mw . Simultaneously, the client constructs the dictionary D

according to the (),
iw w iT s x and the fM according to the (), ,

jf id jT s y st .

Then, the client encrypts the file by .Encε , sending the secure random incidence matrix I ,

encrypted file C , two-level map Ω , and address map table fM to the server. Meanwhile, the client

saves δ locally.

Lastly, according to the optimized padding method, we execute to hide search pattern. As shown
in line 15 of Algorithm 1, we determine the length of the result set that needs to be padded for each
keyword

1(, ,)mL L L= according to equation 3.2, select the maximum padding length as the number of

dummy files, and the columns corresponding to the dummy files are also randomly inserted into the
incidence matrix. Consequently, if the keyword of i th− line whose response length need to be padded,

we will randomly select l dummy columns
1(, ,)lc c according to the padding length l and set

1 2{ [,] 1, , [,] 1}I i c I i c= = . The positions of each keyword, file and virtual dummy in the incidence matrix

are determined by the pseudorandom function G and the hash tables
fT and

wT .

Algorithm 1: () (), ', ,K I C Init Fκ←

Input: security parameter k , file set F
Output: keyword set W , random incidence matrix I , encrypted file C

Client:

1. () (). 1K DSSE KeyGen κ←

2. Extract ()1,..., mW w w= from { }
1
,...,

nid idF f f=

3. for ()1,...,i m∈ do

4. () ()
2

,
i iw k i i w ws G w x T s← ←

5.

() ()(). , ,II DSSE BuildIndex K F W←

6. //divide the keyword set W into data blocks of size v

7. 1 2(, , ,)m
v

W W W W←

8. construct (),
iw w iT s x and (), ,

jf id jT s y st

9. //construct Ω according to
wT

10. () (), ,
iw w iMw A T s xΩ ←

11. //construct
fM according to

fT

12. ()(,) , ,
jf id f id jM s j T s y st←

13. . ()C Enc Fε←

14. send I , C , Ω and fM to server

Server:
15. //calculate the length of result set of each keyword

16. . ()L OptPad ResNum I←

17. // cluster keywords according to their response length

18. . ()OptPad Cluster LΓ←

19. //calculate the minimum ratio of the inserted dummy image to the real image minγ according to

3.2

20. min max()

1

(| |) 1
m

r

i i

i

G eγ
=

← −∑

21. //calculate the expected observed probability of each cluster according to minγ

22.
max()

min1

r

i

i

e
e

γ
←

+

23. // calculate the number of dummy files of each keyword according to
ie

24. . ()pn OptPad PadNum← Γ

25. // implement optimized padding

26. . (, ,)pI OptPad Pad pn I F←

27. [] [] ()' , , ||I iI i j I i j H K r← ⊕

 ()Srch τϒ← : Input search token and get response results.

The client generates the search token ()3|| ,l k yτ ← by .DSSE SrchToken , where ()3||l k is the encrypted

block number and y is the client's choice to implement the 1-out-of-n OT protocol. The client obtains

the row number
ix by []i ix D w← and calculates modry g h pσ= , where ()r r p< is a random value.

javascript:;

The server performs group queries according to the search token as follows:
Firstly, the server parses ()3|| ,l k yτ ← and queries the ()3|| ,wM l k i of (),wM AΩ to obtain the starting

position of the keyword in the array A , and then sequentially searches A to obtain the (),...,i i vrow r r+= .

Secondly, the server searches the encrypted incidence matrix according to (),...,i i vrow r r+= and obtains

a data block ()1,..,B b bν= of size ν ,which is symmetrically encrypted.

Then, for this result set, the server and the client execute the efficient 1-out-of-n OT protocol,

where the value of n is to ν . The server calculates () ()()1 1, ,..., ,c cν να α , where modjk

j g pα = ,

()() mod
jk

jj j

y
c m p

h
ε= , ()* , 1,...,j R pk Z j ν∈ = ; να is the auxiliary parameter, and cν is a ciphertext sent by

the server to the client.

Finally, the client decrypts the ciphertext. The client performs the first decryption () c
m σ

σ
σ

ε α= to

obtain the result of symmetric encryption. Then, the client performs the second decryption with the
initial row number

ir and the key
IK to obtain the file identifiers containing the keyword to be queried,

i.e., () ()||w I im H K rσεϒ ← ⊕ , where ()0,1
n

wϒ = indicates the result vector.

The server returns the file sets containing dummy items to the client based on the result vector
after padding. After getting the encrypted data, the client decrypts the data using the key

FK to obtain

the data that satisfies the query.

Algorithm 2: (),Srch K Wϒ←

Input: key K , keyword set W

Output: search result ϒ

Client:
1. //generate the search token

2. () (). ,s IDSSE SrchToken K wτ ←

3. //get the row number

4. []i ix D w←

5. send
ix to Server

Server:

6. //obtain the starting position of the keyword
ix in the array

7. 3(,)i wr M l k i←

8. //choose v keywords to achieve the group search

9. for 0(, ,)j v∈

10. row.append(
ir j+)

11. for (, ,)i i vj r r+∈

12. '[]i I jϒ ←

13. //Server execute the 1-out-of-n OT protocol

14. for 1(, ,)j v∈

15. modjk

ja g p←

16. ()() modjk

jj j

y
c m p

h
ε← (1* , , ,j R Pk Z j v∈ =)

17. send a and c to Client

Client:
18. //Client execute the 1-out-of-n OT protocol

19. for 1(, ,)vσ ∈

20. ()
c

m σ
σ

σ
ε α←

21. for 1(, ,)i v∈

22. () ()w I im H K rσεϒ ← ⊕

23. sent wϒ to server

Server:
24. sent encrypted file set to Client
Client:
25. decrypt the file set and obtain the data that satisfies the query

javascript:;

Algorithm 3: ()'PathShuffling I ：

Input: incidence matrix 'I .

Output: new incidence matrix after shuffling ''I

Client:

1. constructs a confusion matrix M

2. (,) . (1)pk sk PE Gen κ←

3. //encrypt confusion matrix M
4. ()' . pkM PE Enc M←

5. send 'M to server

Server:

6. //performs homomorphic calculation between the 'M and 'I

7. ' 'I M I←% e

Client:

8. sent sk to server

Server:

9. ()'' . skI PE Dec I← %

10. send ''I to client

Client:

11. update the dictionary D according to ''I

 ()'' 'I PathShuffling I← : Input the incidence matrix to be shuffled, and output the new incidence

matrix after shuffling.
After the search, the server executes the path shuffling, as shown in Fig. 2. The client constructs

and encrypts the confusion matrix with Paillier, then uploads it to the server. The server performs the
homomorphic calculation. This process can change the access path to hide the search pattern and access
pattern.

First, the client constructs the permutation matrix P and the diagonal matrix Q . The dot product

operation is performed on P and Q to form the confusion matrix M .

The client generates a public and private key pair (),pk sk by .PE Gen , and encrypts the confusion

matrix M with pk , i.e., ()' . pkM PE Enc M= . Then, the client sends 'M to the server. The server performs

homomorphic calculation between the 'M and 'I to obtain the shuffled incidence matrix I%, namely

' 'I M I←% e . Since the Paillier encryption satisfies semantic security, the same plaintext can generate

different ciphertexts. The result is homomorphically encrypted after the homomorphic calculation is
performed. However, this calculation is not conducive to the next data shuffling. So, the client sends
the sk to the server for homomorphic decryption before the next search, i.e., ()'' . skI PE Dec I← % , where

''I represents the result of symmetric encryption. After shuffling, the keyword’s position in the
incidence matrix will be changed. To correctly obtain the row number of the next keyword for search,
the client needs to update the dictionary D . Moreover, the client should generate the different public
and private key pairs to ensure the server cannot decrypt the confusion matrix.
 () ()', 'upd UC I Upda τ← : Input the key and a file, and output the updated encrypted file and incidence

matrix.
The update operation needs an interaction between the client and the server, and it contains add

and delete operations. An update token is generated by .DSSEUpdToken to perform updates by the server.

It should be noted that the proposed solution will not reveal the update type, since both the add and
delete operations are written back to the server.

For add operation, the client confirms that column j is to be added by fT and sets the status value

to 1. The client extracts the keywords of the file and constructs a column matrix I according to the wT

before it encrypts the file by .Encε . Then, the client sends (), 'u cτ to the server. The server utilizes the

token to update the incidence matrix 'I , the address map table Mf , and the ciphertext C .

For the delete operation, the client confirms that column j is deleted by fT and sets the status

value to 0. The client constructs a column matrix I with all 0. Then, the client sends uτ to the server.

The server utilizes the token to update the incidence matrix 'I , the address map table Mf , and

ciphertext C .

Algorithm 4: () ()', ' ,updC I Upda K f←

javascript:;

Input: Key K and a file f

Output: the updated matrix 'updI

Client:
1. //generate the update token

2. () (), ,u fc UpdToken K fτ ←

3. if op add==

4. choose a column j

5. //update
jid

s in the fT

6. 2 ()jid k js G id←

7. //sets the status value to 1 in fT

8. 1[] ,
jf id jT s y←

9. extracts num keywords from the file

10. for 1(, ,)i num∈

11. //update
iw
s in the wT

12. 2 ()iw k is G w←

13. []
ii w wx T s←

14. //update the column matrix 'I according to wT

15. [] 1iI x ←

16. ' . ()c Enc Iε←

17. sent (), 'u cτ to Server

18. if op delete==

19. choose a column j

20. //update
jid

s in the fT

21. 2 ()jid k js G id←

22. //sets the status value to 0 in fT

23. 0[] ,
jf id jT s y←

24. (0)nI ←

25. ' . ()c Enc Iε←

26. sent (), 'u cτ to Server

Server:
27. if op add==

28. //add I to incidence matrix 'I

29. '[]. ()I j append I

30. update address map table fM according to aτ

31. sent 'updI to Client

32. if op delete==

33. //replace the j column of incidence matrix 'I

34. '[]I j I←

35. update address map table fM according to aτ

36. sent 'updI to Client

4.3 Security analysis

Some definitions and theorems are given first to prove the security of the above scheme.
Definition 1: The leakage function (), ,stp srch updL L L L= is defined as follows.

1. () ()1, , ,..., ',n stpN ID c c L I C< > ← : Input the encryption incidence matrix 'I and the

encrypted file set C ; Output the maximum value N of keywords and files, the file

identifier
1,{ ..., }nID id id= , and the encrypted file size

iid
c (1 i n≤ ≤).

2. () ()',srchl L I Q← : Input the encryption incidence matrix 'I and the query Q ; Output the

searched block number l .

3. () [](), ', ,i upd jj c L I I j c← : Input the encryption incidence matrix 'I , the encryption

column matrix []I j , and the encrypted file jc ; Output the column number j of the

encrypted file and the size ic of the encrypted file.

Definition 2: The simulator (), ,S SimStp SimSrch SimUpd= is defined as follows.

1. () ()1, , ,..', .,
SimM Sim nI C SimStp N ID c c<← > : The simulator constructs an encrypted incidence

matrix and an encrypted file with random values according to the information

()1, , ,..., nN ID c c< > leaked by the leakage function ()',stpL I C . Then, the encrypted

incidence matrix and file are sent to adversary A.
2. ()

,b k

s SimSrch lτ ← : The simulator randomly selects a keyword to simulate the search

token
,b k

sτ according to the block number information l leaked by the leakage function

()', ,srchL I D Q . Then, the token is sent to adversary A for the search.

3. () ()
,

, ,
fb k

s

i iSimUpdc j cτ ← : The simulator randomly selects a file based on the information

(), ij c leaked by the leakage function ()', , [],upd M T iL I I I i c to simulate the update token

,f b k

sτ and the ciphertext file ic . Then, the token and the ciphertext file are sent to

adversary A for the update.

Theorem 1: Adaptive Semantic Security. Suppose that (), ,OSM Setup Search UpdateΣ = is an interactive

scheme based on an incidence matrix that hides the search pattern and the access pattern, and λ∈Ν is a

security parameter. There is a leakage function (), ,stp srch updL L L L= for any PPT stateful adversary A that

issues a polynomial query q , and there is a stateful simulator (), ,S SimStp SimSrch SimUpd= so that:

() () (), ,1 1Pr PrOSM OSM

S LReal Idea negl lλ λλΣ Σ
Α Α= = − ≤

It can be proven that OSMΣ exhibits adaptive semantic security under L .

Proof: For all PPT adversary A, the difference between the output probability of the ()OSMReal λΣ
Α

and ()
, ,

OSM

S L
Ideal λ

Α

Σ given in Theorem 1 is negligible. A series of five games are defined to prove the

security (refer to the Appendix for details). The first game is a real experiment, and the last game is an
ideal experiment. Also, the success event of each game is defined, where

iGame stands for the event that

the opponent correctly guesses the challenge bit b, and the []Pr 1iGame = represents the probability of the

succeeding adversary attacks. The security is proven by the progressive relationship of the related
games, and the full proof is provided in the Appendix.

5 Experiment and analysis

5.1 Performance analysis

5.1.1 Storage overhead

Client storage: The client maintains two hash tables and a dictionary. Storage costs of the two hash

tables are proportional to the number of keywords and files, i.e., ()O m and ()O n , where m , n

represents the number of keywords and files, respectively. The storage cost of the dictionary is

proportional to the number of keywords, i.e., ()O m . Therefore, the total storage cost of the client is

()O m n+ .

Server storage: The server maintains the incidence matrix 'I , a two-level map Ω , and an address

map table Mf . The incidence matrix is a m n× -dimensional matrix with a storage cost of ()O m n⋅ . The

two-level map Ω consists of two parts: an address map table Mw and an array A . Storage of Mw is

proportional to the number of blocks. Assuming that the data are divided into t blocks, the storage cost

of Mw is ()O t . The size of array A is related to the number of rows of the incidence matrix, and the

storage cost is ()O m . The storage cost of Mf is related to the number of files, and the storage cost is

()O n . Therefore, the total storage cost of the server is ()O m n m n t⋅ + + + .

5.1.2 Communication overhead

javascript:;
javascript:;
javascript:;
javascript:;

In the setup phase, the client sends the encrypted incidence matrix and the encrypted file to the

server. The communication overhead is ()iO m n nc⋅ + , where m n× is the size of the encrypted incidence

matrix and
ic is the size of each encrypted file.

In the search phase, the client sends the m m× confusion matrix to the server, and the

communication overhead is ()2O m . The server returns an encrypted data block of size ν with a

communication overhead of ()O ν .

In the update phase, the client sends the 1m× column matrix to the server, and the communication

overhead is ()O m .

5.1.3 Computational overhead

Client computational overhead. The client mainly generates a permutation matrix, a diagonal
matrix, and an encrypted confusion matrix. Both the permutation matrix and the diagonal matrix are

m m× dimensions, so the confusion matrix is of dimension m m× . In addition to the permutation matrix

and the diagonal matrix, there are m pieces of data that are not 0. The remaining numbers are all 0, and

the computational cost of generating 0 is negligible. So, the computational cost of generating the

permutation matrix and the diagonal matrix is ()mΟ .

Server computational overhead. The server needs to re-encrypt data of size ν and performs 2ν

times of modular exponentiation operation when executes the 1-out-of-n OT protocol. The server
mainly performs the homomorphic calculation between the confusion matrix and the incidence matrix.
The size of the confusion matrix is m m× , and the target matrix has m rows. So, the computational cost

is ()3mΟ .

5.2 Experimental evaluation

5.2.1 Experiment preparation

The proposed OSM-DSSE scheme is evaluated in a real network environment and system setting.
For search operation, a round of interaction is defined as client->server->client, which means that a
search request is sent from the client to the server, and the data block is then downloaded from the
server to the client . For update operation, a round of interaction is defined as client->server, indicating
that the client sends an update request to the server.

The hardware of the client and the server are configured as follows. The hardware configurations
of client are Intel Core i5-8400 CPU @ 2.80 Hz, 16 GB RAM, 256 GB hard disk, and 1TB SSD.
Besides, the client runs an operating system of Windows 10 64 bit. The hardware configurations of the
server are 32 CPUs @ 2.70 GHz and 512 GB RAM. And the operating system of the server is CentOS
7.2 64-bit.

The Google sparse hash is used to realize the hash table fT and wT , and the hash tables are saved

on the client. The file and the incidence matrix are pre-encrypted with the IND-CPA and sent to the
server.

The online public dataset Enron [42] (mail dataset) is taken as the experiment dataset. The dataset
contains data from approximately 150 users, and the corpus contains about 500,000 messages. In the
experiment, the emails of the 150 users are used. Since most of the emails are personal, they capture
informal conversations between two individuals. Therefore, a stemming algorithm, namely the Porter
Stemming Algorithm [43], is used to find each word’s root in the document set and delete the most
common words such as 'the', 'a', and 'from' to extract keyword sets from the corpus. For comparison,
300,000 files and 300,000 keywords are selected to construct an encrypted incidence matrix of different
sizes (the largest incidence matrix has 9×1010 keyword-file pairs).

5.2.2 Experimental results

In the experiment, the performance of search and update operations of the proposed scheme is
evaluated and compared with existing schemes.

The time for creating an incidence matrix of different sizes is evaluated to illustrate how the size
of the dataset influences the incidence of construction time. As shown in Fig. 4, the construction time is
10.114 s for an incidence matrix of 103×103. When the size of the incidence matrix exceeds 103×103,
the time to construct the encrypted incidence matrix increases rapidly. For example, it takes
approximately 20 minutes to construct a 104×104 incidence matrix with 108 data. Since the incidence

matrix is only constructed once during the setup phase, the relationship between the search, update time,
and the size of the incidence matrix is mainly investigated.

Fig. 4 The relation between token generation and number of key-word pairs

Then the cluster distance threshold is evaluated. For setup operation, keywords are clustered by
it’s response length into various sets, the cluster distance threshold not only affects the cluster number
but also influences the maximum padding length. Therefore, it is essential to choose a suitable cluster
distance threshold.

For the cluster distance threshold, a multiple of 50 distance in [50,500] is selected as the
experimental data to evaluate the cluster number. The number of cluster represents kinds of responds
length, excess cluster will increase time cost of clustering algorithm and matrix construction in the
setup operation. It can be seen from Fig. 5 that the cluster number decreases along with the cluster
distance threshold increases. When the cluster distance threshold is 50 distance with 156 clusters and
when cluster distance threshold is 100 distance with 107 clusters. However, the cluster number curve
tends to be flat when the cluster distance threshold exceeds 200 distance with 74 clusters, when the
cluster distance threshold is 250 distance with 63 clusters.

Fig. 5 The relation between cluster number and cluster distance threshold

The maximum padding length is evaluated. As shown in Fig. 6, the maximum padding length is 99,
149, and 199 for cluster numbers with the size of 100, 150, and 200, respectively.

Fig. 6 The relation between cluster distance threshold and maximum padding length

To obtain the cluster distance threshold that contributes to both good cluster number and
maximum padding length. Fig. 7 shows the relationship between cluster number and maximum
padding length under different cluster distance threshold, where the red bar and the blue bar represent
the cluster number and maximum padding length, respectively. It can be seen that the difference
between the cluster number and the maximum padding length exhibits less variation for cluster
distance of 200 distance and 250 distance. Since this paper's main purpose is to reduce server storage

overhead, cluster distance of 200 is selected. Then, the search and update time of proposed scheme is
compared with that of other schemes under the different sizes of the incidence matrix.

Fig. 7 The comparison between clusters number and maximum padding length

 As shown in Table 1, the proposed scheme OSM-DSSE is compared with some existing schemes
in terms of storage overhead, communication overhead, and the ability to hide search and access
patterns. The overhead of all schemes is measured on average. Only the size of the encrypted incidence
is considered for server-side storage. m and n respectively denote the number of keywords and files

with a maximum value of M and N, i.e., m M≤ , n N≤ . k represents the number of servers, ν

represents the size of the data block, p represents the number of processors, z is the size of the bucket

in PathORAM.
The IM-DSSE is a traditional DSSE scheme that leakages the search pattern and access pattern.

The ODSE employs multi-server PIR and Write-Only ORAM to hide the access pattern. The DOD-
DSSE leverages two non-colluding servers to realize the “fetch-reencrypt-swap” strategy, so that the
data structure-access pattern can be hided. The DORY splits trust between multiple servers and utilize
Bloom filter to hide the access pattern. Compared with the above schemes, the proposed scheme not
only achieves a low storage and communication overhead, but also hides the search pattern and access
pattern.

Table 1 Comparison of the proposed scheme and its counterparts

Scheme

Storage Communication Hide
search
pattern

Hide
access
pattern

Client Server search update

OSM-DSSE ()O m n+ ()O m n⋅ ()O ν ()O m √ √

IM-DSSE[44] ()O m n+ ()O m n⋅
n

O
p

 ()O m × ×

DORY[16] (m+n)O

()O m n⋅

()O ν

()O m

× √

ODSE [19]
() ()()log 1O M N N+ +

()O kM N⋅ ()O M N+ × √

DOD-DSSE[18] ()O N ()2O kN ()O N √ √

Finally, the performance of search and update operations of the proposed scheme is compared
with that of DOD-DSSE [18], ODSE [19], DORY [16] and Wang et al.’s scheme [17] under different
incidence matrix sizes, and the results are shown in Fig. 8 and Fig. 9. The DOD-DSSE leverages two
non-colluding servers and exploits the properties of an incidence matrix to avoid information leakages.
The Wang et al.’s scheme uses multiplicative homomorphism and random polynomials with an
appropriate degree to guarantee that the user cannot learn anything other than the desired search result.
It should be noted that although Paillier is used to achieve shuffling in the proposed scheme, the
shuffling operation is performed after the search, which does not affect the search performance. It can
be seen from Fig. 8 that the search time of OSM-DSSE, DORY, DOD-DSSE and Wang et al.’s scheme
is 1.67s, 1.46s, 1.73s, and 3.23s respectively for the keyword-document pair with the size of 108. The
search time of OSM-DSSE, DOD-DSSE, Wang et al.’s scheme and ODS-Tree is 1.89s, 3.47s, 2.21s,
6.11s, respectively, for the keyword-document pair with the size of 1010 . When the size of the keyword-

document pair increases is 109 10× , the search time of the Wang et al.’s scheme is approximately 4x

compared to that of the OSM-DSSE. This is due to the fact that OSM-DSSE only requires searches on
hash table (e.g., get keyword iw for dictionary D) and utilize only one server, while Wang et al.’s

scheme works on use of multiple servers results extra computation and communication overhead.

Fig. 8 The relation between search time and number of keyword-file pairs

For the update operation, it can be seen from Fig. 9 that the update time of OSM-DSSE, DOD-

DSSE, wo

worODSE and wo

itODSE is 1.21 s, 1.87 s, 3.17 s, and 3.97 s, respectively, for the keyword-

document pair with the size of 108. The update time of OSM-DSSE, DOD-DSSE, wo

worODSE and wo

itODSE

is 1.83 s, 2.29 s, 3.63 s, and 4.83 s, respectively, for the keyword-document pair with the size of

108.When the size of the keyword-document pair increases to 9x1010, the update time of the wo

itODSE is

approximately 3x compared to that of the OSM-DSSE. This is because the size of update token is

minimal (e.g., a binary string) while wo

itODSE needs to transmit a lot of data to several servers.

Fig. 9 The relation between update time and number of keyword-file pairs

7 Conclusion

This article proposes a searchable encryption scheme named OSM-DSSE to hide the search
pattern and access pattern. An effective shuffling algorithm based on Paillier is proposed to shuffle the
incidence matrix, so that the position of the row in the incidence matrix is changed. This scheme
combines the 1-out-of-n OT protocol and the optimized padding strategy to realize random data access.
Besides, the security of the proposed scheme is formally analyzed, showing that the proposed scheme
provides adaptive semantic security that can be against selective adversaries. Furthermore, the OSM-
DSSE achieves approximately 3-4x execution speed than existing schemes. The optimal block size will
be investigated in the future, and the scenarios with different security levels will be updated.

Acknowledgment

The authors thank TopEdit (www.topeditsci.com) for its linguistic assistance during the
preparation of this manuscript.

References

[1] D. X. Song, D. Wagner, and A. Perrig: Practical techniques for searches on encrypted data. In
Proceeding 2000 IEEE Symposium on Security and Privacy, IEEE, 44–55 (2000)

[2] E.-J. Goh et al: Secure incidences. In: IACR Cryptol, ePrint Arch., 216 (2003)
[3] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky: Searchable symmetric encryption:

Improved definitions and efficient constructions. Journal of Computer Security. 19, 895-934
(2006)

[4] S. Kamara, C. Papamanthou, and T. Roeder: Dynamic searchable symmetric encryption. In:

Proceedings of the 2012 ACM conference on Computer and communications security. pp.
965–976 (2012)

[5] M. S. Islam, M. Kuzu, and M. Kantarcioglu: Access pattern disclosure on searchable
encryption: ramification, attack and mitigation. In: Ndss, vol. 20. Citeseer, p. 12 (2012)

[6] C. Liu, L. Zhu, M. Wang, and Y.-A. Tan: Search pattern leakage in searchable encryption:
Attacks and new construction. Information Sciences. 265, 176–188 (2014)

[7] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart: Leakage-abuse attacks against searchable
encryption. In: Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, pp. 668–679 (2015)

[8] Y. Zhang, J. Katz, and C. Papamanthou: All your queries are belong to us: The power of file-
injection attacks on searchable encryption. In: 25th {USENIX} Security Symposium
({USENIX} Security 16), pp. 707–720 (2016)

[9] E. Stefanov, C. Papamanthou, and E. Shi: Practical dynamic searchable encryption with
small leakage. In: NDSS, pp. 72–75 (2014)

[10] R. Bost, B. Minaud, and O. Ohrimenko: Forward and backward private searchable
encryption from constrained cryptographic primitives. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1465–1482 (2017)

[11] S.-F. Sun, X. Yuan, J. K. Liu, R. Steinfeld, A. Sakzad, V. Vo, and S. Nepal: Practical
backward-secure searchable encryption from symmetric puncturable encryption. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pp. 763–780 (2018)

[12] O. Goldreich and R. Ostrovsky: Software protection and simulation on oblivious rams.
Journal of the ACM (JACM), 43(3), 431–473 (1996)

[13] J. Zhang, Q. Ma, W. Zhang, and D. Qiao: Tskt-oram: A two-server k-ary tree oram for access
pattern protection in cloud storage. In: MILCOM 2016-2016 IEEE Military Communications
Conference, IEEE, pp. 527–532 (2016)

[14] S. Garg, P. Mohassel, and C. Papamanthou: Tworam: Round-optimal oblivious ram with
applications to searchable encryption. IACR Cryptol. ePrint Arch. 2015, 1010 (2015)

[15] S. Kamara, T. Moataz, and O. Ohrimenko: Structured encryption and leakage suppression. In:
Annual International Cryptology Conference, Springer, pp. 339–370 (2018)

[16] Dauterman E, Feng E, Luo E, et al: {DORY}: An encrypted search system with distributed
trust. In:14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), pp. 1101-1119 (2020)

[17] Wang Y, Sun S F, Wang J, et al: Achieving searchable encryption scheme with search pattern
hidden. IEEE Transactions on Services Computing. 15,1012-1025 (2020)

[18] T. Hoang, A. A. Yavuz, and J. Guajardo: Practical and secure dynamic searchable encryption
via oblivious access on distributed data structure. In: Proceedings of the 32nd Annual
Conference on Computer Security Applications, pp. 302–313 (2016)

[19] T. Hoang, A. A. Yavuz, F. B. Durak, and J. Guajardo: Oblivious dynamic searchable
encryption on distributed cloud systems. In: IFIP Annual Conference on Data and
Applications Security and Privacy, Springer, pp. 113–130 (2018)

[20] A. Akavia, C. Gentry, S. Halevi, and M. Leibovich: Setup-free secure search on encrypted
data: Faster and post-processing free. Proceedings on Privacy Enhancing Technologies.
2019(3), 87–107 (2019)

[21] Oya S, Kerschbaum F.: Hiding the Access Pattern is Not Enough: Exploiting Search Pattern

Leakage in Searchable Encryption. In: 30th USENIX Security Symposium (USENIX

Security 21), pp. 127-142 (2021)

[22] P. Paillier: Public-key cryptosystems based on composite degree residuosity classes. In:
International conference on the theory and applications of cryptographic techniques, Springer,
pp. 223–238 (1999)

[23] Z. Zhang, K. Wang, W. Lin, A. W.-C. Fu, and R. C.-W. Wong: Repeatable oblivious shuffling
of large outsourced data blocks In: Proceedings of the ACM Symposium on Cloud
Computing, pp. 287–298 (2019)

[24] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou: Secure ranked keyword search over encrypted
cloud data. In: 2010 IEEE 30th international conference on distributed computing systems,
IEEE, pp. 253–262 (2010)

[25] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and H. Li: Privacy-preserving multi-
keyword text search in the cloud supporting similarity-based ranking. In: Proceedings of the
8th ACM SIGSAC symposium on Information, computer and communications security, pp.

71–82 (2013)
[26] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou: Privacy-preserving multi-keyword ranked

search over encrypted cloud data. IEEE Transactions on parallel and distributed systems.
25(1), 222–233 (2013)

[27] R. Zhou, X. Zhang, X. Du, X. Wang, G. Yang, and M. Guizani: File-centric multi-key
aggregate keyword searchable encryption for industrial internet of things. IEEE Transactions
on Industrial Informatics, 14(8), 3648–3658 (2018)

[28] H. Cui, R. H. Deng, J. Lai, X. Yi, and S. Nepal: An efficient and expressive ciphertext-policy
attribute-based encryption scheme with partially hidden access structures, revisited.
Computer Networks. 133, 157–165 (2018)

[29] Z. Xia, X. Wang, X. Sun, and Q. Wang: A secure and dynamic multi-keyword ranked search
scheme over encrypted cloud data. IEEE Transactions on Parallel and Distributed Systems.
27(2), 340–352 (2016)

[30] H. Cui, Z. Wan, R. Deng, G. Wang, and Y. Li: Efficient and expressive keyword search over
encrypted data in the cloud. IEEE Transactions on Dependable and Secure Computing. 15(3),
409–422 (2018)

[31] G. Asharov, M. Naor, G. Segev, and I. Shahaf: Searchable symmetric encryption: optimal
locality in linear space via twodimensional balanced allocations. In: Proceedings of the forty-
eighth annual ACM symposium on Theory of Computing, pp. 1101–1114 (2016)

[32] I. Demertzis and C. Papamanthou: Fast searchable encryption with tunable locality. In:
Proceedings of the 2017 ACM International Conference on Management of Data, pp. 1053–
1067 (2017)

[33] R. Bost: oϕoς: Forward secure searchable encryption. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1143–1154 (2016)

[34] R. Zhang, R. Xue, T. Yu, and L. Liu: Pvsae: A public verifiable searchable encryption service
framework for outsourced encrypted data. In: 2016 IEEE International Conference on Web
Services (ICWS), IEEE, pp. 428–435 (2016)

[35] J. Zhang, C. Song, Z. Wang, T. Yang, and W. Ma: Efficient and provable security searchable
asymmetric encryption in the cloud. IEEE Access. 6, 68384–68393 (2018)

[36] C. Liu, L. Zhu, and J. Chen: Graph encryption for top-k nearest keyword search queries on
cloud. IEEE Transactions on Sustainable Computing. 2(4), 371–381 (2017)

[37] S. Kamara and T. Moataz: Boolean searchable symmetric encryption with worst-case sub-
linear complexity In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Springer, pp. 94–124 (2017)

[38] X. Ge, J. Yu, C. Hu, H. Zhang, and R. Hao: Enabling efficient verifiable fuzzy keyword
search over encrypted data in cloud computing. IEEE Access. 6, 45725–45739 (2018)

[39] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner:
Dynamic searchable encryption in very-large databases: data structures and implementation.
In: NDSS, Citeseer, pp. 23–26 (2014)

[40] M. Naveed: The fallacy of composition of oblivious ram and searchable encryption. In:
IACR Cryptol, ePrint Arch., p. 668 (2015)

[41] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas: Path oram: an
extremely simple oblivious ram protocol. In: Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pp. 299–310 (2013)

[42] W. Cohen: The cmu enron email dataset. http://www. cs. cmu. edu/˜ enron/(2016), Accessed
2006.

[43] M. F. Porter et al.: An algorithm for suffix stripping. Program, 14(3), 130–137 (1980)
[44] T. Hoang, A. A. Yavuz, and J. Guajardo: A high-security searchable encryption framework

for privacy-critical cloud storage services. IACR Cryptol, ePrint Arch. , p. 1237 (2017)
[45] Demertzis I, Papadopoulos D, Papamanthou C, et al: {SEAL}: Attack Mitigation for

Encrypted Databases via Adjustable Leakage In: 29th {USENIX} Security Symposium
({USENIX} Security 20), pp. 2433-2450 (2020)

[46] Chen G, Lai T H, Reiter M K, et al: Differentially private access patterns for searchable
symmetric encryption In: IEEE INFOCOM 2018-IEEE Conference on Computer
Communications, IEEE, pp. 810-818(2018)

[47] Patel S, Persiano G, Yeo K, et al: Mitigating leakage in secure cloud-hosted data structures:
Volume-hiding for multi-maps via hashing In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pp. 79-93 (2019)

Appendix

Here, the OSMReal
Σ
Α and

,, ,

OSM

A L S
Ideal

Σ games for the semantic security described in Theorem 1 are

introduced.

Game0: it is the same as ()OSMReal λΣ
Α . At the beginning of the game, the adversary selects two sets

of plaintext files of the same length and sends them to the challenger (Game0: line 1). The challenger
decides the encrypted file set by tossing a coin (Game0: lines 2-3). The adversary outputs the keyword
and file id (Game0: lines 4-5) for the next search or performs update operations based on previous

learning results. If op=search, the client calls Algorithm 2 to generate a search token for searching.
Then, the server calls Algorithm 3 to reshuffle the path and change the next access path (Game0: lines
6-9). If op=update, the client calls Algorithm 4 to generate an updated token to update the server
(Game0: lines 10-12). At the end of the game, adversary A outputs a bit b* (Game0: lines 15-16) based
on previously learned transaction credentials and other information. When b = b*, the game attacks
successfully, Game0 outputs 1; otherwise, it outputs 0 (Game0: lines 17-18). Because Game0
corresponds to a real experiment, () []0r Pr 1P 1OSMReal Gameλ

Α

Σ = = = .

0 :Game ()OSMRealb λΣ
Α←

1. () ()0 1, , 1st D D λ
Α ←Α

2. { }$ 0,1b←

// Generate key, construct an encryption incidence matrix and ciphertext collection

3. () ()0, , ', 1 ,b bK I c Setup Dλδ ←

4. for 1k = to q do

5. () ()() ()0, 1, 0, 1, ,1 , 1, , , , , 1 , , ', , ,...,k k k k k b b b kst op id id w w st I cλ τ τΑ Α −←Α

6. if kop search== do

7. (), ,b k b kSearchToken wτ ← // Generate a search token

8. ()() (), 1,, , ; ',k b k b k k bResp w Search I cδτδ −← // Keyword search

9. () ()
1

' . '
k k
I Search pathShuffling I

−
← // Path shuffling

10. else if kop update== do

11. ()
, ,,
b kf b kUpdateToken K idτ ← // Generate an update token

12. () ()
1,, 1 , 1; ', , ; ',

bk kkfk b k k b kI c Update I cτδ δ
−− −←

13. end if

14. end for

15. let (),1 ,,...,b b b qτ τ τ= //The
,b kτ represents the credential sent by the client to the server

16. ()* , , ', ,k b bb st I c Sδ τΑ←Α

17. if *b b= , output 1

18. otherwise output 0

Game1: it is the same as Game0, except that the value of the (1).OSM DSSEK Gen κ−← is replaced

with a randomly uniformly selected value in the setup phase (Game1: line 3). Because the random value
is safe and indistinguishable from the key generated by the key generation algorithm, the search and

update operations can still proceed normally. So, [] [] ()1 0Pr 1 Pr 1Game Game negl λ= − = ≤ .

1 :Game
2 :Game

1. () ()0 1, , 1st D D λ
Α ←Α

2. { }$ 0,1b←

3. { } { }$

1 2 3, , 0,1K k k k
κ← ← // Random value generates key

//construct an encryption incidence matrix and ciphertext collection

4. () ()0 , ', b bI c Setup Dδ ←

5. for 1k = to q do

6. () ()() ()0, 1, 0, 1, ,1 , 1, , , , , 1 , , ', , ,...,k k k k k b b b kst op id id w w st I cλ τ τΑ Α −←Α

7. if kop search== do

8. ()(), ,'b k b kSearchToken Random wτ ← // Randomly select a keyword to generate a search token

9. ()() ()1

,, 1, , ; ','n

b

OT

k b k k bkResp w Search I cδ τ δ −←

10. () ()
1

' . '
k k
I Search pathShuffling I

−
←

11. else if kop update== do

12. ()()
,

' ,
b kf

UpdateToken K Randomτ ← ⋅ // Generate a column matrix with random values

13. () ()
1,, 1 , 1; ', , ; '' ,

bk kkk b k k b kfI c Update I cδ δτ
−− −←

14. end if

15. end for

16. let (),1 ,,...,b b b qτ τ τ=

17. ()* , , ', ,k b bb st I cδ τΑ←Α

18. if *b b= , output 1

19. otherwise output 0
Game2: it is the same as Game1, except that the determination function for generating the search

or update token is replaced by a random function (Game2: lines 8, 12). The random function is truly
random and secure, and the output value is indistinguishable from the output value of the hash function

(pseudo-random function). So, [] [] ()2 1Pr 1 Pr 1Game Game negl λ= − = ≤ .

Moreover, since the 1-out-of-n OT protocol performed in search is based on the difficult problem
of DDH (Game2: lines 9), the client's choice is unconditionally secure. For any 'σ , there is 'r that

satisfies
' 'ry g hσ= . The client hides its choice in the token sent to the server by introducing a random

number. So, the server cannot obtain any information about the client's choice from the token.
Game3: it is the same as Game2, except that the values used for homomorphic calculation in the

shuffle phase are replaced with other randomly selected values for calculation. In this scheme, from the
perspective of the server, the path shuffling algorithm invokes two parts: the confusion matrix M of

homomorphic encryption and the incidence matrix 'I of symmetric encryption. The confusion matrix
is composed of a permutation matrix P and a diagonal matrix Q that are randomly selected by the

client. So, P and Q are not visible to the server.

To declare the security of this part, the following theorem is given.
Theorem 2: Even if the encrypted confusion matrix M is given, the server cannot infer the

permutation matrix P and the diagonal matrix Q .

Proof: The security of the confusion matrix M is based on the semantic security of Paillier
encryption. The confusion matrix M does not reveal any information about P and Q . There are

multiple choices of P and Q to generate the same confusion matrix M . These choices are not visible

to the server, so the server cannot recognize the correct P and Q . The randomness of the matrix

selection ensures that the server cannot correctly infer the true values of P and Q , so the uploaded

confusion matrix is safe.

For the server-side incidence matrix 'I , symmetric encryption is performed to meet the IND-CPA
security standards.

According to theorem 2 and the above analysis on security, both parties involved in a
homomorphic calculation are secure. At the same time, according to the homomorphic properties of the
Paillier encryption system (i.e., any calculation performed by the homomorphic operation can protect
the privacy of the original data and the calculation result), the calculation result is also secure, and the
server cannot correctly distinguish the real confusion matrix from the randomly generated confusion

matrix. So, the equation [] [] ()3 2Pr 1 Pr 1Game Game negl λ= − = ≤ is obtained.

Game4: it is the same as Game3, except that the searched block with maximum number of a
keyword.

Theorem 3: Leakage function srchL is volume-hiding.

Proof: We present a optimized padding method to prevent volume-hiding leakage, in our scheme we
utilize cluster algorithm to sort out keywords into different sets according to their number of searched
blocks, therefor the number of the searched blocks of each keyword in the same sets are equal. Since

the adversary A don’t has information of the number of keywords in cluster set iC , when A recieves a

result set with ik searched blocks, A can not distinguish if it’s a keyword searched before or other

keyword in iC . Note that the only other leakage is the number of cluster which is independent of

response lengths of the query operations. Consequently adversary A can’t get any information from the
number of searched blocks, completing the proof.

Game4 outputs the maximum volume of each search operation. So the equation

4 3Pr[1] Pr[1] ()Game Game negl λ= − = ≤ is obtained.

javascript:;
javascript:;

5 :Game (), ,
OSM

S Ldb I eal λΣ
Α←

1. () ()0 1, , 1st D D λ
Α ←Α

2. { }$ 0,1b←

// Generate encrypted incidence and ciphertext based on leakage function

3. ()() (), ', , 1 , ,S M T b stp bst I I c SimStp L Dλ←

4. for 1k = to q do

5. () ()() ()0, 1, 0, 1, ,1 , 1, , , , , 1 , , ', , ,...,k k k k k b b b kst op id id w w st I c t tλ
Α Α −←Α

6. if kop search== do

 // Generate a search token based on leakage function to search

7. () ()()
,

$

, ,,
b k b k srch l

s SearchToken w L m Nτ ←←

8. ()() (), ,; ; ; ',s s

S b k S b k bst Resp w SimSrch st I cτ←

9. () ()
1

' . '
k k
I Search pathShuffling I

−
←

10. else if kop update== do

// Generate update token based on leakage function to update

11. ()()
,

$

, ,
fb k

b k upd i

s

iid L ID cUpdateTokenτ ← ←

12. () ()1,
, , 1; ', ; ; ',

k f kb k

s

S b k S b kst I c SimUpd st I cτ
− −←

13. end if
14. end for

15. let (),1 ,,...,b b b qτ τ τ=

16. ()* , , ', ,k b bb st I cδ τΑ←Α

17. if *b b= , output 1

18. otherwise output 0
Game5: it is the same as Game3, except that the output of the setup, search, and update phases are

replaced by the output of the simulator ()SimStp ⋅ , ()SimSrch ⋅ and ()SimUpd ⋅ (Game4: lines 3, 8, 12).

According to the above analysis, the output of the simulator and Game3 is indistinguishable, so

[] [] ()5 4Pr 1 Pr 1Game Game negl λ= − = ≤ can be obtained. Because Game4 is a game under the ideal

experiment, Game3 is indistinguishable from the ideal experiment.
Through the above games, including Game0, Game1, Game2, Game3, and Game4, it can be

obtained that () () (), ,1 1Pr PrOSM OSM

S LReal Idea negl lλ λλΣ Σ
Α Α= = − ≤ .

Therefore, the scheme proposed in this paper provides adaptive semantic security.

	A Searchable Encryption Scheme with Hidden Search Pattern and Access Pattern on Distributed Cloud System
	Abstract

