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Abstract
The temporal distribution of earthquakes provides important basis for earthquake prediction and seismic
hazard analysis. The relatively limited records of strong earthquakes have often made it difficult to study
the temporal distribution models of regional strong earthquakes. However, there are hundreds of years of
complete strong earthquake records in North China Seismic Zone, providing abundant basic data for
studying temporal distribution models. Using the data of M ≥ 6.5 earthquakes in North China as inputs,
this paper estimates the model parameters using the maximum likelihood method with exponential,
Gamma, Weibull, Lognormal and Brownian passage time (BPT) distributions as target models. The
optimal model for describing the temporal distribution of earthquakes is determined according to Akaike
information criterion (AIC), determination coefficient R2 and Kolmogorov-Smirnov test (K-S test). The
results show that Lognormal and BPT models perform better in describing the temporal distribution of
strong earthquakes in North China. The mean recurrence periods of strong earthquakes (M ≥ 6.5)
calculated based on these two models are 8.1 years and 13.2 years, respectively. In addition, we used the
likelihood profile method to estimate the uncertainty of model parameters. For the BPT model, the mean
and 95% confidence interval of recurrence interval µ is 13.2 (8.9–19.1) years, and the mean and 95%
confidence interval of α is 1.29 (1.0-1.78). For the Lognormal model, the mean value and 95% confidence
interval of v is 2.09 (1.68–2.49), the mean value exp (v) corresponding to earthquake recurrence interval
is 8.1 (5.4–12.1) years. In this study, we also calculated the occurrence probability of M ≥ 6.5
earthquakes in North China Seismic Zone in the future, and found that the probability and 95%
confidence interval in the next 10 years based on the BPT model is 35.3% (26.8%-44.9%); the mean value
and 95% confidence interval of earthquake occurrence probability based on the Lognormal distribution is
35.4% (22.9%-49.7%); the mean probability and 95% confidence interval based on the Poisson model is
53.1% (41.1%-64%). The results of this study may provide important reference for temporal distribution
model selection and earthquake recurrence period calculation in future seismic hazard analysis in North
China.

1 Introduction
The temporal distribution models of earthquakes represent an important part of seismological research.
For a long time, it has been widely assumed in probabilistic seismic hazard analysis and earthquake
prediction that earthquakes follow the Poisson distribution in time (Cornell, 1968; Gardner and Knopoff,
1974; Schwartz et al., 1984; Frankel, 1995; Console et al., 2003; Petersen et al., 2014). Also known as the
time-independent model, the Poisson model holds that the occurrence of earthquakes does not change
with time, and represents the theoretical basis for probabilistic seismic hazard analysis in some countries
at present (Cornell, 1968; Petersen et al., 2014; Gao 1995; Pan et al., 2013).

Aside from the time-independent model, there are also time-dependent models for describing the
occurrence of earthquakes. Many studies have proved that time-dependent models perform better in
describing the temporal distribution characteristics of earthquakes in certain areas (Utsu, 1984; Nishenko
et al., 1987; Ellsworth, 1995; Ogata, 1991; Tripathi, 2006; Sharma et al., 2010). Seismologists have put
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forward such statistical models as Gamma, Lognormal, Weibull and Brownian passage time (BPT)
functions (Utsu, 1984; Matthews et al., 2002; Tripathi, 2006; Pasari et al., 2015, 2018; Bajaj et al., 2019).
Contrary to the Poisson model, the time-dependent models hold that the occurrence of earthquakes varies
with time, exerting an important influence on the results of seismic hazard.

In addition, the Epidemic Type Aftershock Sequence (ETAS) model has also been used to study the
spatio-temporal distribution of earthquakes in recent years (Ogata, 1988; Ogata, 1998; Zhuang et al.,
2005; Ogata and Zhuang, 2006), and has been proposed or used by scientists as a means for
probabilistic seismic hazard analysis (e.g., Xu et Wu, 2017; Pei et al., 2021; Šipčić et al., 2022). However,
for seismic hazard analysis, more attention is paid to the temporal distribution of main shocks (Michael,
2011; Daub et al., 2012; Shearer and Stark, 2012; Beroza, 2012). In fact, in the ETAS model, background
earthquakes are sometimes still regarded as following the Poisson distribution (Ogata, 1988; Zhuang et
al., 2005; Lombardi and Marzocchi, 2007). In applying the ETAS model to probabilistic seismic hazard
analysis, Šipčić et al. (2022) also identified the characteristics of the temporal changes of background
seismicity as a key area for future research, which suggests that studying the temporal distribution of
main shocks will also contribute to the effective use of the ETAS model.

Research shows that strong earthquakes (M ≥ 6.5) will generate fault rupture of a certain scale, which
has a considerable impact on seismic hazard analysis (Schwartz and Coppersmith, 1984; Frankel et al.,
2002). For a long time, the study of the temporal distribution characteristics of strong earthquakes has
been constrained by limited strong earthquake records. Fortunately, there are hundreds of years of
complete strong earthquake records in North China, providing excellent basic data for studying temporal
distribution models. The present study will focus on the temporal distribution models for strong
earthquakes (M ≥ 6.5) in North China Seismic Zone. The North China Seismic Zone boasts the most
abundant seismological records in China, with records of strong events spanning hundreds of years.
Since events in this region are subject to similar seismic structures and geodynamic environments,
Chinese seismologists often take North China Seismic zone as a statistical unit for understanding
seismicity characteristics (Gao et al., 2013; Xu and Gao, 2015). In this study, based on the catalogs of M 
≥ 6.5 events in North China Seismic Zone, and using Poisson (exponential distribution), Gamma,
Lognormal, Weibull and BPT as target models, we regressed the parameters of each model by using the
maximum likelihood method and selected the optimal models for describing the temporal distribution of
seismicity using the Akaike information criterion (AIC), the coefficient of determination R2 and the
Kolmogorov-Smirnov test (K-S test). Based on the optimal models, we calculated the occurrence
probability of M ≥ 6.5 events in future in the study area. The results may provide theoretical basis for the
selection of temporal distribution models and the calculation of seismicity parameters in seismic hazard
analysis in North China Seismic Zone.

2 Seismic Catalogs
We obtained the data of historical strong earthquakes from The Catalogue of Chinese Historical Strong
Earthquakes (23rd century B.C.~1911 A.D.) (Department of Earthquake Disaster Prevention, National
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Earthquake Administration, 1995), the data between 1912 and 1990 from The Catalogue of Chinese
Earthquakes (1912 ~ 1990) (Department of Earthquake Disaster Prevention, National Earthquake
Administration, 1999), and the data after 1990 from The Catalogue of Earthquakes in China and Adjacent
Areas after 1990. (Lv et al., 2010; Xu and Gao, 2014). Figure 1 shows the distribution of epicenters of M ≥ 
6.5 earthquakes in North China Seismic Zone.

As this study focuses on the temporal statistical characteristics of main shocks, it is necessary to remove
aftershocks from the catalogs. At present, many methods are available for seismic declustering, such as
the traditional space-time window (Gardner and Knopoff, 1974), the stochastic declustering approach
based on the ETAS model (Zhuang et al., 2002), and the nearest neighbor distance method (Baiesi and
Paczuski, 2004). Among them, the space-time window of Gardner and Knopoff (1974) is widely used in
seismicity analysis and seismic hazard analysis (Shearer and Stark, 2012; Daub et al., 2012; Petersen et
al., 2014; Xu and Gao, 2015). In this paper, the space-time window method was used to remove
aftershocks from the catalogs in the Chinese mainland, in which the space window parameters
calculated by Chen et al. (2019) were adopted.

The completeness of catalogs represents an important factor affecting the analysis results. Huang et al.
(1994) analyzed the completeness and reliability of the catalogs of historical earthquakes in North China
(MS≥4.8). Through a comparison with the characteristics of earthquake damage recorded by modern
instruments, they showed that the catalogs of historical earthquakes in North China are complete and
reliable for the purpose of seismological study. The complete records of earthquakes started from 1480.
Xu and Gao (2015) used more statistical methods to investigate the completeness of the historical
catalogs in North China, and concluded that the records of MS≥4.8 earthquakes in this region are
complete since 1500. The catalogs of historical earthquakes in China provide crucial data for disaster
prevention, and are widely used in earthquake prediction, probabilistic seismic hazard analysis and
compilation of seismic hazard maps (Huang et al., 1994; Lv et al., 2010; Pan et al., 2013; Gao,1996, 2003,
2015; Xu, 2019). Therefore, for this study, complete records are available for MS≥6.5 earthquakes in
North China since 1500. We obtained 37 M ≥ 6.5 events, which exceeds the requirement of having at
least 25 events in order to distinguish temporal distribution models, as proposed by Matthews et al.
(2002).

3 Models And Methods

3.1 Statistical models of earthquake recurrence intervals
In this study, we analyze the statistical characteristics of earthquake recurrence intervals, defined as the
time intervals between successive events. In engineering seismology, earthquake recurrence interval is
also called return period. Its reciprocal, which is the frequency of earthquake occurrence per unit of time,
is a crucial parameter for probabilistic seismic hazard calculation and earthquake prediction.
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Commonly used models in statistical seismology at present include exponential (Poisson), Gamma,
Lognormal, Weibull and BPT (Utsu, 2002; Matthews et al. 2002; Bajaj and Sharma, 2019). In this study,
we use the above five models to analyze the statistical characteristics of recurrence intervals in North
China (Table 1).

Table 1 Statistical distribution models

3.2 Model parameter estimation and goodness-of-fit (GOF)
The maximum likelihood method was used to estimate the parameters in the above statistical models.
The maximum likelihood method was developed to estimate the range of potential parameters by using
the data per se (Fisher, 1922), and raised for the first time such a question: given a random sample and
its distribution model, which parameters are most likely to produce the sample? In other words, the
parameters estimated by the maximum likelihood method can maximize the occurrence probability of the
current random sample. As the intervals between earthquakes in this study are definite, the maximum
likelihood method may be used to estimate the parameters and their uncertainties. The aforementioned
five models all have probability density functions, and the likelihood function is the joint probability
density function of random variable x, which can be written as:
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where  represents one or more model parameters, N is the sample length of the random variable, and f is
the probability density function of the statistical model. The natural logarithm of the likelihood function is
obtained and the coefficient  is derived. The parameter values in the model can be obtained by solving
the likelihood equation (group).

In this study, the distribution of earthquake recurrence interval is unknown. To know whether they
conform to a statistical model, we used the K-S test to test the difference between the observed values of
recurrence intervals and their theoretical distributions. The statistic of the K-S test represents the biggest
difference in cumulative distribution probability between observed and theoretical values:

   

where  is the cumulative probability of observed values, and  is the cumulative probability of the
theoretical model. Smaller  results in better goodness-of-fit.

To select the optimal model, we used AIC and BIC to determine the goodness-of-fit. AIC and BIC are
respectively defined as:

   

where k is the number of model parameters; L is the likelihood function; N is the sample size. Generally,
the model with the smallest AIC value is chosen as the optimal model from available alternatives.

In addition, the coefficient of determination R2 was used to characterize the goodness-of-fit between the
observed data and the theoretical distribution models. See Gibbons and Chakraborti (2003) for a detailed
description of relevant test methods.

4 Results

4.1 Temporal distribution models and parameters
Table 2 shows the parameter values of each model regressed using the catalogs of North China Seismic
Zone and GOF parameter values. For strong earthquakes of magnitude 6.5 or above, Table 2 shows that
the AIC and K-S test DN values of Lognormal and BPT models are close, with smaller values than those of

other models. From the coefficient of determination R2, it can be seen that the R2 of BPT and Lognormal
models are relatively larger, which means a higher probability for earthquake recurrence intervals to
follow these two models. The cumulative distribution curves in Fig. 2 shows that the BPT and Lognormal
models are in better agreement with empirical data. From the above analysis, it can be concluded that
Lognormal and BPT distributions can better describe the temporal statistical distribution characteristics

L (θ) =
N

∏
i=1

f (xi|θ)

θ

θ

DN = max |Oi − Ei|

Oi Ei

DN

AIC = 2k − 2 ln(L)
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of earthquakes in North China Seismic Zone, and are suitable for describing the temporal distribution of
M ≥ 6.5 earthquakes in North China Seismic Zone.

Table 2
Regression parameters and statistical test values of seismicity models in North China Seismic Zone

Model Model parameters -lnL AIC R2 K-S test DN
value

Exponential
distribution

µ = 13.2 (9.8–
18.9)

- 128.9 259.9 0.978 0.088

Weibull distribution α = 13.4 β = 1.0 128.9 261.8 0.974 0.094

Lognormal distribution µ = 2.1 σ = 1.0 126.7 257.4 0.995 0.053

Gamma distribution k = 1.2 λ = 
11.4

128.7 261.4 0.967 0.100

Brownian passage
time

µ = 13.2 α = 
1.29

126.9 257.8 0.992 0.070

The maximum likelihood method was used to estimate the values of the model parameters. The limited
length of seismic event samples leads to the uncertainty of the statistical parameters. In actual seismic
hazard analysis, seismologists pay much attention to the range of such uncertainties, which are often
estimated based on normal distribution. In real cases, however, the model parameters may not follow
normal distribution. In this paper, we calculate the uncertainty range of parameters of BPT and
Lognormal distribution models according to the likelihood surface with the model parameters and the
method of likelihood profiles proposed by Biasi et al. (2015).

The confidence interval of a single parameter in the BPT and Lognormal models can be obtained by
plotting a profile on the likelihood surface (Biasi et al., 2015). On the likelihood surface, a profile running
parallel to the vertical and horizontal axes and passing through the point of the maximum likelihood
value is plotted, so as to produce the curve of the likelihood values corresponding to single parameters.
Using the confidence interval calculation method introduced by Biasi et al. (2015), the range of each
parameter in a certain confidence interval can be obtained. Figure 3 presents the likelihood profile plots of
parameters µ and α in the BPT model. Above the gray dotted line is the 95% confidence interval of
parameters. The mean and 95% confidence interval of recurrence interval µ is 13.2 (8.9–19.1) years, and
the mean and 95% confidence interval of α is 1.29 (1.0-1.78). Figure 4 shows the likelihood profile plots of
parameters v and σ of the Lognormal model, where the mean value and 95% confidence interval of v is
2.09 (1.68–2.49), the mean value exp (v) corresponding to earthquake recurrence interval is 8.1 (5.4–
12.1) years, and the mean value and 95% confidence interval of σ is 1.01 (0.78–1.38). For the Lognormal
model, the mean value and expectation of earthquake recurrence are different; the expectation value is 

= 13.5 years, which is similar to the mean value of the earthquake recurrence
interval calculated based on the BPT model.
E = exp(ν + σ2/2)
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4.2 Probability of occurrence of strong earthquakes
The probability of strong earthquakes, which often cause serious casualties and damage to buildings,
has been an important source of concern among scientists. In the above, we found that both the BPT and
Lognormal distributions can describe the temporal distribution characteristics of M ≥ 6.5 earthquakes in
North China relatively well. In this study, we calculated the future occurrence probability of M ≥ 6.5 events
in the study area based on the above two distribution models. For comparison, we also calculated the
occurrence probability based on the Poisson model.

The probability of earthquake occurrence in the future can be calculated when the elapsed time and
recurrence intervals of large earthquakes and their uncertainties are known. Let Te be the time before the
last event occurred, that is, the elapsed time, then the conditional probability of at least one earthquake
occurring in the future ΔT time is (Matthews et al., 2002):

6

where  is the cumulative distribution function of recurrence interval.  is the
probability density function of the seismicity temporal distribution model introduced above.

As can be seen from the parameter values of each model in Table 2, the occurrence probability of M ≥ 6.5
events in North China in the next 1-100 years is calculated by using Eq. (6) (Fig. 5). The probability of
earthquake occurrence calculated based on different models is different (Table 3), with the probability
calculated based on the exponential distribution model being the largest and the probability calculated
based on BPT model being the smallest. Among them, the probability of M ≥ 6.5 events in North China in
the next 10 years calculated based on the BPT model is 35.3%, and the 95% confidence interval is
26.8%-44.9%. The average probability and 95% confidence interval calculated based on the Lognormal
distribution is 35.4% (22.9%-49.7%), and the average probability and 95% confidence interval calculated
based on the Poisson model is 53.1% (41.1%-64%). It is clear the occurrence probability values based on
the BPT and Lognormal models are similar, and significantly smaller than that based on the Poisson
model.

P (ΔT |Te) = =
∫
Te+ΔT

T
f (t)dt

∫
∞

Te
f (t)dt

F (Te + ΔT) − F (Te)

1 − F (Te)

F (Te) = ∫ Te

0
f (t)dt f (t)
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Table 3
Occurrence probability of M ≥ 6.5 earthquakes (mean value and 95% confidence interval) in North China

in the future
Model Probability of M ≥ 6.5 earthquakes in the future

1 year 5 years 10 years 50 years

Exponential 0.073

(0.052–0.097)

0.315

(0.233-0.400)

0.531

(0.411–0.640)

0.977

(0.929–0.994)

Lognormal 0.045 (0.027–
0.070)

0.201

(0.125–0.297)

0.354

(0.229–0.497)

0.835

(0.653–0.943)

BPT 0.044 (0.032–
0.059)

0.199 (0.148–
0.261)

0.353 (0.268–
0.449)

0.858 (0.741–
0.936)

We also calculated the conditional probabilities in the next 1 and 10 years for different elapsed times.
Figure 6 presents the variation of conditional probability with elapsed time. For the 1-year conditional
probability, the calculated values based on the BPT and Lognormal models show the following
characteristics: When the elapsed time is short, the calculated occurrence probability is smaller than that
of the Poisson model; with the increase of elapsed time, the calculated occurrence probability begins to
exceed that of the Poisson model; when the elapsed time is relatively long (relative to the recurrence
interval), the calculated occurrence probability is again smaller than that of the Poisson model. For the
10-year conditional probability, when the elapsed time of the earthquake is short, the occurrence
probability calculated based on the BPT and Lognormal models is greater than that of the Poisson
model, and when the elapsed time of the earthquake is greater than the recurrence interval, the
earthquake occurrence probability calculated based on the two models is less than that of Poisson
model. The black vertical dashed line in Fig. 6 is the current time. It can be seen that the occurrence
probability calculated based on the BPT and Lognormal models is about half of the value calculated
based on the Poisson model.

5. Conclusions And Discussions
The abundant records of historical strong earthquakes in North China make it possible to investigate the
corresponding temporal distribution models. This study provides a reliable and effective method for
determining the optimal models for the recurrence intervals of M ≥ 6.5 earthquakes in North China. Using
exponential, Gamma, Weibull, Lognormal and BPT models as target models, we regressed the model
parameters by the maximum likelihood method, and evaluated the goodness-of-fit using the K-S test, the
Chi-square test, and AIC and BIC values. The results show that the BPT and Lognormal models
outperform other models in describing the temporal distribution of M ≥ 6.5 earthquakes in North China.
Regarding the uncertainty of earthquake recurrence intervals, we used the likelihood profile method
introduced by Biasi et al. (2015) to calculate parameter uncertainties of the BPT and Lognormal models.
For the BPT model, the calculated recurrence interval and 95% confidence interval is 13.2 (8.9–19.1)
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years. For the Lognormal distribution model, the mean value and 95% confidence interval of v is 2.09
(1.68–2.49), and the mean value exp (v) corresponding to the recurrence interval is 8.1 (5.4–12.1) years.
For the Lognormal model, the mean value and expectation of earthquake recurrence are different, and the
expectation value is = 13.5 years, which is similar to the mean value of the
recurrence intervals of the BPT model.

Based on the BPT, Lognormal and Poisson models, we also calculated the probability of future M ≥ 6.5
events in North China: the probability and 95% confidence interval in the next 10 years based on the BPT
model is 35.3% (26.8%-44.9%); the mean value and 95% confidence interval of earthquake occurrence
probability based on the Lognormal distribution is 35.4% (22.9%-49.7%); the mean probability and 95%
confidence interval based on the Poisson model is 53.1% (41.1%-64%). The BPT and Lognormal models
yield similar probability values, while that based on the Poisson model is significantly greater.

This study shows that M ≥ 6.5 events in North China conform better to the time-dependent BPT and
Lognormal statistical models. Normally, for the time-dependent model, the calculated occurrence
probability should be greater than that of Poisson model in case of a long elapsed time (relative to the
return period). However, the occurrence rate of earthquakes calculated based on the time-dependent
models in this study is lower than that calculated by the Poisson model, which is associated with the
uncertainty of recurrence intervals. The coefficient of variation of earthquake recurrence intervals
calculated based the on BPT model is 1.29 (1.0-1.78). For the BPT model, Matthews et al. (2002) showed

that the earthquake sequence is dominated by noise when α is greater than . When the elapsed
time is relatively long (relative to the earthquake recurrence interval), the waiting time for the next event
based on the BPT model will exceed that of the Poisson model, i.e., the occurrence probability of the
former will be smaller than that of the latter.

The results of this study may serve as important reference for seismic hazard analysis and earthquake
prediction in North China.
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Figure 1

Map of earthquake epicenter distribution in North China seismic region, the back polygon area is the
North China seismic region
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Figure 2

Empirical cumulative distribution of the recurrence intervals of strong earthquakes in North China Seismic
Zone and the corresponding cumulative distribution functions of the five models
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Figure 3

Variation of likelihood

values with parameters in the BPT model. (a) is the curve of likelihood function values with μ when
parameter α=αML, and (b) is the curve of likelihood function values of the BPT model with different α
values when μ=μML
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Figure 4

Variation of likelihood values of the Lognormal model with parameters. (a) shows the variation of
likelihood function values with exp (v) when parameter σ=σML, and (b) shows the variation of likelihood
function values with different σ values when ν=νML
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Figure 5

Variation of occurrence probability of M≥6.5 earthquakes in North China with time
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Figure 6

(a) Variation of conditional probability of earthquake occurrence with elapsed time in the next 1 year
based on Poisson, BPT and Lognormal models, and (b) variation of conditional probability of earthquake
occurrence with elapse timed in the next 10 years. The thick black vertical dashed line represents the
current time.


