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Abstract

Signal transducer and activator of transcription 3 (STAT3) has been shown to have neuroprotective
effects via the non-canonical activation and mitochondrial translocation, but its effect on ropivacaine
induced neurotoxicity is unclear. Our previous studies have revealed that apoptosis was an important
mechanism of ropivacaine induced neurotoxicity, so this study is to explore the relationship between
STAT3 with ropivacaine induced apoptosis. Our results showed that ropivacaine decreased PC12 cell
viability, arrested the cells in the GO / G1 phase, induced cell apoptosis and oxidative stress, and
damaged mitochondrial functions. In addition, the serine727 (Ser727) phosphate activation of STAT3
was inhibited by ropivacaine. Ropivacaine decreased the p-STAT3 (Ser727) expression in the
mitochondria, and increased p-STAT3 (Ser727) expression in the cytoplasm, so that it inhibited
mitochondrial STAT3 translocation. To explore the potential connection between STAT3 with ropivacaine,
the autodock-vina was used to examine the interaction between STAT3 and ropivacaine, and results
showed that ropivacaine could bind to STAT3. Furthermore, the apoptosis of the spinal cord was
increased and the p-STAT3 (Ser727) expression in the spinal cord was reduced after ropivacaine
treatment. our findings illustrated that ropivacaine induced neurotoxicity by increasing the apoptotic
levels, the activation and mitochondrial translocation of STAT3 were inhibited by ropivacaine. There may
be an internal connection between these phenomena.

Introduction

Ropivacaine, as an amide local anesthetic, has been widely used in clinical practice. Because of the long-
lasting and stable anesthetic effects, ropivacaine is mainly used for pain management and regional
anesthesia, which has the characteristic of sensorimotor separation (Martin-Flores M, 2019). However,
some studies have shown that ropivacaine has cytotoxicity(Cai XY et al., 2015;,CM C et al., 2012),
including muscle toxicity, neurotoxicity, and cardiotoxicity. In recent years, increasing attention has been
paid to the neurotoxicity because it is directly related to the recovery of patients after surgery(Aps J and
Badr N, 2020), but the mechanism of ropivacaine induced neurotoxicity is unclear. In past decades, a
growing body of evidence has revealed that apoptosis plays an important role in the ropivacaine induced
neurotoxicity (Chen Y et al., 2019;Wang S et al., 2019;Wen X et al., 2019), most studies have
demonstrated that ropivacaine may induce neurotoxicity via activating apoptosis and up-regulating
apoptosis-related genes. These were consistent with our previous findings that ropivacaine could induce
apoptosis of PC12 cells which was related to the activation of the Fas / Fasl signaling pathway (Zeng Y
etal., 2019).

The signal transducer and activator of transcription 3 (STAT3), as a transcriptional enhancer of acute-
phase genes activated by IL-6 (Sgrignani J et al., 2018), had been demonstrated to be involved in many
biological activities including apoptosis, cell cycle progression, cell migration and angiogenesis (Guanizo
AC et al., 2018;Hillmer EJ et al., 2016;Vogel TP et al., 2015). Most studies have indicated that STAT3 can
inhibit the cell apoptosis, depending on the mitochondrial STAT3 translocation (Fathi N et al.,
2018;Srivastava J and DiGiovanni J, 2016). As we know, the transduction of downstream signals initiated
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by STAT3 depends on the phosphorylation of specific amino acids, the most representative of which is
the tyrosine705 (Tyr705) or serine727 (Ser727) phosphorylation(Sgrignani J,Garofalo M,Matkovic
M,Merulla J,Catapano CV and Cavalli A, 2018). The Ser727 phosphorylation of STAT3 can induce STAT3
to translocate in the mitochondrial (mitoSTAT3), which executes transcription-independent
functions(Srivastava J and DiGiovanni J, 2016). The mitoSTAT3 have an effect of anti-apoptosis, mainly
through improving damaged mitochondrial functions include regulating the mitochondrial electron
transport chain (ETC) activities and increasing the mitochondrial electron transport chain (MMP) to
elevate ATP production(Yang R and Rincon M, 2016). MitoSTAT3 has been reported to produce a
protective effect of many diseases include ischemia (Heusch G et al., 2011;Szczepanek K et al., 2011),
immune system disease (Flanagan SE et al., 2014), and so on (Steward-Tharp SM et al., 2014). To date,
no study has been conducted to investigate the role of mitoSTAT3 in ropivacaine induced neurotoxicity.

In the present study, our results showed that ropivacaine could not only inhibit STAT3 phosphorylation
and activation but also decrease the translocation of mitoSTAT3, which might contribute to ropivacaine
induced neurotoxicity in PC12 cells and the spinal cord. Further investigation confirmed that ropivacaine
could arrest the cell cycle, increase apoptosis, damage mitochondrial function, and induce oxidative
stress, which were related to the inhibition of STAT3 translocation.

Materials And Methods

Rat pheochromocytoma cell line (PC12) was purchased from the Cell Bank of Shanghai Institute of
Chinese Academy of Sciences. These cells were maintained in the Dulbecco's modified Eagle's medium
(DMEM) with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin. The cell counting kit-8 (CCK-
8) from Biosharp (Shanghai, China), lactate dehydrogenase (LDH), superoxide dismutase (SOD), and
malondialdehyde (MDA) test kits from wanleibio (Shenyang, China), reactive oxygen species (ROS),
Mitochondrial membrane potential test kits (JC-1) and Mitochondrial protein extraction kits purchased
from KeyGEN BioTECH (Jiangsu, China), primary antibodies against CyclinE1, CDK4, p21, Bax, Bcl-2 from
Proteintech (Wuhan, China), Caspase-3, STAT3, p-STAT3, and COXIV from Wanleibio (Shenyang, China)
were used in the present study.

Cell cultured and drug administration

PC12 cells were grown in environment containing 10% CO? at 37°C. When the cells confluence 70-80%,
0.25% trypsin with EDTA was used to digest the cells which were then harvested after centrifugation.
These cells were divided into the control group, and different ropivacaine groups (0.5mM, 1 mM, 2 mM).
After incubation with serum-free high-glucose DMEM for 12 h, ropivacaine (Hengrui medicine, Jiangsu,
China) was added to the medium followed by incubation for 24 h.

Cell viability detection

PC12 cells were seeded in a 96-well plate at a density of 5x10° cells/well and then treated with PBS or
various concentrations of ropivacaine (0.5 mM, T mM, 2 mM, 4 mM, 8 mM) in 100 pl of medium for the
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indicated times. There were six wells in each group. After incubation for 24 h, 10 pl of CCK-8 solution was
added to each well, followed by incubation for 2 h at 37°C. The absorbance was measured in a
microplate reader (Biotek, Winooski, VT, USA) at a wavelength of 450 nm.

ROS, SOD, MDA, and LDH determination

The cells and cell supernatant were collected to measure the levels of SOD, MDA and LDH with
corresponding kits according to the manufactures’ instructions. Then, PC12 cells were seeded in a 12-well
plate at a density of 5x10* cells/well. After treatment with different concentrations of ropivacaine, cells
were incubated with dihydroethidine (DHE) for 60 min in dark following the instructions of ROS assay Kkit.
Subsequently, the fluoresce intensity was observed under a fluorescence microscope (Olympus, Japan)
and the average optical density was measured by ImagedJ software.

Mitochondrial and nuclear DNA ratio (mtDNA / nDNA)

The DNAzol™ Reagent (Invitrogen™, USA) was used to extracted the genomic DNA according to the
manufacturer’s instructions. DNA was quantified with NanoPhotometer (Implen, Germany). The ratio of
mtDNA / nDNA was measured by real-time PCR. The amplification of mitochondrial cytochrome ¢
oxidase subunit Il (COIl, mitochondrial-encoded gene) and B-actin (nuclear-encoded gene) was done with
Real-time PCR. The primer used were as follows: COIl: 5-TGAGCCATCCCTTCACTAGG-3'(sense) and 5-
TGAGCCGCAAATTTCA GAG-3' (anti-sense);B-actin: 5-CTGCTCTTTCCCAGATGAGG-3'(sense) and 5-
CCACAGCA CTGTAGGGGTTT-3' (anti-sense).

Mitochondrial staining

PC12 cells were seeded in a 12-well plate at a density of 1x10* cells/well after treated with different
concentrations of ropivacaine for 24 h. Then, cells were incubated with Mito-Tracker Red CMXRos
(Beyotime, Shanghai, China) according to the instructions. Subsequently, cells were fixed in 4% PFA, and
Hochest33258 was used to label the nuclei. Finally, the fluoresce intensity was observed under a
fluorescence microscope and the average optical density was measured by ImageJ software.

Mitochondrial membrane potential assay

Mitochondrial membrane potential (MMP) assay was based on JC-1 staining (5,5,6,6"-tetrachloro-1,13,3"-
tetraethylbenzimidazolcarbocyanine iodide). JC-1 has two forms including monomers and polymers, the
emission spectra of which are different. When the mitochondrial membrane potential reduces, the JC-1
polymer with red fluorescence decreases, and so JC-1 monomer with green fluorescence was in the
cytoplasm. Following the instructions of JC-1 assay Kkits, the flow cytometry and fluorescence microscopy
were done to measure MMP and the average optical density was determined by ImageJ software.

Mitochondrial separation, extraction of mitochondrial
proteins

Mitochondria separation was based on the differential centrifugation. According to the manufacturer’s
instructions, the cells were broken down by the Ultrasonic Crusher (Sonic, USA). Then, the cell debris and
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large organelles were removed by low-speed differential centrifugation (800 -g). Finally, the mitochondria
were harvested by high-speed differential centrifugation (15000 -g). The extraction of mitochondrial
proteins was done after lysing mitochondria with lysis buffer containing a protease inhibitor and a
phosphatase inhibitor. The mitochondrial proteins were used for Western Blot.

Quantitative real-time PCR

PC12 cells were digested with trypsin and seeded into 6-well plates cultured for 2 days. Then, cells were
treated with different concentrations of ropivacaine for 24h. Total RNA was extracted with Trizol reagent
(Invitrogen, USA), and the concentrations were measured by NanoPhotometer (Implen, Germany). A total
of Tug RNA was reversely transcribed into cDNA according to the instructions of RT reagent kit (Promega,
USA). SYBR-based real-time PCR experiments were done to detect the mRNA expression of Bax, Bcl-2,
Caspase-3, p53, p21, CDK-4, and CyclinE1 using an ABI 7500 platform. The 27 22CT method was used to
analyze the data. The primers were used as follow Bax 5-CTGAGCTGACCTTGGAGC - 3' (forward), 5
GACTCCAGCCACA AAGATG-3'(reverse) Bcl-2 5-ATGCCAAGGGGGAAACAC-3' (forward), 5'-
CACGGCCGAAAGAGAGA A-3'(reverse) Caspase-3 5-GAAAGCCGAAACTCTTCATCA-3' (forward), 5
ATAGTAACCG GGTGCGGTAG-3'(reverse), p53 5-GCTGAGTATCTGGACGACAGG-3(forward), 5-AGCGT
GATGATGGTAAGGATG-3' (reverse), p21 5-CTCTGAAGATGTGCCTATGG-3' (forward) 5'-
CGAATTTCTCGGACTAATGT-3' (reverse), CDK-4 5-~ACCAGGACCTACGGACATAC-3' (forward) 5
TACAGCCAACACTCCACATA-3' (reverse) CyclinE11 5-TGATGATTCAGCG TGCGTGGAC-3' (forward) 5™
CAAGACGGGAAGTGGGGAGG-3' (reverse), GAPDH, 5-GGCTACACTGAGGACCAGGTT-3' (forward) 5'-
TGCTGTAGCCATATTCATTGTC-3'(reverse).

Western Blot

The PC12 cells were lysed with pre-cold RIPA lysis buffer. After centrifugation (12,000 rpm/min) for 15
min at 4°C, the protein concentration was measured with a bicinchoninic acid (BCA) protein assay kit
(Beyotime, Shanghai, China). A total of 40 ug proteins were subjected to protein separation by the sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Proteins were then transferred to a
polyvinylidene fluoride (PVDF) membrane. The membranes were incubated with 5% non-fat skim milk for
1 h. The membranes were incubated with primary antibodies (Bax, 1:1000; Bcl-2, 1:1000; Caspase3,
1:1000; STAT3, 1:1000; p-STAT3 (Ser727), 1:1000; COXIV: 1:1000) at 4°C overnight, and then with HRP-
linked secondary antibody for 1 h at room temperature. Specific proteins were detected by enhanced
chemiluminescence assay (Bio-rad, USA), and the protein bands were quantified with Image Lab software
(Bio-rad, USA).

Detection of cell cycle and apoptosis by flow cytometry

PC12 cells were seeded in a 6-well plate at a density of 1x10° cells/well after treated with different
concentrations of ropivacaine for 24 h, cells were collected and centrifuged at 1000 rpm/min for 5 min at
4°C. After washing with PBS, the cell pellet was fixed in 500 pL of 70% cold ethanol for at 2 h. Before flow
cytometry, the cells were washed with PBS, and incubated with 100 pL of RNase. The resulting
suspension was incubated at 37°C for 30 min. Subsequently, 400 L propidium iodide was added for
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nuclear staining at 4°C in dark for 30 min. Cell cycles were analyzed using flow cytometry (BD, San Jose,
CA). The apoptosis was detected as follows. PC12 cells in each group were digested with trypsin. Then,
cells were centrifuged at 1000 rpm/min for 10 min, and the supernatant was removed. The cells were
washed twice with PBS and centrifuged to remove the supernatant. 500 pl of buffer solution was added
to cell suspension. Then, 5 yL of Annexin V and 10 pL of propidium iodide was added, followed by
incubation at room temperature for 30 min in dark, apoptosis was detected by flow cytometry and
apoptosis rate was calculated.

Immunofluorescence staining

The cells mitochondria were labeled by Mito-Tracker Red CMXRos according to the manufacturer's
instructions. Cells were fixed in 4% PFA and permeabilized with 0.2% Tween X-100. After being blocked
with normal goat serum, cells were incubated with rabbit anti-rat p-STAT3 (1:200) overnight at 4°C, and
the second antibody (1:1000) was incubated for 1 h at 37°C in dark. Hochest33258 was added followed
by incubation for 5 min to label nuclei. The fluorescence microscope (Olympus, Japan) was used to
observe the cells. The fluorescence intensity was analyzed with ImageJ software.

Molecular docking

Structure-based virtual screening was employed with molecular docking program Autodock Vina (version
1.1.2). The PyMol (version 2.3) was used to generate the 3D schematic representation of STAT3 protein
(PDB ID: 6QHD) which was extracted by in The Research Collaboratory for Structural Bioinformatics
Protein Data Bank database. The 2D schematic representation of the interaction between ligand and
other amino acid residues was shown by LigPlus (version 2.1). In order to detect whether ropivacaine
competitively bind the STAT3 peptide, the ropivacaine molecular structure (PubChem CID: 175804) was
obtained from PubChem database. The ligand and the receptor pdb were converted to pdbqt file by
AutoDock Tools following the autodock vina tutorial, and the grid size in XYZ was set at 96,66,118, which
is large enough to cover all potential pockets in the STAT3 monomer.

Animals and treatment

All procedures performed in studies involving animals were in accordance with the ethical standards of
animal ethics committee of Hubei University of Medicine (IACUC number: 2018DW003), Eight-week-old
Sprague Dawley (SD) rats, weighing 200-300g, were purchased from the Experimental Animal Center of
Hubei University of Medicine (Hubei, China). The rats were given access to food and water and housed in
an environment with relative humidity of 50-60% and 12/12h light/dark cycle for 1 week before surgery.
Rats were anesthetized with 10% chloral hydrate (300 mg/kg body weight, Beyotime Biotechnology,
Shanghai, China). The animal was established as a previous reported (Y H et al., 2016). A PE-10 catheter
was inserted through the L4 / L5 intervertebral space (depth 2 cm) to the L1-L2. The cannulated rats
observed for five days and rats with the neurological injury were not included for further experiment. The
remaining rats were randomly divided into four groups (n = 5 per group), including control group (saline
group), 0.5% ropivacaine group (0.5% Rop), 1% ropivacaine group (1% Rop) and 2% ropivacaine group
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(2% Rop). All rats were received 8 injections at 1.5 h intervals for 12h. After injection, rats were observed
for 48 h and those with movement disorders were removed from this study.

TUNNEL staining and Immunohistochemistry

The fresh spinal cord tissues were fixed in 4% PFA. After being embedded with paraffin, the paraffin
blocks were cut into 3 mm slices. Then, they were detected with TUNNEL staining according to the
manufacturer’s instruction to detect the apoptosis in the spinal cord. The protein expression of p-STAT3
(Ser727) in the spinal cord was detected by Immunohistochemistry.

Statistical analysis

Statistical analysis was performed using SPSS version 22.0 software. The quantitative data were
expressed as mean * standard deviation (SD). The comparisons between two groups was done with
Student’s t-test. The comparison among groups were performed by one-way ANOVA. A value of P<0.05
was considered statistically different.

Results

Ropivacaine decreased viability and reduced the
protrusions numbers in PC12 cells

To determine the effects of ropivacaine on PC12 cell viability, CCK-8 assay was done in these cells after
treatment with different ropivacaine concentrations (0.5 mM, T mM, 2 mM, 4 mM, 8 mM) for 24 h. As
shown in Fig. TA, compared with the control group, ropivacaine suppressed PC12 cell viability in a dose-
dependent manner. The half lethal concentration of ropivacaine was 3.24 mM. As we know, PC12 cells
are a neuron-like cell line, they have long fusiform with protrusions, but after treatment with ropivacaine,
the protrusions reduced, and the cells became round, which represented the loss of the neuronal
characteristics. Those results indicate that ropivacaine exerted significant toxic effects on the PC12 cells
by inhibiting cell viability.

Ropivacaine arrested PC12 cells in the GO/G1 phase

To explore the effect of ropivacaine on cell death pathway, the cell cycle was detected by flow cytometry
in ropivacaine-treated PC12 cells. As shown in Fig. 2A, exposure to different concentrations of
ropivacaine for 24 h significantly increased the number of cell in the GO/G1 phase and decreased the
number of cell in the G2/M phase as compared to the control group, but ropivacaine had no influence on
the S phase. In addition, the expression of genes that regulate the cell cycle of p21, CyclinE1 and CDK4
was detected. After ropivacaine treatment, the mRNA and protein expressions of p21 increased, but the
mRNA and protein expression of CyclinE1 and CD4 were inhibited, which indicates that ropivacaine
induced PC12 cell death via arresting the cell cycle (Fig. 2C, 2D, 2E).
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Ropivacaine induced the apoptosis of PC12 cells and the
spinal cord

To determine the effect of ropivacaine on the apoptosis of PC12 cells and the spinal cord, the flow
cytometry was used to detected the apoptosis rate of PC12 cells, the results were consistent with our
previous study, ropivacaine increased apoptosis in a dose-dependent manner (Fig. 3D). In addition, the
mRNA and protein expression of apoptosis-related genes included Bax, Bcl-2 and Caspase 3 were also
detected, as shown in Fig. 3A, ropivacaine up-regulated the expression of pro-apoptotic genes and down-
regulated the anti-apoptotic gene at mMRNA and protein levels. To further explore the effect of ropivacaine
on the spinal cord, a rat model was established with a subarachnoid catheter. After the treatment with
ropivacaine at different concentrations, TUNNEL staining was to detect the apoptosis of the spinal cord.
Compared to the control group, ropivacaine increased the apoptosis rate in the spinal cord in a dose-
dependent manner (Fig. 3E, 3F).

Ropivacaine induced oxidative stress in PC12 cells

The oxidative stress was assessed in PC12 cells after ropivacaine treatment by measuring SOD, MDA,
ROC, and LDH. As shown in Fig. 2A, compared with the control group, T mM ropivacaine significantly
increased ROS in the cytoplasm. After treatment with different ropivacaine concentrations of ropivacaine
(0.5 mM, T mM, and 2mM), ropivacaine increased the MDA, and LDH increased and suppressed the SOD
reduced in a dose-dependent manner. These results suggest ropivacaine induces the oxidative stress
damage in the PC12 cells.

Ropivacaine induced mitochondrial dysfunction in PC12
cells

To assess the impact of ropivacaine on mitochondria of PC12 cells, a JC-1 test kit was used to detect the
MMP of PC12 cells, and the flow cytometry and fluorescence microscopy were done to assess the
mitochondrial function. As shown in Fig. 5A, compared with the control group, ropivacaine reduced the
amounts of JC-1 polymer in a dose-dependent manner, which indicates the reduction of MMP in PC12
cells after ropivacaine treatment. As shown in Fig. 5B, in the control group, cells had with strong red and
green fluorescence, but in the T mM ropivacaine group, the MMP decreased, and cells had strong green
fluorescence but low red fluorescence. In addition, Mito-Tracker Red CMXRos was used to label
mitochondrial with normal function. As shown in Fig. 5D, compared with the control group, T mM
ropivacaine significantly reduced the number of mitochondria with normal function in PC12 cells, the
mtDNA / nDNA ratio kit was determined to assess the amounts of mitochondria. The result showed
treatment with ropivacaine reduced the mtDNA / nDNA ratio in a dose-dependent manner (Fig. 5F). Those
results demonstrate that ropivacaine causes mitochondrial dysfunction in PC12 cells.

Ropivacaine inhibited STAT3 activation and mitoSTAT3
translocation
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To investigate the effect of ropivacaine on the STAT3 signaling pathway in PC12 cells and the spinal
cord, STAT3 phosphorylation and upstream transduction proteins expression were evaluated using
Western Blot, and the distribution of phosphorylated STAT3 in subcellular compartments was assessed
by Western Blot and Immunofluorescence staining, As shown in Fig. 6A, ropivacaine inhibited the
serine727 residue phosphorylation of STAT3 and down-regulated IL-6 expression in PC12 cells. In
addition, ropivacaine decreased p-STAT3 (ser727) expression in mitochondrial fraction, but increased it in
the cytoplasmic fraction (Fig. 6B). Which indicated that ropivacaine inhibited the mitochondrial STAT3
translocation. The result of Immunofluorescence was consistent with Western Blot, ropivacaine reduced
the co-localization between p-STAT3 (ser727) with mitochondria in a dose-dependent manner (Fig. 6D).
To further explore the effect of ropivacaine on p-STAT3 (ser727) expression in the spinal cord, as
expected, ropivacaine inhibited the p-STAT3 (Ser727) expression of the spinal cord in a dose-dependent
manner (Fig. 6E). Finally, to explore the potential relationship between STAT3 and ropivacaine, Autodock-
Vina was to verify the interaction between them. As shown in Fig. 6F, the pocket was composed of
Asn257, Ala377, Glu324, 11258, GIn326, Pro333, Pro336, Asp 334, Ala250, Cys251 and Pro256. They
interacted through hydrophobic bond to affect the activation of STAT3, and further confirming the
inhibitory effect of ropivacaine on STAT3 activation.

Discussion

Ropivacaine, as a representative of the long-acting local anesthetics (LAs), is available for the spinal
anesthesia, and its duration is 1.6-6 h (Z S et al., 2012). However, some clinical studies have shown that
ropivacaine may induce severe neurotoxic side effects after intravenous injection in recent years. Some
experiments have also demonstrated that ropivacaine induces neurotoxicity after the long-term exposure
to ropivacaine at a high-concentration (AB et al.,,2017;SCand S S, 2018;W Z and BM G, 2008). Since
Yamashita et al. first reported the neurotoxicity of ropivacaine (Yamashita A et al., 2003), many studies
have been conducted to explore and compare the neurotoxicity of LAs commonly used in the clinical
practice, including lidocaine, and bupivacaine (Byram SC et al., 2020;Lirk P et al., 2008). Although it had
been reported that ropivacaine has the least neurotoxicity among the LAs tested, increasing attention has
been paid to the safety of ropivacaine (Yamashita A Matsumoto M,Matsumoto S,ltoh M,Kawai K and
Sakabe T, 2003). Currently, the clinical dosage of ropivacaine is still controversial. It has been reported
that injection of high-dose ropivacaine into the epidural space or subarachnoid space can shorten the
onset time and increases the motor block effect (Guryay D et al., 2008), while other studies have shown
the increased risk of neurotoxicity after exposure to a high-dose ropivacaine (Takenami T et al., 2002).
Hence, it is important to investigate the mechanism underlying the ropivacaine induced neurotoxicity,
which is helpful for the development of preventive measures and will make the spinal anesthesia safer.

The mechanism of ropivacaine induced neurotoxicity is unclear, and some studies reported it is related to
cell apoptosis. Our previous study also revealed that ropivacaine increased apoptosis via up-regulating
Fas / Fasl expression in PC12 cells (Zeng Y,Wang R,Bian Y,Chen W and Peng L, 2019), which were also
confirmed by Wang et al. (S W et al,, 2019). As we know, apoptosis may execute in two pathways: the

death receptor pathway and the mitochondrial pathway (Zeng Y,Wang R,Bian Y,Chen W and Peng L,
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2019). The death receptor pathway is represented by the up-regulation of Fas/Fasl expression, and the
mitochondrial pathway is characterized by the mitochondrial dysfunction. In addition to inducing
neurotoxicity through the death receptor pathway, ropivacaine has also been proved to cause neuronal
damage by impairing the mitochondrial function. Niu et al. reported ropivacaine affected the
mitochondrial biogenesis of neuronal cells by reducing the mitochondrial mass and impairing the
mitochondrial respiratory rate via suppressing PCG-1a (Z N et al., 2018). In the present study, our findings
confirmed that apoptosis played an important role in the ropivacaine induced neurotoxicity. At first, the
cell viability was detected after treatment with different concentrations of ropivacaine. Results showed
that ropivacaine decreased the cell viability in a dose-dependent manner. In addition, ropivacaine reduced
the protrusions of PC12 cells and cells became round after ropivacaine treatment, which means the cell
death increases. In order to determine the cell death pathway induced by ropivacaine, we analyzed the
change of cell cycle and apoptosis of ropivacaine-treated PC12 cells using flow cytometry, and results
showed that ropivacaine arrested the PC12 cells in GO/G1 phase and increased cell apoptosis. The mRNA
and protein expressions of genes regulating the cell cycle and apoptosis were further detected in cells
after ropivacaine treatment. p21 is one of those genes that block the cell cycle progression (EI-Deiry WS,
2016), and p21 expression increased in the PC12 cells with an increase of ropivacaine concentration. On
the contrary, CyclinE1 and CDK4 are the key genes for the maintenance of normal cell cycle progression
(Lim S and Kaldis P 2013;Schade AE et al., 2019;Xu W and McArthur G, 2016). Our results showed that
the expression of CyclinE1 and CDK4 in PC12 cells significantly reduced after ropivacaine treatment. Bax
and Caspase 3 are the pro-apoptotic proteins in the mitochondrial pathway, and BCL-2 is an anti-
apoptotic protein. Our results showed ropivacaine increase the expression of Bax and Caspase 3 in the
PC12 cells and inhibit the expression of Bcl-2, which suggests that the mitochondrial apoptosis pathway
is involved in the ropivacaine induced neurotoxicity.

To further clarify the effects of ropivacaine on the cellular oxidative stress and mitochondria, the reactive
oxygen species (ROS) generation was assessed in cells before and after ropivacaine treatment. Our
results showed that the ROS increased with the increase in the concentration of ropivacaine. Similarly, the
contents of MDA and LDH also increased significantly, while the level of SOD decreased after ropivacaine
treatment. These suggest ropivacaine induces cellular oxidative stress in PC12 cells. Those results were
consistent with those reported by Chen et al (Chen Y,Yan L,Zhang Y and Yang X, 2019). Next, the
mitochondria function was examined in PC12 cells treated with ropivacaine. Our results confirmed that
ropivacaine induced cell mitochondrial dysfunction, which was mainly manifested the decreased of MMP
and the ratio of mtDNA / nDNA. Those results were also confirmed by other studies (Y C et al., 2019;Z N,J
TY Rand W F, 2018).

On the basis above findings, we further investigated the role of STAT3 in the ropivacaine induced
apoptosis. STAT3 was first described as a transcriptional enhancer of acute-phase genes activated by IL-
6, which mediated extracellular signals such as cytokines and growth factors through interacting with
polypeptide receptors on the cell surface(You L et al., 2015). The canonical STAT3 signaling becomes
transcriptionally activated primarily by tyrosine phosphorylation (Tyr705). Activated STAT3 translocate to

the nucleus, and binds to sequence-specific DNA elements for consequent transcription of target
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genes(Cui P et al., 2020). The canonical STAT3 pathway has been demonstrated to promote tumor
development(Fathi N,Rashidi G,Khodadadi A,Shahi S and Sharifi S, 2018). The non-canonical STAT3
signaling is represented by serine phosphorylation (Ser727), and STAT3 phosphorylated at Ser727
functions to rescue the impaired mitochondrial function after exposure to the stimuli(Srivastava J and
DiGiovanni J, 2016). When apoptosis is induced via the mitochondrial pathway, the non-canonical STAT3
signaling is activated to further protect cells against apoptosis. Except for the non-canonical pathway,
STAT3 has been shown to regulate the mitochondrial function by transporting to the mitochondria
(mitoSTAT3), which is also dependent on serine phosphorylation (Ser727) (Szczepanek K,Chen Q,Derecka
M,Salloum FN,Zhang Q,Szelag M,Cichy J,Kukreja RC,Dulak J,Lesnefsky EJ and Larner AC, 2011;Yang R
and Rincon M, 2016). As expected, ropivacaine inhibited the activation of STAT3 by down-regulating the
expression of p-STAT3 (Ser727) and decreased the expression of upstream genes of STAT3. To further
investigate the effect ropivacaine on mitoSTAT3 expression, the p-STAT3 (Ser727) expression was
detected in the mitochondrial fraction and cytoplasmic fraction, which was used to determine that the
mitoSTAT3 translocation in PC12 cells Results showed that mitoSTAT3 translocation was inhibited by
ropivacaine. We also confirmed this by immunofluorescence staining, the co-localization of p-STAT3
(Ser727) in the mitochondria was significantly reduced after ropivacaine treatment. The anti-apoptotic
effect of mitoSTAT3 has been demonstrated in many studies. Li et al. reported that the STAT3 activation
is key for the ischemic postconditioning, and the increased of mitoSTAT3 can protect the cardiomyocytes
against mitochondrial dysfunction (Li H et al., 2016). Zhang et al. reported Serine 727 (Ser727)
phosphorylation of STAT3 plays a role in the regulation of mitochondrial respiration(Zhang G et al.,
2018). In addition, mitoSTAT3 translocation can improve the oxidative phosphorylation and inhibit ROS
generation during reperfusion. As we know, STAT3 activation depends on the phosphorylation of its
hydrophobic domain, our results showed that ropivacaine could bind to the hydrophobic domain of
STAT3, and this phosphorylation was inhibited, which confirms above findings. At last, we compared the
levels of apoptosis and p-STAT3 (Ser727) expression in the spinal cord with the treatment of different
concentrations of ropivacaine. The results showed that ropivacaine increased the apoptosis of the spinal
cord in a dose-dependent manner, and the expression of p-STAT3 (Ser727) decreased significantly after
ropivacaine treatment. This indicates that there was a negative relationship between p-STAT3 expression
and apoptosis in the spinal cord. The above findings indicate ropivacaine can induce the neurotoxicity by
promoting apoptosis via down-regulating STAT3 phosphorylation.

Conclusion

In conclusion, ropivacaine decreased cell viability and reduced protrusions of PC12 cells to induce
neurotoxicity. Furthermore, ropivacaine arrested PC12 cells in the GO/G1 cycle phase, and promoted cell
apoptosis through the mitochondrial pathway. Moreover, it also induces the Cellular Oxidative Stress and
mitochondrial dysfunction in PC12 cells. These effects may be related to the inhibition of STAT3
activation and mitoSTAT 3 translocation. These findings suggest STAT3 may serve as a target in the
prevention a treatment of ropivacaine induced neurotoxicity
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Figures
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Cell viability

Figure 1

Ropivacaine decreased viability and reduced the protrusions of PC12 cells. (A) PC12 cells were treated
with various concentrations of ropivacaine (0.5 mM, TmM, 2 mM, 4 mM, 8mM) for 24 h, the cell viability
was detected by CCK-8. (B) PC12 cells were treated as above, the cell morphology was observed by
microscope (x200). The results are presented as the mean * SD (n = 3), where * p < 0.05,** p < 0.01
compared with the control.
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Figure 2

Ropivacaine arrested PC12 cell cycle in the GO / G1 phase via up-regulating p21 expression and inhibiting
CDK4, CyclinE1. (A) PC12 cells were treated with different concentration of ropivacaine, the cell cycle was
detected by flow cytometry. (B) the quantification of cell cycle included GO/G1 phase, S phase and G2/M
phase. (C) The mRNA expression of p53, p21, CDK4, CyclinE1 were detected by qRT-PCR. (D) The protein
expression of p21, CDK4, CyclinE1 were detected by Western-blot. (E) Quantification of the gray values in
graph D. The results are presented as the mean + SD (n = 3), where * p < 0 .05, ** p < 0 .01 compared with
the control.
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Figure 3

Ropivacaine induced apoptosis of PC12 cells and the spinal cord (A) The mRNA expression of Bax, Bcl-2
and caspase 3 in PC12 cells were detected by gRT-PCR. (B) The protein expression of Bax, Bcl-2, Caspase
3 and Cleaved-caspase-3 in PC12 cells were detected by Western-blot. (C) Quantification of the gray
values in graph B. (D) The levels of apoptosis were detected by flow cytometry. (E) Rats were received the
subarachnoid catheterization, and injected with different concentration of ropivacaine, the apoptosis of
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spinal cord was detected by TUNNEL staining. Arrows refer to apoptotic cells. (F) The ratio of the
numbers of apoptotic cells than total cells. The results are presented as the mean + SD (n = 3), where * p
<0.05,**p<0.01,**p<0.001 compared with the control.
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Figure 4

Ropivacaine induced oxidative stress in PC12 cells. (A) PC12 cells were treated with different
concentration of ropivacaine, Intracellular ROS was determined by DHC assay. (B) (C) (D) SOD, MDA and
LDH were detected by the assay kits. (E) The ratio of the average optical density in graph A. The results
are presented as the mean = SD (n = 3), where * p<0.05,* p<0.01,**p < 0.001 compared with the
control. (F)
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Figure 5

Ropivacaine induced PC12 cells mitochondrial dysfunction. (A) (B) PC12 were treated with different
concentration of ropivacaine, mitochondrial function was detected by a JC-1 assay kit and quantified by
the flow cytometry and observed in fluorescence microscope. (C) The ratio of Red / Green average optical
density in graph B. (D) PC12 cells mitochondrial was labeled by the Mito-Tracker Red CMXRos and
observed in fluorescence microscope. (E) The ratio of mtDNA to nDNA (mtDNA / nDNA) was measured by
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gRT-RCR. The results are presented as the mean + SD (n = 3), where ** p <0 .01, *** p < 0 .001 compared
with the control.
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Figure 6

The effects of ropivacaine on the STAT3 signaling pathway. (A) PC12 cells were treated with different
concentration of ropivacaine. The protein expression of IL-6, STAT3, p-STAT3 (Ser727) and GAPDH in
total protein were detected by Western-blot. (B) The protein expression of p-STAT3 (Ser727) in
mitochondrial and cytoplasmic were detected by Western-blot. (C) Quantification of the gray values in
graph A and B. (D) Effect of ropivacaine on the colocalization of mitochondria (red) and STAT3(green)
were detected by fluorescence microscope, and were represented as the overlapping fluorescence for the
red and green channels, where the combined pixels appeared yellow. (E) Rats were received the
subarachnoid catheterization, and injected with different concentration of ropivacaine, the expression of
p-STAT3 (Ser727) in the spinal cord was measured by Immunohistochemistry. (F) Computational
modeling of ropivacaine binding to the STAT3.The results are presented as the mean + SD (n = 3), where
**p<0.01,**p<0.001 compared with the control.
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