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Abstract
Protein tyrosine phosphatases (PTPs) are the group of enzymes that control both cellular activity and the
dephosphorylation of tyrosine (Tyr)-phosphorylated proteins. Dysregulation of PTP1B has contributed to numerous
diseases including Diabetes Mellitus, Alzheimer’s disease, and obesity rendering PTP1B as a legitimate target for
therapeutic applications. However, it is highly challenging to target this enzyme because of its highly conserved and
positively charged active-site pocket motivating researchers to �nd novel lead compounds against it. The present work
makes use of an integrated approach combining ligand based and structure-based virtual screening to �nd hit compounds
targeting PTP1B. Initially, pharmacophore modelling was performed to �nd common features like two hydrogen bond
acceptors, an aromatic ring and one hydrogen bond donor from the ligands with reported inhibition activity against
PTP1B. The dataset of compounds matching with the common pharmacophoric features was �ltered to remove Pan-
Assay Interference substructure and to match the Lipinski criteria. Then, compounds were further prioritized using
molecular docking and top �fty compounds with good binding a�nity were selected for ADME predictions. The top �ve
compounds with high solubility, absorption and permeability holding score of -10 to -9.3 kcal/mol along with Ertiprota�b
were submitted to all-atom molecular dynamic (MD) studies. The MD studies and binding free energy calculations showed
that compound M4, M5 and M8 were having better binding a�nity for PTP1B enzyme with ∆Gtotal score of -24.25, -31.47
and -33.81 kcal/mol respectively than other compounds indicating that compound M8 could be a suitable lead compound
for PTP1B enzyme inhibition.

1. Introduction
Protein-tyrosine phosphatase 1B (PTP1B) is the �rst member of the group of protein tyrosine phosphatase enzymes [1].
Protein tyrosine phosphatases (PTPs) are a family of enzymes that control both cellular activity and the
dephosphorylation of tyrosine (Tyr)-phosphorylated proteins [2, 3]. Among the 107 PTPs of human genome PTP1B
belongs to class I cysteine-based PTP group [4, 5]. Dysregulation of PTP1B has contributed to numerous diseases
including Diabetes Mellitus (DM), Alzheimer’s disease (AD), obesity etc. [6]. Thus, PTP1B is a promising target for
therapeutic applications. However, it is challenging to target this enzyme because of greatly conserved and positively
charged active-site pocket motivating researchers to �nd new lead compounds against this target. DM has become a
menace to the world affecting close to 422 million people according to World Health Organization (WHO) [7].

PTP1B plays a vital role in the negative regulation of insulin signaling pathway and inhibiting overexpression of the
enzyme may reduce the insulin resistance [8–10]. Evidences suggests that PTP1B knockout mice had improved insulin
sensitivity and glucose tolerance, which reassures the above statement [11]. AD is another threat, which affects almost
twenty-four million people globally and it primarily affects elders over the age of sixty-�ve. PTP1B plays a vital role in
inhibition of signaling processes like insulin, leptin, mGluR5 and trkB and these pathways are reported to be disturbed in
AD [12]. Increased PTP1B activity also prevents the phosphorylation and constitutive inhibition of glycogen synthase
kinase 3 Beta (GSK3 Beta) via its inhibition of kinase Akt/PKB. Activity of GSK3 Beta leads to formation of cerebral
deposits which are associated with AD and leads to reduced cognitive performance making PTP1B a promising target for
the management of AD.

Faulty hypothalamic leptin signaling impairs sensing and processing of satiety signals in obesity, resulting in higher
calorie intake and lower energy expenditure. PTP1B dephosphorylates LepR and JAK2 [13, 14]; which are vital components
of Leptin signaling pathway, acting as an antagonistic leptin signaling regulator. High-fat diet (HFD) and deletion of the
leptin gene make the PTP1B-null mice resistant towards weight gain, indicating that PTP1B inhibition may be an effective
way to restore leptin signaling in obese individuals [15].

PTP1B is also considered as an emerging target for the treatment of cancer. Depending on the type of tumor, PTP1B plays
a variety of roles in tumorigenesis [16]. PTP1B deactivates oncogenes or tumor suppressors to act as a tumor promoter in
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various cancers, including colorectal cancer, non-small cell lung cancer, hepatocellular carcinoma, and gastric cancer [17].
PTP1B has been implicated in the oncogenesis of breast cancer and treatment with a PTP1B inhibitor greatly slowed
down the growth of breast tumors [18] which courageously results into MSI-1436C, this is an anti-diabetic lead candidate
is being tested against metastatic breast cancer under Phase 1 trials [19]. PTP1B, a viable target for cardiovascular
diseases. PTP1B is speci�cally prominent in endothelial cells, where it might play a part in endothelial dysfunction. Also,
inhibition of PTP1B has a tendency to downregulate cardiac angiogenesis by negative regulation of Vascular endothelial
growth factor (VEGF) signaling. Not only in the context of metabolic illnesses, but also in the situation of heart failure,
inhibiting PTP1B has positive effects on cardiac dysfunction and remodeling as a result of its endothelium protecting
and/or proangiogenic actions. Therefore, this enzyme offers a tempting new therapeutic target for treatment of
cardiovascular disorders as well.

According to available structural data of PTP1B enzyme, the active region in the protein can be divided into �ve sub
pockets, (A, B, C, D, and E) out of which three major sites, A, B and C are imperative for protein function and to control
insulin signaling pathways (Fig. 1A) [20, 21]. The insulin receptor (IR) kinase activation peptide's phosphotyrosine (pTyr)
residues were dephosphorylated at the primary phosphate-binding pocket [22] known as A site which is of 10Å in width
and 9Å in length consists of Cys215, Gln262, Gln266 and Arg221 residues [23, 24]. The secondary binding pocket B site
where side chain of pTyr is bound includes Val49, Met258, Arg254, Phe52, Arg24, Gly259, and Ile219 forming a shallow
and non-catalytic region but important for improving action and selection of small molecules. The third site C is large, �at
and also known as third phosphate binding pocket which can be occupied by negatively charged groups present in amino
acids Asp48, Lys41, Arg47, and Tyr46 [25, 26]. Various potent inhibitors reported till date are speci�cally developed to bind
at C site such as carboxylates [23, 27], phosphonates [28, 29], cinnamates [30, 31] or malonates [32, 33] but they are either
bulky, lipophilic or negatively charged making their physicochemical properties incapable for bioavailability [34]. These
inhibitors could be categorized broadly into two types: competitive and noncompetitive inhibitors [35, 36]. Crystallographic
studies have shown that non-competitive inhibitors bind at an allosteric site which is at a distance of 20 Å from the
catalytic site and molecules from different chemical moieties like benzofuran/benzothiophene biphenyl oxo-acetic acids
(A) [37], 11-arylbenzo[b]naphtho[2,3- d]furans/thiophenes (B) derivatives [38], and benzofuran-cored compounds (C) [36]
have been reported to bind non-competitively (Fig. 1B).

In a continuous effort to identify novel PTP1B inhibitors [39–41], the present work made use of ligand based and structure-
based approach in combination to �nd hit molecules against target enzyme PTP1B (Fig. 2). Initially, pharmacophore
modelling was performed to �nd common features like two hydrogen bond acceptors, an aromatic ring and one hydrogen
bond donor from the ligands with reported inhibition activity against PTP1B. The dataset of compounds with common
pharmacophoric feature were �ltered to remove pains substructure and to retain drug likeness. Then with the application
of molecular docking and molecular dynamic simulations followed by binding free energy calculations i.e. MM_PBSA new
hits were found to target PTP1B.

2. Results And Discussion

2.1 Pharmacophore-based virtual screening
Based upon the inhibition activity of �ve different ligands perceived from Binding DB web-server [42], their co-crystalized
3D structures with PTP1B protein were downloaded and with the help of PyMOL software [43] the ligand structures were
extracted. On submission to Pharmit web application [44], these �ve ligands were found to have various common
pharmacophoric features such as two negative ions (N1 and N2), one hydrogen donor (HD), �ve hydrogen acceptor (HA1,
HA2, HA3, HA4 and HA5) and one aromatic (A) feature as represented in Fig. 3A. For obtaining optimum quantity of
compounds for structure-based screening, we excluded some of these features viz. two negative ions, three hydrogen
acceptor which were constraining the number of query results and used only four inclusive features (HA1, HA5, A and HD)
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consisting of one hydrogen donor, one aromatic and two hydrogen acceptors as depicted in Fig. 3B. The pharmacophoric
screening resulted into 18887 molecules retaining query features with RMSD lower than 0.5 Å from Mcule-Ultimate
database containing 126,471,502 molecules. The interatomic distances between each of the pharmacophoric feature is
presented in Table 1, which was calculated using measurement wizard of the PyMOL software.

Table 1
Measure of relative distances between different pharmacophoric features

Pharmacophoric features A N1 N2 HA1 HA2 HA3 HA4 HA5 HD

A - 3.0 5.4 3.7 3.8 4.0 6.0 6.1 10.4

N1   - 4.7 1.2 1.2 3.1 5.0 5.8 11.8

N2   4.7 - 5.9 3.9 2.4 1.2 1.2 10.5

HA1 3.7 1.2 5.9 - 2.0 4.1 6.1 6.9 12.7

HA2 3.8 1.2 3.9 2.0 - 2.7 4.0 5.0 11.7

HA3 4.0 3.1 2.4 4.1 2.7 - 3.2 3.0 11.8

HA4 6.0 5.0 1.2 6.1 4.0 3.2 - 2.1 10.8

HA5 6.1 5.8 1.2 6.9 5.0 3.0 2.1 - 10.4

HD 10.4 11.8 10.5 12.7 11.7 11.8 10.8 10.4 -

2.2 PAINS and Drug likeness �lter
An RDKit-based KNIME work�ow [45, 46] was prepared and used for Pan Assay Interference Compounds (PAINS) �ltering
of compounds obtained from pharmacophore-based screening where the PAINS like fragments and functional groups
were converted into SMARTS (SMILES arbitrary target speci�cation) pattern. Then, all the ligands were examined for
presence of these SMARTS pattern and found 316 compounds were with matching pattern were �ltered out. We got 18571
molecules which were further checked for �nding any molecule violating Lipinski Rule of Five (MW < 500, HDonor < 5,
HAcceptor < 10, LogP < 5, Rotatable bods < 10). Out of 18571, we selected 5867 molecules which do not violate any of the
rule from Lipinski. Finally, in order to enrich the set of compounds with structural diversity, we applied RDKit Diversity
Picker and choses 1500 molecules. From this set, molecules already reported with PTP1B inhibition were also removed to
get a �nal data set of 1484 molecules.

2.3 Ligand, Protein Preparation and Validation
Ligands and receptor structures were prepared using Open Babel [47] and MGL Tools [48]respectively. For validation of
grid and docking, the co-crystalized ligand was redocked into the binding site of PTP1B enzyme. We found that the co-
crystalized ligand which binds to deep cavity overlaps with RMSD 1.19 Å, a little higher that might be due to the presence
of rotatable bonds at central portion of the ligand but RMSD value is within the acceptable limit (Fig. 4A). We used
Ertiprota�b as a control/standard molecule that is a reported inhibitor of PTP1B enzyme that reached clinical trials but
failed due to its side effects [49]. We performed its docking and redocking in the same grid and found that it was showing
lower RMSD value that is 0.07 Å (Fig. 4B). Therefore, superimposition of the docked structures suggested that the
generated grid is correct.

2.4 Structural-based virtual screening
The prepared ligands along with standard i.e. Ertiprota�b were used for virtual screening which was carried out using
AutoDock Vina software [50] under �exible ligand mode. The binding score of molecules varies from − 6.3 to -10.5
kcal/mol for 1487 molecules and output �le contained 5–8 poses of each ligand. Top �fty molecules were selected out of
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these 1484 based upon the binding score ranging from − 10.5 to 9.3 kcal/mol. The �rst pose of top �fty molecules was
extracted and saved in SDF format for ADME (absorption, distribution, metabolism, and excretion) prediction. The 2D
structures of Ertiprota�b and top ten hits are presented in the Fig. 5.

Then the top �ve compounds with good pharmacokinetic properties like high absorption, solubility and permeability were
chosen further for performing molecular dynamics study. The 2D and 3D interaction diagram of the top �ve compounds
and Ertiprota�b with PTP1B enzyme are presented in Figs. 6 and 7. Coming to interaction of docked poses, Ertiprota�b
showed various interactions such as carbonyl oxygen was forming hydrogen bonding with LYS120 & SER216; benzyl and
phenyl ring forming π-π stacking with PHE182; and ALA217 & VAL49 are interacting with phenyl & methyl groups via alkyl
& π-alkyl bonding. TYR46 residue was found to be interacting through π-σ interaction with methyl group present at phenyl
ring; ASP48 has shown π-anion interaction with naphtho-thiophene ring holding a score of -9.3 kcal/mol (Fig. 6A & B).
Subsequently, Compound M4 has docking score of -10 kcal/mol and showed several hydrogen bonds such as oxazole ring
with ARG221 & PHE182; carbonyl groups attached to quinazolinone & naphthyridinone with VAL120; carbonyl group
present at bridge with ARG221. It also showed π-π interaction between quinazolinone and TYR46 & PHE182; π-alkyl
bonding of quinazolinone with ALA217 and last but not least, it also demonstrated π -anion and π-alkyl interaction of
LYS116 with naphthyridinone ring (Fig. 6C & D). Compound M5 displayed binding a�nity of -9.5 and represented hydrogen
bond and π-alkyl interaction of LYS116 with �uorine and oxadiazole ring. Likewise, compound M4, ARG221 showed two
hydrogen bonds with both phenol and tetrazole ring and one π-alkyl interaction with tetrazole ring. Apart from these
conventional interactions it is also stabilized by π-anion interaction with LYS120; pi-donor hydrogen bond between pyridine
& SER118, tetrazole & PHE182 and pyrrolidine & ASP181. Furthermore, π-π stacking and π-alkyl interaction of phenyl ring
with TYR46 and ALA217, respectively was also observed for this compound (Fig. 6E & F). Compound M6 which showed
docking score of -9.8 kcal/mol and was forming two hydrogen bonds between nitrogen & carbonyl oxygen of tetrahydro-
quinazolinone ring and ALA217 & ARG221 respectively; one π-anion interaction between ASP48 and phenyl ring; π-donor
hydrogen bond between tetrahydro-quinazolinone and SER216. Additionally, it was also stabilized through several π-alkyl
interactions between cyclopentane and ALA27 & MET258; piperazine and MET258; tetrahydro-quinazolinone and PHE182,
TYR4, CYS215 & ALA217 (Fig. 7A &B). Analogous to other compounds, Compound M8 with the binding a�nity of -9.8
kcal/mol, displayed hydrogen bonding interactions like ARG221 with tetrazole; Fluorine with ARG24 and carbonyl with
ARG254. The tetrazole moiety of M8 showed π-anion interaction CYS215 & ARG221 and π-π stacking interaction with
PHE182 residue. In addition, two π-alkyl interaction were observed by the ALA27 residue with terminal phenyl ring and
ALA217 & ILE219 with central phenyl ring (Fig. 7C &D).

Compound M9 presented in Fig. 7(E & F) shown a binding score of -9.4 kcal/mol and interacted through one hydrogen
bond between pyrimidinedione and ARG254, and one π-π interaction between TYR46 and pyrrolo-pyridine. It was also
found to be stabilized through non-conventional bonds such as π-donor hydrogen interaction of methyl group with
GLU115 & ASP181 and GLN262 with pyrimidinedione ring; π-alkyl interaction of pyrrolo-pyridine with various amino acids
like LYS120, ALA217, PHE182 & TYR46 and lastly π-sigma interaction between tert-butyl and PHE182 residue.

Therefore, interactions of compounds with PTP1B highlighted that hydrogen bonding and π- π interactions were playing
signi�cant role in binding process. Non-conventional interactions like π-alkyl, π-anion and π-donor hydrogen were also
displayed by the molecules helping for their stabilization inside the binding pocket of PTP1B enzyme. The compounds M4,
M5, M6 and M8 were clearly seen to bind with the residues present in A site of the PTP1B enzyme which is important and
play a key role in catalysis. On the other hand, compound M9 bind to the B-site which is a secondary site for catalysis
while Ertiprota�b bound at C site that is an imperative site for selectivity.

2.5 ADME Predictions
The pharmacokinetic properties of Ertiprota�b and top �fty compounds were predicted with the help of DruMAP online
web server (https://drumap.nibiohn.go.jp/prediction) that can be freely accessible and data of ten compounds with that of
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standard is presented in the Table 2. Various parameters including drug metabolism were calculated such as solubility
(d_sol74), fraction of human intestinal absorption (fa_human), permeability measured using caco-2 cell line
(papp_human_caco2) [51], brain-to-plasma concentration ratio (Kp_brain), unbound brain-to-plasma concentration ratio
(Kp,uu,brain) [52], fraction of drug excreted unchanged in the urine (fe), predicted fraction unbound in plasma (fu,p) [53] and
renal clearance (CLr) [54]. Since solubility, absorption and permeability are the major parameters that may cause the drug
failure at initial stages, so we have selected only those compounds which showed high value for these three parameters
i.e. sol > 100µL, fa > 0.7 and Papp > 10− 5cm/s) for further studies highlighted in Table 2.

Table 2
Pharmacokinetic Properties of the top 10 molecules along with their docking score predicted by DruMAP

Compound

Name

Dock
score

fa_

human

papp_
human

caco2

d_sol
74

fe_
human

clr_
human

fu_p_

human
class

fu_p_

human
value

kp_

brain

kp_uubrain

Ertiprota�b -9.3 Moderate Low Low Low 0.0054 Low 0.0076 2.827 4.771

M1 -10.5 Moderate Low Low Low 0.0610 High 0.1744 0.034 0.014

M2 -9.3 High High High Low 0.0459 High 0.1154 0.014 0.016

M3 -9.3 High High High Low 0.0585 High 0.1222 0.211 0.503

M4 -10 High High High Low 0.0385 High 0.0988 0.072 0.223

M5 -9.5 High High High Low 0.0413 High 0.0997 0.066 0.036

M6 -9.8 High High High Low 0.0488 High 0.1964 0.737 0.282

M5 -9.3 High High High Low 0.0380 Low 0.0727 0.064 0.116

M8 -9.8 High High High Low 0.0310 Low 0.0715 0.027 0.055

M9 -9.4 High High High High/
Medium

0.0693 High 0.1644 < 
0.01

0.031

M10 -9.4 High High High Low 0.0376 Low 0.0467 1.740 2.205

fa_human: fraction of human intestinal absorption; papp_human_caco2: permeability measured using caco-2 cell line;
Kp_brain: brain-to plasma concentration ratio; Kp,uu,brain: unbound brain-to-plasma concentration ratio; fe_human: fraction
of drug excreted unchanged in the urine; fu,p: predicted fraction unbound in plasma; CLr: renal clearance and d_sol74:
solubility .

2.6 Molecular Dynamics Trajectory Analysis
Top �ve compounds which were having high solubility, absorption and brain permeability were selected further for
evaluation of ligand stability inside the binding site of PTP1B using classical all-atom molecular dynamics simulation
study. Docked pose of top ligands with protein structure after virtual screening via Autodock vina [50] was used for
simulation study of 100 ns using GROMACS 2020 [55].

The Root Mean Square Deviation (RMSD) was used to measure the average change in displacement of a selected atoms
for a particular frame relative to atoms of reference frame. Monitoring the RMSD of the complex can provide information
about changes in its structural conformation throughout the simulation. The RMSD plot depicts (Fig. 8A) that Ertiprota�b
and Complex M5 have been stabilized with equivalent and lowest value of ~ 0.2nm on an average among all of the
complexes. Similarly, average RMSD value for Complex M4 and Complex M8 was found to be ~ 0.28nm. These results
strongly suggested that all these complexes are stable since their RMSD values were stabilized around a �xed value.
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However, the Complex M6 and M9 have highest RMSD value swapping between 0.3–0.9 nm, which is not acceptable and
indicating that the system is not stabilized at all. The radius of gyration was also measured throughout the time period of
simulation to characterize the compactness of the protein structure in the presence of ligand. Four complexes namely
Complex M4, M5, M8 and Ertiprota�b exhibited a similar pattern of radius of gyration in between 0.94–0.97 nm during the
simulation (Fig. 8B). On the other hand, Complex M6 and M9 is showing large variation in the plot �uctuating in between
0.2–2.14 nm. In order to measure local changes and individual residue �exibility along the protein chain during the
simulation time period, RMSF was determined. Overall RMSF value for all six complexes remained within the range of
0.05–1.5 nm for the entire simulation period (Fig. 9A). Higher �uctuations can be observed for various residues present in
the loop regions such as 30–38, 52–60, 127–140, 180–190, 202–215 and 235–240 among terminal residues. Highest
RMSF value was observed for protein complexed with Compound M9. Ligand RMSF values were also measured presented
in the Fig. 9C Ertiprota�b and Compound M4 has lower RMSF value of 0.025-0.2 nm than other compounds except for last
3–4 atoms of Ertiprota�b which were having RMSF of 0.2–0.3 nm. For other ligands such as M5, M6, M8 and M9 the
RMSF value is changing from 0.025–0.35 nm. Fluctuations in the ligand are indicative of small structure of molecules
trying to stabilize in the binding site of the protein. Since formation of hydrogen bonds play a signi�cant role in ligand
binding and stability of the complex, number of hydrogen bond formed during simulation was also calculated. The results
of hydrogen bond formed between protein and ligand are presented in the Fig. 9B. It can be clearly seen from the h-bond
plot that the Compound M4, M5 and M8 are forming at least 2 3 and 5 hydrogen bond throughput the simulation depicting
that hydrogen bond formation has vital role in stabilization of these compounds in the binding site of the protein. While
Ertiprota�b, Compound M6 and M9 are having less than 30% of hydrogen bond occupancy for whole simulation time
period signifying that there is less chance of hydrogen bonds to be involve in the stabilization of complex formation.
Finally, Fig. 9D displayed hydrogen bond length distribution throughout the trajectory showing that all the hydrogen bonds
formed were within the cut off value of 0.35nm.

Free energy landscape (FEL) is mapping of all possible conformations that a molecule undergoes during a simulation to
the corresponding energy. It shows the complex undergoing valleys and mounds of free energy and helps to represents the
structure having lowest energy [56]. It is calculated by using sham command provided by Gromacs tool [57] in terms of
two variables that replicate speci�c properties of the system and characterize conformational changes, for example here
we have used RMSD and radius of gyration. The third variable is the free energy, which can be estimated from the
distribution (probability distribution) of the system relative to the previously selected variable. In 3D representation, the
shape and valleys in the topography represent low free energy regions (blue), representing the metastable conformations
of the system, and the hills represent the energy barriers connecting these metastable states (dark red).

Figure 10 and 11 revealed the changes in Gibbs free energy (∆G) values for Ertiprota�b, Complex M4, M5, M6, M8 and M9
having a range between 0–10, 0-9.35, 0-9.9, 0-11.7, 0–9 and 0-9.8 kJ/mol respectively. If we precisely observe the 2D and
3D contour of Ertiprota�b, Complex M4, M5 and M6 it clearly depicts that these complexes possess only one valley which
means there is no transition barrier on the surface of a single well to reach local energy-minima with one stable folding
state throughout the simulation. While the Complex M8 and M9 have two local energy minima with one major
conformation out of two slightly different geometrical conformations that was attained by the complex to attain the global
energy minima but they both seems to lie very close within the 3D space as seen in the graph and is having a relatively
stable folding process. FEL of Compound M6 and M9 were observed to be in a very brief blue region suggesting their
instability and higher energy. Overall, MD results indicated that Compound M4, M5 and M8 are having good binding
a�nity with higher number of interactions and lower RMSD value throughout the simulation while Compound M6 and M9
were highly unstable and were found to be detached from the active site of PTP1B enzyme many a times throughout the
simulation in trajectory visualization.

Subsequently, from free energy landscape pro�le the coordinates of three stable complexes with lowest energy that is 0
kcal/mol were noted down and these coordinates were used to extract the frame corresponding to energy minima. We tried
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to overlap the docked complex over the lowest free energy-minima structure to see the differences in binding pose of
ligands and the results are displayed in Fig. 12 along with 2D interactions of the FEL extracted frame. The local minima
structure of Ertiprota�b corresponded to the rGy and RMSD (1.95773, 0.22908) when overlapped with the docked pose,
RMSD value of the complex was found to be 1.226Å. 3D representation of the same revealed that conformation of
Ertiprota�b is much varied and phenyl group �t inside the binding pocket while naphtho-thiophene ring lie outside. It is
interacted with PHE182, TYR20, ASP48, VAL49, GLN262 and LYS116 through various bonds like pi-pi stacking, pi-alkyl, pi-
anion, pi-donor hydrogen bonds. It lacks the hydrogen bonds as seen in docked pose matching with the MD results. When
the local minima structure of Compound M4 corresponds to rGy and RMSD (1.95985, 0.24689), aligned with the docked
pose, RMSD value of the complex was found to be 1.450Å. The conformation of Compound M4 is little varied though
showing similar binding pose as well as interactions where oxazole is �tted into the cavity and naphthyridinone ring lying
outside. It displays three hydrogen bonds with ASP181, ARG221 & LYS116 and two pi-pi interaction with TYR46 & PHE182.
On alignment of local minima structure of Compound M5 corresponds to rGy & RMSD (1.94677, 0.20333), with the docked
pose, RMSD value of the complex was found to be 1.185Å. The conformation of Compound M5 was changed but a similar
binding pose was found to be with tetrazole �tted inside the cavity and pyridine ring lying outside. The local minima
structure of Compound M8 corresponds to rGy and RMSD (1.95106, 0.26197), when overlapped with the docked pose,
RMSD value of the complex was found to be 1.022Å. The conformation of Compound M8 also varied before and after MD
but, in both conformations, tetrazole �tted inside the cavity and other part of the ligand are interacting at different sites. It
is displaying several hydrogen bonds with many amino acids such as ARG221, ASP181, GLN262, ARG47, GLY220, ALA217
& GLY218; halogen bonding through ARG45, pi-pi stacking with TYR46; pi-alkyl interaction with ILE219, ALA217 and also
interacts with TYR46 by forming pi-donor hydrogen bond.

2.7 Molecular mechanics Poisson–Boltzmann surface area
(MM_PBSA) Analysis
To estimate the molecular binding interaction of the top �ve hits and Ertiprota�b at the binding pocket of PTP1B protein,
we determined the binding free energy (∆G) using MM-PBSA approach as represented in the violin plot (Fig. 13). These
calculations involve the energetic terms that is accounted for van der Waals contribution from molecular mechanics, the
electrostatic contribution in terms of electrostatic energy to the solvation free energy which is calculated by generalized
Born, and nonpolar contribution to the solvation free energy calculated by an empirical model. To assess the binding free
energy throughout the simulation, we primarily performed MM-PBSA calculation on the lowest energy minima frame of the
simulation trajectory and two of its adjacent frames, the resultant ∆G was then taken as an average of the three frames
(Table 3). Furthermore, the individual component contribution for the binding can be seen as the van der Waals and
surface energy has positively contributed to the overall binding interaction in all the complexes (Fig. 14).

The electrostatic contribution has positive contribution for all complexes except M5 and M8. EGB and solvation energy
both has negative contribution for all complexes except for Complex M5 and M8. While GGAS energy has positive
contribution for all complexes except Complex M8. Conclusively the total binding free energy for all the complexes were
having negative value. Supporting MD results, binding free energy also displayed that the Compound M4, M5 and M8 were
found to have better binding a�nity for PTP1B enzyme with ∆Gtotal score of -24.25, -31.47 and − 33.81 kcal/mol
respectively as compared to other compounds.
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Table 3
MM-PBSA binding free energy (∆G) calculations for Ertiprota�b and top 5 hits with PTP1B protein

Complex Van der
Waals

Electrostatic
energy

EGB ESURF GGAS GSOLV Averaged ∆G
(kcal/mol)

Ertiprota�b -32.53 -11.38 27.65 -4.65 -43.91 23 -20.91

Complex
M4

-29.4 -25.24 34.6 -4.2 -54.65 30.39 -24.25

Complex
M5

-31.01 8.78 -5.72 -3.52 -22.23 -9.24 -31.47

Complex
M6

-16.01 7.5 2.2 -2.02 -8.52 0.18 -8.34

Complex
M8

-30.89 44.24 -43.78 -3.37 13.35 -47.15 -33.81

Complex
M9

-28.1 -14.68 30.79 -3.47 -42.79 27.32 -15.47

EGB = the electrostatic contribution to the solvation free energy calculated by PB or GB; ESURF = nonpolar contribution
to the solvation free energy calculated by an empirical model; GGAS = Gibbs free energy into a gas-phase term; GSOLV 
= Gibbs free energy into a solvation term.

3. Materials And Computational Methods

3.1 Mapping of pharmacophoric features and development of
pharmacophore
Five compounds complexed with PTP1B were chosen from Binding DB a database [42], based on the Ki value less than
100 nM for these compounds. The crystal structures of these selected complexes were downloaded from Protein Data
Bank (PDB) [58] holding PDB IDs (2CNE [59], 2QBP [60], 1NNY [61], 1NZ7 [62] and 2QBQ [63]). The ligands from these PDB
IDs were extracted with the help of PyMOL v4.6.0 [43] where amino acid chain was removed and 3D structures of the
ligands were saved in mol2 format. These �ve structures were used to generate pharmacophore model using freely
accessible webserver PharmaGist [64] (http://bioinfo3d.cs.tau.ac.il/PharmaGist/php.php) bearing common
pharmacophoric features.

3.2 Pharmacophore based virtual screening
The best pharmacophore model obtained was employed as a query to screen Mcule-Ultimate
(https://ultimate.mcule.com/) database having 378,803,44 conformers of 126,471,502 molecules using Pharmit server
[44]. The query results contain a set of 18887 molecules which were further used for structure based virtual screening. The
obtained molecules were a result of process involving superimposition of molecules against the pharmacophore to
minimize RMSD between the queried features and hit compounds.

3.3 PAINS and Drug likeness �lter
PAINS are chemical compounds which frequently produce false positive results in high-throughput screening. Typically,
PAINS binds non-speci�cally with more than one biological target rather than binding to one intended target speci�cally.
Thus, prior to virtual screening the molecules were �ltered to remove PAINS substructure using RDkit [45] molecule catalog
�lter to obtain 18571 molecules. Subsequently, drug likeness �lter was also applied to remove compounds violating
Lipinski’s Rule of Five (i.e., MW < 500 Da, ≤ 5 hydrogen bond donors, ≤ 10 hydrogen bond acceptors, and an octanol–
water partition coe�cient log P ≤ 5) resulting in a set of 5867 molecules. Then, RDKit Diversity picker was used to pick
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1500 diverse molecules free from duplicates. All these �lters were applied using an open-source application KNIME
analytics platform (ver. 4.3.2) [46, 47], that uses numerous knime nodes including SDF reader, RDKit Molecule Catalog
Filter, Lipinski's Rule-of-Five, RDKit Diversity Picker and SDF writer. The molecules were further screened to remove any
molecules already reported in Binding DB, to get �nal set of 1484 compounds for docking studies.

3.4 Structure based Screening

3.4.1 System Preparation
The selected molecules obtained were in SDF format and using Open Babel 3.1.1 [47] their geometry was optimized
followed by energy minimization and conversion into PDBQT format. The protein structure (PDB ID 2CNE) was prepared
using MGL Tools v1.5.6 [48] in which polar hydrogen and Kalman charges were added, atoms were assigned AD4 type and
�nally protein structure was saved in PDBQT format.

3.4.2 Grid generation and Validation of molecular docking
With the help of AutoDock utility Grid, a grid box of size 30*30*30 Å with center 17.699*30.224*18.544 (in x, y and z
direction respectively) was formed around the binding pocket where the co-crystalized ligand was bound/placed. To
validate the grid, the co-crystalized ligand and standard i.e., Ertiprota�b were redocked. Before performing actual screening,
we examined the RMSD values between the redocked and experimentally determined co-crystallized ligand using PyMOL.
RMSD is widely used for quantitative measurement of the similarity between two superimposed molecules. RMSD values
are measured in angstrom and calculated by the following equation.

Where the averaging is done across n pairs of similar atoms and d i denotes the distance between the two atoms in ith pair.
RMSD parameter required is not more than 1.5 Å to conclude that the protocol used was valid and this could be put to use
in the docking procedure.

3.5 Molecular Docking/Virtual screening
Vina application [50] was used for performing virtual screening and exhaustiveness value was kept eight for molecular
docking cum virtual screening. Virtual screening was performed using a perl script which helps to execute docking of large
number of compounds in a run which take con�guration �le, ligand name �le, receptor structure in pdbqt format and
ligand structure in pdbqt format. After docking studies, the �rst model/structure from each ligand was extracted and saved
in a same �le. And top 50 compounds with high binding a�nity (more negative score) were selected further for ADME
studies.

3.6 In silico ADME prediction
ADME properties are assessed using in silico tools which helps in �ltering such molecules consist of poor pharmacokinetic
properties, that is an essential part of drug discovery since it led to failure of drugs in clinical trials. We used DruMAP v1.4
(Drug Metabolism and Pharmacokinetics Analysis Platform) for prediction of DMPK parameters such as solubility,
clearance [54], absorption, cell permeability [51], BBB permeability [52] where structure of molecules were uploaded in sdf
format (https://drumap.nibiohn.go.jp/).

3.7 Molecular Dynamics Simulation
The compounds which showed better activity were chosen to perform MD simulation for 100 ns with GROMACS 2020 [55]
as described in various literatures [65, 66]. Brie�y, the system was built using CHARMM-GUI webserver using CHARMM-
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n

∑
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d
2

i

1

n



Page 11/28

36M as force �eld [67]. The protein was solvated using TIP3P water model to accommodate a rectangular box of
dimensions 14.08x13.57x13.86 nm, and neutralized by using Monte Carlo ion placing method, adding Na+ and Cl− ions.
The energy of the neutralized system was minimized in 50,000 steps using the steepest descent algorithm followed by
equilibration for a time period of 1 ns using the NVT ensemble, by restraining the protein. The temperature was kept
constant at 303.15 K with Noose Hoover thermostat [68] and a coupling constant of 1.0 ps was applied for both the
protein and nonprotein atoms. Then, the system was equilibrated using NPT ensemble for a time period of 1 ns at 1 bar
pressure using the Parrinello-Rahman barostat [69] with a coupling constant of 1 ps. At last, the system was subjected to
isobaric-isothermal ensembled MD production simulation for 100 ns. In the meantime, the time step was set at 2 fs
throughout the simulation. LINCS (LINear Constraint Solver) algorithm was used for the bond’s length constraints. Particle
mesh Ewald (PME) strategy was adopted for long-range electrostatic interactions, with a cut-off radius of 1.2 nm and 0.16
nm grid spacing. The cut-off distance for Van der Waals was set to 1.2 nm. After completion of production run the
trajectories were analyzed for root mean square deviation (RMSD), root mean square �uctuations (RMSF), radius of
gyration (rGy) and free energy landscape with the help of GROMACS.

3.7 MM-PBSA calculation
The coordinates of energy minima structure and its two neighboring frames of the trajectory were obtained from the Free
Energy Landscape diagram. For the calculations of gmx_MMPBSA, we have used single trajectory approach to calculate
the binding free energy differences. gmx_MMPBSA [70] is a tool scripted in Python3.8 that integrate the functionality from
AmberTools and GROMACS in order to build input �les in an accurate method that can be reproducible so as to perform
the end-state free energy calculations. The work have been carried out in three crucial steps (i) preparation where the
MMPBSA.py calculation engine provided in the gmx_MMPBSA was used to carry out the calculations, the md simulation
output topology �les from GROMACS was used for conversion into Amber topology format, (ii) multiple calculations are
carried out for binding free energy with different solvation models (PB, GB, or 3D-RISM), and (iii) visualization and analysis
was performed once the calculations are complete by using graphical user interface application (gmx_MMPBSA_ana),
which helps to view and analyze the data.

4. Conclusion
In this work, a rational approach was accomplished by means of ligand-based screening followed by structure-based
screening to �nd potential hit compound as inhibitors of PTP1B protein. We designed a pharmacophore model based
upon such ligands reported to have inhibition activity against PTP1B protein which were �ltered for drug likeness and
PAINS substructures. Resultant dataset was docked against PTP1B protein to �nd hit molecules with good binding score.
Then physicochemical properties were calculated for top �fty compounds which were having good binding score against
PTP1B protein. The compounds with optimum value of absorption, solubility and permeability were selected further for
simulation studies. The molecular simulation studies analyzed important interactions and conformational stability and
integrity of the protein-ligand complexes. Based upon MD simulations we have found three molecules Compound M4, M5
and M8 were showing best results with effectively stabilized complex among all other compounds. These compounds
showed various interaction like hydrogen bond formation and pi-stacking which favored the attachment of these ligands
with the receptor. Further compound M6 and M9 were having destabilizing effect on the protein during simulation and they
were detached from the binding pocket and were found to have lesser number of hydrogen bonding throughout the
simulation.

The analysis of average binding free energy and the individual energy components showed the stability of all the
complexes. The overall results from the molecular dynamics and binding free energy both displayed that the compound
M4, M5 and M8 were having better binding a�nity for PTP1B enzyme with ∆Gtotal score of -24.25, -31.47 and − 33.81
kcal/mol respectively than other compounds. The results of this in silico approach revealed that the combined ligand and
structure-based screening can help in better way to �nd a suitable lead molecule.
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Figures

Figure 1

A) Sub pockets of active site of PTP1B enzyme with highlighted amino acids in red (A site), green (B site) and magenta (C
site); B) examples of some reported PTP1B Inhibitors.
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Figure 2

Work�ow used for pharmacophore followed by structure based virtual screening

Figure 3
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Pharmacophore model for PTP1B inhibitor A) Pharmacophore model generated by overlapping �ve different inhibitors of
PTP1B with �ve hydrogen acceptors (HA, orange sphere), two negative ions (N, red sphere), one aromatic (A, purple sphere)
and 1 hydrogen donor (HD, light grey sphere). B) Pharmacophoric model used for pharmacophore based virtual screening
containing 2 hydrogen acceptors, 1 aromatic and 1 hydrogen donor.

Figure 4

Superimposition of co-crystallized ligand (A) and Ertiprota�b (B) on redocking inside the binding pocket of PTP1B enzyme
(PDB Id 2CNE).
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Figure 5

2D structures of top ten hits obtained after virtual screening and ADME studies along with the standard PTP1B inhibitor
Ertiprota�b
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Figure 6

Interaction representation of Ertiprota�b and top hits. Left column and right columns represents 2D and 3D interaction
diagrams. A and B) Ertiprota�b; C and D) Compound M4; E and F) Compound M5
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Figure 7

Interaction representation of best pose of top hits with PTP1B protein after docking with vina software. Left column and
right columns represents 2D and 3D interaction diagrams. A and B) Compound M6; C and D) Compound M8; E and F)
Compound M9
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Figure 8

MD trajectory analysis displaying A) RMSD and B) rGy calculated after 100ns of MD simulation for all six compounds
with PTP1B protein



Page 23/28

Figure 9

MD trajectory analysis displaying A) RMSF for PTP1B protein, B) Number of hydrogen bond, C) RMSF for ligands, and D)
Hydrogen bond length distribution throughout the 100ns of MD simulation.
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Figure 10

The 2D and 3D free energy landscape diagram of PTP1B-Ligand Complex as a function of RMSD and rGy as the two
variables. The topography represents low free energy regions in blue and metastable states in dark red. Here, all three
compounds showed one stable folding stable corresponding to blue region.
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Figure 11

The 2D and 3D free energy landscape diagram of PTP1B-Ligand Complex as a function of RMSD and rGy as the two
variables. The topography represents low free energy regions in blue and metastable states in dark red. Here, Compound
M6 showed one stable folding state while other two (M8 and M9) has more than one stable folding state.
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Figure 12

Interactions and Binding Pose of Compounds after MD studies. In binding pose, yellow and magenta colored structure
represent the ligand pose before (docked) and after MD respectively.
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Figure 13

Violin plot for the In silico calculated Binding Free Energy, ∆G (kcal/mol) by MM-PBSA.
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Figure 14

Contribution of Individual component in the Total Binding Free Energy, ∆G (kcal/mol) energy for each complex calculated
by MM-PBSA.


