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Abstract
Additive manufacturing brings inspection issues for quality assurance of �nal parts because non-destructive testing
methods are faced with shape complexity, size, and high surface roughness. Thus, to drive additive manufacturing
forward, advanced non-destructive testing methods are required. Methods based on resonant ultrasound spectroscopy
(RUS) can take on all the challenges that come with additive manufacturing. Indeed, these full body inspection
methods are adapted to shape complexity, to nearly any size, and to high degrees of surface roughness. Furthermore,
they are easy to implement, fast and low cost. In this paper, we present the bene�t of a resonant ultrasound
spectroscopy method, combined with a statistical analysis through Z score implementation, to classify supposedly
identical parts, from a batch. We also demonstrate that the inspection can be further accelerated and automated, to
make the analysis operator independent, whether the analysis of the resonant ultrasound spectroscopy data is
performed supervised or unsupervised with machine learning algorithms.

Introduction
To be able to rely on the integrity of parts additively manufactured (AM), their inspection is required prior to use.
However, one of the main bene�ts of AM is to build very complex part geometries, such as cavities, internal channels,
free forms, lattices, which do not facilitate ease of inspection. Besides being non-destructive, the quality method needs
to be volumetric, and capable of complex shapes and rough surfaces. The challenge is high. X-ray computed
tomography (XCT) meets these requirements, but is strongly limited by the size and density of the parts. Among other
investigated methods on complex AM parts, resonant ultrasound spectroscopy (RUS) methods have shown particularly
promising [, , ]. The principle of these full body methods is based on the analysis of the positions, in frequency, of the
resonant vibrational modes of the part under test as a result of an impulse excitation. Shifts in frequency of the
positions of the resonant peaks compared to parts from the same family or simulations is synonymous of a difference
in the integrity of the part. These full body methods have the advantage of being faster, easier to use, and cheaper than
XCT, but also suitable for large and dense parts. Additionally, by implementing machine learning (ML) algorithms on
the collected RUS data for clustering or classi�cation, using unsupervised and supervised algorithms respectively, the
data analysis can be automated. Indeed, ML algorithms can provide signi�cant advantages for the automation of non-
destructive evaluation (NDE) and test (NDT) in different condition monitoring applications for various materials and
structures []. Harley and Sparkman, in 2019, showed that the use of ML to solve NDE problems could provide a
potential revolution for future NDE challenges [].

Typically, RUS enables the detection of parts as acceptable or unacceptable from a training set of known parts. We
have already demonstrated the capability of RUS on a set of parts without any (acceptable parts) and with known
internal features simulating typical AM defects, designed in the numerical model, on dense stainless steel AM parts
containing different numbers of internal features [1, 2]. In this speci�c case, we have shown that RUS allowed the
separation of the acceptable and unacceptable dense parts but could not sort the parts according to the number of
features they contained. However, on cobalt-chromium AM lattice structures with various numbers of missing struts,
not only the analysis of the RUS data enabled separating the parts with and without missing struts, but also nearly the
entire set of parts, could be classi�ed according to the number of missing struts [3].

In addition, RUS enables the classi�cation of different sets of parts according to their manufactured process
parameters. We have already demonstrated this capability of RUS on a set of parts additively manufactured with
various machine parameters (wall thicknesses, laser powers, scanning speeds, and scanning strategies) []. The RUS
data statistical analysis allowed the classi�cation of all parts according to their process parameters.
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In this paper, we propose to present the statistical analysis, through Z-scores implementation, of the RUS data of a
batch of parts supposedly identical and to automate the whole analysis by implementing ML algorithms as a post-
processing model to make the analysis operator independent: 1) considering only the available RUS data, an
unsupervised model was implemented. Then based on the clustering performed by the unsupervised model, a
supervised model was initiated; 2) the available RUS data were considered as well as the results of the Z-score analysis
to identify acceptable and unacceptable parts for labelling the data and generating virtual parts. Considering these
data, several supervised models were implemented.

This article is structured as follows. Section 2 describes the basic principle of RUS methods in general, and then
focuses on the speci�cities of impulse excitation methods (IEM), a type of RUS. Section 3 presents the AM parts which
were investigated in this study and section 4, their NDT with an IEM. Sections 5 and 6 address, respectively, the Z-score
and ML IEM data analysis of the investigated parts. Finally, section 6 draws conclusion.

1. Principle Of The Experimental Method
In this study, a Resonant Ultrasound Spectroscopy (RUS) method was used to identify each part’s conformity in regard
to its group of like parts. RUS takes advantage of the correlation between the resonance properties of the mechanical
vibration modes of a part and its intrinsic properties, such as its geometry, density, elasticity, and internal and external
structure, to detect defects and material variations in the part. The basic principle of this whole body non-destructive
examination technique is to excite and record, in the acoustic and/or ultrasonic ranges, the spectrum of the natural
resonant frequencies of the vibration modes of the part and to compare it to the spectra of an established acceptable
resonant frequency pattern (reference parts or parts from the same group or simulations). Any shift in resonant
frequency between the spectrum of the part under test and the spectra of the pattern will be the signature of a
difference between the part and the pattern. Thus, the method enables classi�cation of the parts as acceptable or
unacceptable or according to their intrinsic properties.

According to ASTM E2001 [] standard, RUS includes two types of methods: swept sine or impulse excitation methods
(IEM). We will focus on IEM as an IEM type of method was used in the frame of this study. In IEM (Fig. 1), the part is
excited with a mechanical impact (hammer) to stimulate its natural resonant frequencies, then its vibration response is
captured with a measurement transducer (microphone, piezo transducer, accelerometer, laser vibrometer), recorded,
processed, and analyzed with a data acquisition device and software. In the present study, the IEM system was
comprised of hardware including a modal instrumented hammer to induce vibration to the part, a microphone to collect
the part response, a high-speed analog to digital converter (24 bits) to perform a Fast Fourier Transform (FFT) that
provides frequency spectra. Finally, a software program is enabled to display the spectra and to de�ne frequency
ranges of acceptable variability around the established resonant frequency pattern peaks to sort the parts. This simple
principle makes IEM particularly easy and fast to implement.

2. Description Of The Tested Parts
The investigated parts (Fig. 2) were manufactured in the titanium alloy TA6V ELI (Ti-6Al-4V), by Safran, using a laser
powder bed fusion (PBF-LB) machine, Renishaw 500Q, Y48 implementing 3 lasers.

In total, a group of 27 like parts were manufactured but only 24 were provided for RUS examination. The parts are
labelled from 1 to 27 (parts 15, 16, and 21 were not provided). They were manufactured on three different platforms
(Fig. 2a): parts 1 to 9 on platform 1, parts 10 to 18 on platform 2, and parts 19 to 27 on platform 3. After
manufacturing, the part went through the following post-treatment: 1) powder removal, 2) �rst sandblasting, 3) second
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sandblasting, 4) heat treatment to release residual stress, 5) support removal, 6) visual inspection, and 7) hot isostatic
pressing (HIP).

3. Experimental Examination Of The Tested Parts
For repeatability, thirty tests were performed on each part, positioned on foam, and impacted at approximately the
same location. The in�uence of the impact's location was examined prior to the tests and was considered to be
negligible. The acquisitions were performed in the range of 0–94 kHz with a resolution of 1.465 Hz corresponding to
an acquisition time of 0.683 s. The �rst thirteen resonant peaks, located in the range of 0–20 kHz (Fig. 3), turned out to
contain all the required information to classify the parts. Thus, in the following statistical analyses, only this range of
the spectra was considered.

4. Z-score Analysis Of The Tested Parts
The objective of this analysis is to classify the parts into various risk categories computing Z-score statistical tool
which, beyond its simplicity of execution, offers a physical interpretation. A Z-score is used to compare a sample’s
location within a population of reference samples. It expresses the deviation of the sample from the mean value of the
reference samples’ population in terms of standard deviation on the population taken as reference. For this study, any
sample lying in between [-1, 1] Z-score is acceptable to the population, if it is between [-2, -1]U[1, 2] it is considered as
low risk, if it is between [-2.5, -2]U[2, 2.5] it is considered as medium risk and outside these intervals as high risk. These
are arbitrary grouping choices based on statistical separation.

The Z-scores were computed with the frequencies at maximum amplitude of the �rst thirteen peaks (< 20 kHz) using
this relation:

1
Before undertaking the main statistical analysis to compare all the parts to each other independently of their original
platform, the bias between the three platforms was examined to ensure that there was no platform effect. To do this,
the Z-scores on the frequency resonant peaks, for each of the series of parts manufactured on the same platform, were
computed considering �rst all the parts on each platform as reference (Fig. 4) and then considering the average of the
parts of the three platforms as reference (Fig. 5).

From Fig. 4, it can be observed that all Z-scores, for all platforms, whatever the chosen reference, are concentrated in
the interval [-2, 2] except for three parts: S18 from platform 2, S20, and S24 from platform 3. A similar phenomenon
was observed when considering all platforms as reference (Fig. 5). In this case, all parts are concentrated in the interval
[-1, 1] except the three previously listed parts as well as S8 from platform 1. These four parts were not manufactured on
the same platform so one can conclude that it is a part effect and that the platform effect is negligible. Thus, the parts
do not need to be linked to their manufacturing platform in the main analysis.

As all the parts are supposed to be identical, in order to select reference parts for the Z-score analysis, �rst, all parts,
from all platforms, were considered as reference. This step enables identi�cation of the parts located in the interval [-1,
1] to be chosen as reference parts for the �nal Z-score analysis plotted in Fig. 6.

As observed in Fig. 6, most of the parts are located in the interval [-1, 1]. This means that these parts respond similarly
across all the frequencies and that they should be similar in material properties and dimensions. However, there are �ve

Zscore =

peakfrequencyofasample − meanofthepeakfrequenciesofareferencesamples′population

standarddeviationofthepeakfrequenciesofthereferencesamples′population
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outliers: S8 (platform 1), S13 and S18 (platform 2), S20 and S24 (platform 3). S24 is the weakest part in the batch as
the frequencies of its resonant peaks are shifted to lower frequencies (Fig. 7). Generally, lower frequencies are driven by
a defect or low mechanical properties. S20 (Fig. 7) and S13 are in the same situation to a lesser degree. The deviation
from S8 and particularly S18 could be rather attributed to grain size, stress, or dimensional variations as the shift of
their resonant peaks goes toward higher frequencies []. These outliers were not manufactured at the same location on
their respective platform so their difference cannot be linked to that cause. Only S24 is outside the interval [-2, 2], thus,
for the ML analysis, S24 is the only outlier noted.

5. Machine Learning Analysis Of The Tested Parts
Machine learning (ML), on the RUS data, was computed for the purpose of automating the whole analysis, to make the
RUS analysis operator-independent.

ML is divided into two categories: unsupervised and supervised. The use of one or the other depends on the initial
available data []. In supervised learning, a set of data for which to each input corresponds an output (the data are said
to be labelled or targeted) must be available to predict the output of new data. Whereas, in unsupervised learning, the
analysis is based on un-labelled data that are simply grouped together for a better view and understanding of them. In
both cases, models are trained to predict classes (supervised) or clusters (unsupervised) of the data. Then to evaluate
which model is the more performing, each of them is compared to each other in terms of accuracy and sensitivity of
the model to evaluate the number of false negatives that would correspond to a defective part reported as compliant.

In this paper, �rst, considering only the available RUS data, an unsupervised model was implemented on the
frequencies at the maximum amplitude of the �rst thirteen peaks (< 20 kHz). Then based on the clustering performed
by the unsupervised model, a supervised model was run; Second, the available RUS data were considered as well as
the results of the Z-score analysis to identify acceptable and unacceptable parts for labelling the data and generating
virtual parts. Considering these real and virtual data, several supervised models were implemented on the frequencies
at maximum amplitude of the �rst thirteen peaks (< 20 kHz) as well as on the whole spectra up to 20 kHz.

5.1 Automated unsupervised followed by supervised analysis to
label parts

5.1.1 Unsupervised analysis
An unsupervised K-means analysis [], a data clustering, and recognition method enabling to distinguish data similarity
and dissimilarity was implemented. In this study, four clusters, using the Euclidian distance, were used to categorize
the data with peaks as input (�rst 13 peaks at maximum frequency in the range < 20 kHz). In Fig. 8, the four clusters
are shown in different colors and their center are indicated. As it shown, cluster number four is including two samples
which are S20 and S24, outliers in the Z-score analysis. The output results of the unsupervised method are used for
evaluation and accuracy level in neural network supervised methods in the next section.

5.1.2 Supervised analysis
A Neural Network (NN) model [,] was used to link the input and output data with a series of interconnected neurons.
The method consists of three steps: training, validation, and testing. The training phase involves determining the
relationship between input and output data []. The data splitting is random, the training algorithm is based on
Levenberg-Marquardt and the performance is �rmed by Mean Squared Error (MSE) with ten layers [,]. The performance
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for the current problem is based on MSE on the validation set with respect to the number of iterations in Levenberg-
Marquardt. The model's optimal performance was 0.6180 at the 6th iteration.

The MSE and coe�cient of determination (R2) are two statistical metrics that are commonly used to assess and
validate the model's reliability. The results are displayed for three subsets in Table 1: training, validation, and testing,
based on the correlation between the expected outputs and predictions. The closer the R2 is to 1, the better the �t and
model. 

 
Table 1

Training, validation and test results through NN

  Data splitting (%) MSE R

Training 70 0 1.0000

Validation 15 0.6180 0.9648

Test 15 0.0994 0.9307

In summary, we have shown that the K-means clustering method and the NN supervised algorithm can be implemented
as post-processing classi�cation methods to automate the RUS data analysis.

5 − 2 Supervised analysis based on Z-score results to label parts
To implement the supervised analysis, the RUS data on the 24 real parts were considered and, to increase the amount
of data, 9 virtual outliers and 68 inliers were generated in order to have a total of 100 parts to run the models. A rate of
10% was taken for outliers to be as representative as possible of industrial cases. The virtual outliers were generated in
a random and uniform manner. Some of their peaks were shifted toward lower or higher frequencies based on the
frequency shifts observed for all real part spectra compared to the mean reference part spectra. The virtual inliers were
generated by concatenation of the twenty three spectra of the real inliers parts according to the Z-scores results. Then,
to perform the analysis, the whole set of parts was distributed into three groups: 70% of the parts were considered for
training, 15% for validation and 15% for testing. First, the training set was used to �nd the models parameters. Second,
the validation set was injected in all models to �nd the best combination of model and hyper-parameters. Finally, the
test set enabled to evaluate the capacity of prediction of the best model on new data. For a better estimation of the
capacity of prediction, a strati�ed cross-validation was performed: different train and validation sets were selected in a
loop (70% train and 15% validation) and the capacity of prediction was computed at each iteration. 15% of the data
was kept for testing the model at the end of the cross-validation.

The supervised analysis was performed in parallel for comparison: 1) on the frequencies at the maximum amplitude of
the �rst thirteen resonant peaks (< 20 kHz); 2) on the whole spectra up to 20 kHz. Prior to analysis, noise reduction was
applied on the spectra []: 1) a baseline correction was applied on the spectra, 2) if the amplitudes were positives, they
were kept as they are and, if they were negatives, they were set to zero. For the ML analysis, several supervised
algorithms had been executed but only the four showing the highest accuracy were selected at �rst: 1) SVM (Vector
Machine Support) with four different "kernel" hyper-parameters (radial, polynomial, sigmoid, and linear), 2) the K-NN
model (K Nearest Neighbours) with the hyper-parameter k taking three different values (k = 5, k = 10 and k = 15) then
two models without hyper-parameter modi�cations: 3) the Naïve Bayes model and 4) the decision tree [, ]. Second, the
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three most e�cient combinations “model and hyper-parameter” were selected to go further: 1) SVM with the radial
kernel, 2) SVM with polynomial kernel and 3) Naïve Bayes.

The mean and the standard deviation (Std) on the accuracy, as well as the mean and Std on the sensitivity are given in
Table 2 for the frequencies at the maximum amplitude of the �rst thirteen resonant peaks (< 20 kHz). These metrics
were calculated by strati�ed cross-validation on the validation sets.

 
Table 2

Performance prediction of ML models, on the validation sets, with peaks as input
Model mean accuracy accuracy std mean sensitivity sensitivity std

SVM polynomial kernel 0.89 0.04 0.20 0.27

SVM radial kernel 0.91 0.06 0.30 0.44

Naïve Bayes 0.89 0.24 1.00 0.00

From Table 2, one can be observed, that during the validation, the three mean accuracies are close to each model. To
differentiate them, one can compare their mean sensitivity which represents the rate of unacceptable parts compared
to acceptable parts. From this point of view, the Naïve Bayes model stands out. A 5-fold cross-validation, on the
validation sets, was performed, from which �ve confusion matrices were extracted. In the best cases, the confusion
matrices were the same for both models. However, in the worst cases, the Naive Bayes model has a false negative rate
of 0% and a high false positive rate which is positive whereas it is the opposite for the SVM kernel radial model. As the
best compromise between high accuracy and sensitivity is required, the Naïve Bayes model was selected and
evaluated on the test set (Fig. 9). Its performance reached an accuracy and sensitivity of 100%. Therefore, the Naïve
Bayes model is a good candidate for the analysis of the resonance peaks.

The mean precision, mean sensitivity, standard deviation on precision and of sensitivity, also calculated by strati�ed
cross-validation on the validation sets, are given in Table 3 for the whole spectra up to 20 kHz.

 
Table 3

Performance prediction of ML models, on the validation sets, with spectra as input
Model mean accuracy accuracy std mean sensitivity sensitivity std

SVM polynomial kernel 0.85 0.03 0.00 0.00

SVM radial kernel 0.88 0.10 0.30 0.45

Naïve Bayes 0.92 0.06 0.53 0.36

Considering the analysis with the spectra as input, Table 3 shows that the Naïve Bayes model has the highest mean
sensitivity and a mean accuracy above 90%. This model is therefore also the best candidate when considering all the
data provided by the spectra instead of only the frequencies at maximum amplitude. However, the mean sensitivity of
53% is much lower in the present case. Five confusion matrices were calculated with �ve different combinations of the
selected 15% validation sets as before. The confusion matrix for the Naïve Bayes model, on the test set, is presented in
Fig. 10 left. The confusion matrices on validation sets, for peaks and spectra as input, are the same. However, the
confusion matrices for the test set with spectra as input displays 6.7% of false negative. Furthermore, considering that
the mean sensitivity is only 53% compared to 100% for the peaks (Table 1), one can conclude that the Naïve Bayes is
more effective for peaks than for spectra as input.
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In order to con�rm that the Naïve Bayes model works properly, it was tested with the twenty-four real labelled parts. The
results are displayed in Fig. 10 right. The matrix indicates that 1 parts over the 24 was not predicted correctly. It was
predicted false positive i.e. unacceptable instead of acceptable. Otherwise, the rest of the parts was predicted correctly,
22 parts are acceptable and 1 parts over 24 is non-acceptable.

In summary, among the three ML models which were investigated, one of them stand out for its high mean accuracy
and sensitivity: the probabilistic Naïve Bayes model. However, the mean sensitivity is not high when considering
spectra as input rather than peaks. Moreover, the model applied on the spectra is more time-consuming. Thus, the ML
Naïve Bayes model should be implemented on peaks rather than on spectra to automate the RUS data analysis.

6. Conclusion
The adoption of AM in the industry is going slowly because the quali�cation of parts is an issue regarding their
possible complexity in geometry, their size and their high surface roughness. In addition to being adapted to complex
geometries, nearly any size, and high roughness, the evaluation must be non-destructive, and ideally simple to
implement, fast, and inexpensive. These require innovation in the NDT sector. The RUS method described here,
combined with Z-score analysis and/or ML, is a solution from these perspectives. The method is suitable for any
shape, size, and surface roughness. It is also easy to implement, fast and inexpensive. And combined with Z-score
analysis and/or ML, it enables to be fully automated and thus expedites the part quali�cation process, which lowers
the costs of validation quality control. 

In the current paper, we have presented an application of RUS through IEM and addressed statistical methods such as
Z-score, supervised and unsupervised models to automate successfully the analysis of RUS data on a batch of
supposedly identical parts.
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Figures

Figure 1

Various schematic representations of the Impulse Excitation Methods (IEM). “micro” stands for microphone, “piezo” for
piezoelectric transducer, “accelero” for accelerometer and “laser vibro” for laser vibrometer
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Figure 2

Photographs of the Safran parts on one of the platforms (a) and of an individual part as �nal (b)

Figure 3

Typical RUS spectrum of the tested part in the range 0-20 kHz corresponding to the �rst thirteen resonant peaks
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Figure 4

Z-score graphs displaying the platform effect. Each platform was successively considered as reference.
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Figure 5

Z-scores’ graph to evaluate the platform effect. All platforms were considered as reference
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Figure 6

Z-score’ graph of the tested parts
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Figure 7

Shifts in frequencies between reference part group S14 and outliers S18, S20 and S24

Figure 8
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Clustering using K-means with peaks as input. The clusters in 13 dimensions (13 peaks) are represented here in 2
dimensions with the help of principal component analysis. Axis correspond to the 2 directions with maximum standard
deviation for better separation of clusters

Figure 9

Confusion matrices for Naïve Bayes model, on the test set, with peaks as input. The table located right explained how
to understand the confusion matrices. The best is to have maximum percentage in the green boxes, to have a low
percentage in the orange box. Having higher than “0” in the red box is problematic. The number “1” indicates that a part
is acceptable and “0” that it is not acceptable

Figure 10

Confusion matrices for Naïve Bayes model with peaks as input. Left: on the test set. Right: on the 24 real parts


