[1] S. Gong, B.G. Liu, Electronic energy gaps and optical properties of LaMnO3, Phys. Lett. Sect. A Gen. At. Solid State Phys. 375 (2011) 1477–1480. https://doi.org/10.1016/j.physleta.2011.02.027.
[2] C. Ma, W. Ren, L. Wang, J. Xu, A. Chang, L. Bian, Structural, optical, and electrical properties of (Mn1.56Co0.96Ni0.48O4)1 − x(LaMnO3)x composite thin films, J. Eur. Ceram. Soc. 36 (2016) 4059–4064. https://doi.org/10.1016/j.jeurceramsoc.2016.06.019.
[3] T. Ha, T. Huong, H. Nam, N. Hai, C. Viet, Results in Physics Sr doped LaMnO3 nanoparticles prepared by microwave combustion method : A recyclable visible light photocatalyst, Results Phys. 19 (2020) 103417. https://doi.org/10.1016/j.rinp.2020.103417.
[4] V.A. Khomchenko, D.A. Kiselev, J.M. Vieira, L. Jian, A.L. Kholkin, A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, M. Maglione, Effect of diamagnetic Ca, Sr, Pb, and Ba substitution on the crystal structure and multiferroic properties of the BiFeO3 perovskite, J. Appl. Phys. 103 (2008). https://doi.org/10.1063/1.2836802.
[5] E. Hern, Synthesis and magnetic characterization of LaMnO3 nanoparticles, (2015).
[6] Q. Lin, J. Lin, X. Yang, Y. He, L. Wang, J. Dong, The effects of Mg 2+ and Ba 2+ dopants on the microstructure and magnetic properties of doubly-doped LaFeO 3 perovskite catalytic nanocrystals, Ceram. Int. 45 (2019) 3333–3340. https://doi.org/10.1016/j.ceramint.2018.10.246.
[7] H. Huang, Q. Liu, B. Lu, X. Wang, J. Hu, Diamond & Related Materials LaMnO 3 -diamond composites as e ffi cient oxygen reduction reaction catalyst for Zn-air battery, 91 (2019) 199–206. https://doi.org/10.1016/j.diamond.2018.11.024.
[8] J. Hu, L. Zhang, B. Lu, X. Wang, H. Huang, LaMnO 3 nanoparticles supported on N doped porous carbon as e ffi cient photocatalyst, 159 (2019) 59–68. https://doi.org/10.1016/j.vacuum.2018.10.021.
[9] T. Shou, Y. Li, M.T. Bernards, C. Becco, G. Cao, Y. Shi, Y. He, Degradation of gas-phase o-xylene via combined non-thermal plasma and Fe doped LaMnO 3 catalysts : Byproduct control, 387 (2020). https://doi.org/10.1016/j.jhazmat.2019.121750.
[10] F. Li, Z. Wang, A. Wang, S. Wu, L. Zhang, N-type LaFe 1-x Mn x O 3 prepared by sol-gel method for gas sensing, 816 (2020) 3–7. https://doi.org/10.1016/j.jallcom.2019.152647.
[11] P. Goel, S. Sundriyal, V. Shrivastav, S. Mishra, D.P. Dubal, K.-H. Kim, A. Deep, Perovskite materials as superior and powerful platforms for energy conversion and storage applications, Nano Energy. 80 (2021) 105552. https://doi.org/10.1016/j.nanoen.2020.105552.
[12] K. Sebayang, D. Aryanto, S. Simbolon, C. Kurniawan, S.F. Hulu, T. Sudiro, M. Ginting, P. Sebayang, Effect of sintering temperature on the microstructure, electrical and magnetic properties of Zn0.98 Mn0.02O material, IOP Conf. Ser. Mater. Sci. Eng. 309 (2018) 0–8. https://doi.org/10.1088/1757-899X/309/1/012119.
[13] W. Azouzi, W. Sigle, H. Labrim, M. Benaissa, Sol-gel synthesis of nanoporous LaFeO3 powders for solar applications, Mater. Sci. Semicond. Process. 104 (2019) 104682. https://doi.org/10.1016/j.mssp.2019.104682.
[14] K. Bhoi, T. Dam, S.R. Mohapatra, M.M. Patidar, D. Singh, A.K. Singh, P.N. Vishwakarma, P.D. Babu, V. Siruguri, D.K. Pradhan, Studies of magnetic phase transitions in orthorhombic DyMnO 3 ceramics prepared by acrylamide polymer gel template method, J. Magn. Magn. Mater. (2019). https://doi.org/10.1016/j.jmmm.2019.02.069.
[15] Q. Sun, X. Luo, Q. Xia, Y. Guo, J. Su, Q. Li, G. Miao, Enhanced ferromagnetism and conductivity in epitaxial LaMnO 3 thin fi lms by oxygen-atmosphere annealing, J. Magn. Magn. Mater. 499 (2020). https://doi.org/10.1016/j.jmmm.2019.166317.
[16] N. Geetha, S.K. V, D. Prakash, Synthesis and characterization of LaMn1-xFexO3 (x=0, 0.1, 0.2) by coprecipitation route, J. Phys. Chem. Biophys. 8 (2018) 1–6. https://doi.org/10.4172/2161-0398.1000273.
[17] L. Nejati Moghadam, Z. Rashidi Ranjbar, Cost-efficient solar cells using nanocrystalline perovskite La (Fe and Mn) O 3 and candle soot: Theory and experiment, J. Alloys Compd. 785 (2019) 117–124. https://doi.org/10.1016/j.jallcom.2019.01.068.
[18] A. Moghtada, R. Ashiri, Enhancing the formation of tetragonal phase in perovskite nanocrystals using an ultrasound assisted wet chemical method, Ultrason. - Sonochemistry. 33 (2016) 141–149. https://doi.org/10.1016/j.ultsonch.2016.05.002.
[19] G. Deng, Y. Chen, M. Tao, C. Wu, X. Shen, H. Yang, M. Liu, Electrochimica Acta Electrochemical properties and hydrogen storage mechanism of perovskite-type oxide LaFeO 3 as a negative electrode for Ni / MH batteries, 55 (2010) 1120–1124. https://doi.org/10.1016/j.electacta.2009.09.078.
[20] A. Giroir-fendler, M. Alves-fortunato, M. Richard, C. Wang, J. Antonio, S. Gil, C. Zhang, F. Can, N. Bion, Applied Catalysis B : Environmental Synthesis of oxide supported LaMnO 3 perovskites to enhance yields in toluene combustion, "Applied Catal. B, Environ. 180 (2016) 29–37. https://doi.org/10.1016/j.apcatb.2015.06.005.
[21] A. Daundkar, S.N. Kale, S.P. Gokhale, V. Ravi, A low temperature route to prepare LaMnO 3, 60 (2006) 1213–1214. https://doi.org/10.1016/j.matlet.2005.11.002.
[22] C. Zhang, Y. Guo, Y. Guo, G. Lu, A. Boreave, L. Retailleau, A. Baylet, A. Giroir-fendler, Applied Catalysis B : Environmental LaMnO 3 perovskite oxides prepared by different methods for catalytic oxidation of toluene, "Applied Catal. B, Environ. 148–149 (2014) 490–498. https://doi.org/10.1016/j.apcatb.2013.11.030.
[23] O.P. Taran, A.B. Ayusheev, O.L. Ogorodnikova, I.P. Prosvirin, L.A. Isupova, V.N. Parmon, Applied Catalysis B : Environmental Perovskite-like catalysts LaBO 3 ( B = Cu , Fe , Mn , Co , Ni ) for wet peroxide oxidation of phenol, "Applied Catal. B, Environ. 180 (2016) 86–93. https://doi.org/10.1016/j.apcatb.2015.05.055.
[24] M. Shaterian, M. Enhessari, D. Rabbani, M. Asghari, Synthesis , characterization and photocatalytic activity of LaMnO 3 nanoparticles, Appl. Surf. Sci. 318 (2014) 213–217. https://doi.org/10.1016/j.apsusc.2014.03.087.
[25] F. Lamno, T. Phan, P.Q. Thanh, P.D.H. Yen, P. Zhang, T.D. Thanh, S.C. Yu, Ferromagnetic short-range order and magnetocaloric effect, 167 (2013) 49–53. https://doi.org/10.1016/j.ssc.2013.06.009.
[26] W. Haron, A. Wisitsoraat, S. Wongnawa, Nanostructured perovskite oxides – LaMO3 (M=Al, Co, Fe) prepared by co-precipitation method and their ethanol-sensing characteristics, Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.01.013.
[27] J.L. Ortiz-Quiñonez, L. García-González, F.E. Cancino-Gordillo, U. Pal, Particle dispersion and lattice distortion induced magnetic behavior of La1-xSrxMnO3 perovskite nanoparticles grown by salt-assisted solid-state synthesis, Mater. Chem. Phys. 246 (2020). https://doi.org/10.1016/j.matchemphys.2020.122834.
[28] A. Ashok, A. Kumar, J. Ponraj, S.A. Mansour, F. Tarlochan, Enhancing the electrocatalytic properties of LaMnO3 by tuning surface oxygen deficiency through salt assisted combustion synthesis, Catal. Today. (2020) 0–1. https://doi.org/10.1016/j.cattod.2020.05.065.
[29] S.Y. Lee, J. Yun, W.P. Tai, Synthesis of Ni-doped LaSrMnO3 nanopowders by hydrothermal method for SOFC interconnect applications, Adv. Powder Technol. 29 (2018) 2423–2428. https://doi.org/10.1016/j.apt.2018.06.021.
[30] N. Das, D. Bhattacharya, A. Sen, H.S. Maiti, Sonochemical synthesis of LaMnO3 nano-powder, Ceram. Int. 35 (2009) 21–24. https://doi.org/10.1016/j.ceramint.2007.09.002.
[31] R. Pelosato, C. Cristiani, G. Dotelli, M. Mariani, A. Donazzi, I. Natali Sora, Co-precipitation synthesis of SOFC electrode materials, Int. J. Hydrogen Energy. 38 (2013) 480–491. https://doi.org/10.1016/j.ijhydene.2012.09.063.
[32] G. Qin, X. Huang, J. Chen, Z. He, Synthesis of Sr and Mg double-doped LaAlO3 nanopowders via EDTA-glycine combined process, Powder Technol. 235 (2013) 880–885. https://doi.org/10.1016/j.powtec.2012.11.048.
[33] K. Navin, R. Kurchania, Structural, magnetic and electrochemical properties of LSMO-ZnO core-shell nanostructure, Mater. Chem. Phys. 234 (2019) 25–31. https://doi.org/10.1016/j.matchemphys.2019.05.083.
[34] C. Li, J. Cheng, Y. Jiang, W. Xiao, X. Yan, Synthesis and enhanced electrocatalytic mechanism of mesoporous La0.8Sr0.2MnO3 nanowires as high-active electrocatalysts for Zn-air batteries, Appl. Surf. Sci. 538 (2021) 148015. https://doi.org/10.1016/j.apsusc.2020.148015.
[35] H. Luo, J. Guo, T. Shen, H. Zhou, J. Liang, S. Yuan, Study on the catalytic performance of LaMnO3 for the RhB degradation, J. Taiwan Inst. Chem. Eng. 109 (2020) 15–25. https://doi.org/10.1016/j.jtice.2020.01.011.
[36] Y. Song, Z. Wang, Y. Yan, M. Zhang, G. Wang, T. Yin, Y. Xue, F. Gao, M. Qiu, Molten salt synthesis and supercapacitor properties of oxygen-vacancy, 43 (2020) 173–181. https://doi.org/10.1016/j.jechem.2019.09.007.
[37] S. Priyatharshni, S.R. Kumar, C. Viswanathan, N. Ponpandian, Morphologically tuned LaMnO 3 as an e ffi cient nanocatalyst for the removal of organic dye from aqueous solution under sunlight, J. Environ. Chem. Eng. 8 (2020) 104146. https://doi.org/10.1016/j.jece.2020.104146.
[38] D. Çoban Özkan, A. Türk, E. Çelik, Synthesis and characterizations of sol–gel derived LaFeO3 perovskite powders, J. Mater. Sci. Mater. Electron. 31 (2020) 22789–22809. https://doi.org/10.1007/s10854-020-04803-8.
[39] . E. Celik, U. Aybarc, M.F. Ebeoglugil, I. Birlik, O. Culha, ITO films on glass substrate by sol – gel technique : synthesis , characterization and optical properties, J. Sol–Gel. Sci. Technol. 50 (2009) 337–347. https://doi.org/10.1007/s10971-009-1931-4.
[40] P. Hu, H. Yang, D. Pan, H. Wang, J. Tian, S. Zhang, X. Wang, A.A. Volinsky, Heat treatment effects on microstructure and magnetic properties of Mn – Zn ferrite powders, J. Magn. Magn. Mater. 322 (2010) 173–177. https://doi.org/10.1016/j.jmmm.2009.09.002.
[41] A. Dimian, C. Bildea, A. Kiss, Integrated Design and Simulation of Chemical Processes, 2014. https://doi.org/10.1016/B978-0-444-62700-1.09993-9.
[42] Chaudhery Mustansar Hussain, ed., Handbook of Nanomaterials for Industrial Applications, 2018. https://doi.org/10.1016/C2016-0-04427-3.
[43] T. Jia, Z. Zeng, H.Q. Lin, Y. Duan, P. Ohodnicki, First-principles study on the electronic, optical and thermodynamic properties of ABO3 (A = La,Sr, B = Fe,Co) perovskites, RSC Adv. (2017) 38798–38804. https://doi.org/10.1039/c7ra06542f.
[44] R. Rauer, Optical Spectroscopy of Strongly Correlated Transition-metal Oxides, Cuvillier Verlag, 2005.
[45] K.M.S. Khalil, W.A. Elhamdy, A.E.A. Said, A.A. Elsamahy, Porous LaFeO 3 / Silica Nanocomposites via Sol-Gel Mixing Involving Citric Acid, Colloids Surfaces A Physicochem. Eng. Asp. 506 (2016) 840–848. https://doi.org/10.1016/j.colsurfa.2016.07.068.
[46] E. Cao, Y. Yang, T. Cui, Y. Zhang, W. Hao, L. Sun, H. Peng, X. Deng, Effect of synthesis route on electrical and ethanol sensing characteristics for LaFeO 3-δ nanoparticles by citric sol-gel method, Appl. Surf. Sci. 393 (2017) 134–143. https://doi.org/10.1016/j.apsusc.2016.10.013.
[47] J.D. Wright, Sol-Gel Materials, CRC Press, 2018.
[48] J. Wang, X. Cao, S. Liu, Y. Guo, Z. Wang, X. Li, Y. Ren, Z. Xia, H. Wang, C. Liu, N. Wang, W. Jiang, W. Ding, Preparation , structural and sintering properties of AZO nanoparticles by sol- gel combustion method, Ceram. Int. (2020) 0–1. https://doi.org/10.1016/j.ceramint.2020.04.068.
[49] L. Sr, M. Fe, Sol – gel synthesis , characterization and microwave absorbing properties, Mater. Res. Bull. 47 (2012) 1961–1967. https://doi.org/10.1016/j.materresbull.2012.04.017.
[50] A.C. Pierre, Introduction to sol-gel processing, Springer US, Boston, 1998. https://doi.org/10.1007/978-1-4615-5659-6.
[51] C.J. Brinker, G.W. Scherer, Sol-gel science : the physics and chemistry of sol-gel processing, San Diego, 1990.
[52] K. Vojisavljević, P. Chevreux, J. Jouin, B. Malič, Characterization of the alkoxide-based sol-gel derived la9.33Si6O26powder and ceramic, Acta Chim. Slov. 61 (2014) 530–541.
[53] M. Yurddaskal, E. Celik, Effect of halogen-free nanoparticles on the mechanical, structural, thermal and flame retardant properties of polymer matrix composite, Compos. Struct. 183 (2017) 381–388. https://doi.org/10.1016/j.compstruct.2017.03.093.
[54] P. V Gosavi, R.B. Biniwale, Pure phase LaFeO 3 perovskite with improved surface area synthesized using different routes and its characterization, 119 (2010) 324–329. https://doi.org/10.1016/j.matchemphys.2009.09.005.
[55] X. Chen, J. Yu, S. Guo, S. Lu, Z. Luo, M. He, Surface modification of magnesium hydroxide and its application in flame retardant polypropylene composites, J. Mater. Sci. 44 (2009) 1324–1332. https://doi.org/10.1007/s10853-009-3273-6.
[56] E. SPAHIU, ATR-FTIR EVALUATION OF STRUCTURAL AND FUNCTIONAL CHANGES ON MURINE MACROPHAGE CELLS UPON ACTIVATION AND SUPPRESSION BY IMMUNO-THERAPEUTIC OLIGODEOXYNUCLEOTIDES, MIDDLE EAST TECHNICAL UNIVERSITY, 2015.
[57] L. Lin, Z. Song, Z. Haider, X. Liu, W. Qiu, Enhanced As ( III ) removal from aqueous solution by Fe-Mn-La- impregnated biochar composites, Sci. Total Environ. 686 (2019) 1185–1193. https://doi.org/10.1016/j.scitotenv.2019.05.480.
[58] M. Sukumar, L.J. Kennedy, J.J. Vijaya, B. Al-Najar, M. Bououdina, Facile synthesis of Fe3+ doped La2CuO4/LaFeO3 perovskite nanocomposites: Structural, optical, magnetic and catalytic properties, Mater. Sci. Semicond. Process. 100 (2019) 225–235. https://doi.org/10.1016/j.mssp.2019.04.049.
[59] and M.R.M. A. Monshi, M. R. Foroughi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD, World J. Nano Sci. Eng. 2 (2012) 154–160.
[60] H. Gao, C. Zheng, H. Yang, X. Niu, S. Wang, Construction of a CQDs / Ag 3 PO 4 / BiPO 4 Heterostructure Photocatalyst with Enhanced Photocatalytic Degradation of Rhodamine B under Simulated Solar Irradiation, 3 (2019).
[61] S. Guan, H. Yang, X. Sun, T. Xian, Preparation and promising application of novel LaFeO3/BiOBr heterojunction photocatalysts for photocatalytic and photo-Fenton removal of dyes, Opt. Mater. (Amst). 100 (2020) 109644. https://doi.org/10.1016/j.optmat.2019.109644.
[62] R.G.H. A. J. Signorelli, X-Ray Photoelectron Spectroscopy of Various Core Levels of Lanthanide Ions: The Roles of Monopole Excitation and Electrostatic Coupling, Phys. Rev. B (Covering Condens. Matter Mater. Physics). 8 (1973).
[63] E.B. Simsek, Ö. Tuna, Z. Balta, Separation and Puri fi cation Technology Construction of stable perovskite-type LaFeO 3 particles on polymeric resin with boosted photocatalytic Fenton-like deca ff eination under solar irradiation, Sep. Purif. Technol. 237 (2020) 116384. https://doi.org/10.1016/j.seppur.2019.116384.
[64] F.J. Maldonado-Hódar, H. Jirglová, S. Morales-Torres, A.F. Pérez-Cadenas, Influence of surfactants on the physicochemical properties and catalytic behaviour of Mo-doped carbon xerogels, Catal. Today. 301 (2018) 217–225. https://doi.org/10.1016/j.cattod.2017.01.030.
[65] A.-M. HERMANS SON, Microstructure of protein gels related to functionality, in: R.Y. YADA, R.L. JACKMAN, J.L. SMITH (Eds.), Protein Struct. Relationships Foods, SPRINGER SCIENCE+BUSINESS MEDIA, LLC, 1994: p. 202.
[66] I. Jaouali, H. Hamrouni, N. Moussa, M.F. Nsib, M. Angel, A. Bonavita, G. Neri, S. Gianluca, LaFeO 3 ceramics as selective oxygen sensors at mild temperature, Ceram. Int. 44 (2018) 4183–4189. https://doi.org/10.1016/j.ceramint.2017.11.221.
[67] Zetasizer Nano User Manual, Malvern Instruments Ltd., 2013., (n.d.).
[68] Y.T. O, J.B. Koo, K.J. Hong, J.S. Park, D.C. Shin, Effect of grain size on transmittance and mechanical strength of sintered alumina, Mater. Sci. Eng. A. 374 (2004) 191–195. https://doi.org/10.1016/j.msea.2004.02.015.
[69] J. Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation, 2013. https://doi.org/10.1016/B978-0-08-046978-2.50029-6.
[70] V. Gruzdev, Ultrafast laser-induced modifications of energy bands of non-metal crystals, Proc. SPIE. 7501 (2009). https://doi.org/10.1117/12.836908.
[71] S.P. Ghorpade, R.H. Krishna, R.M. Melavanki, V. Dubey, Effect of Eu3+ on optical and energy bandgap of SrY2O4 nanophosphors for FED applications, Opt. - Int. J. Light Electron Opt. 208 (2020) 164533. https://doi.org/10.1016/j.ijleo.2020.164533.
[72] R. Köferstein, L. Jäger, S.G. Ebbinghaus, Magnetic and optical investigations on LaFeO3 powders with different particle sizes and corresponding ceramics, Solid State Ionics. 249–250 (2013) 1–5. https://doi.org/10.1016/j.ssi.2013.07.001.
[73] D. Ramírez-ortega, I. González, R. Arroyo, Semiconducting properties of ZnO / TiO2 composites by electrochemical measurements and their relationship with photocatalytic activity Electrochimica Acta Semiconducting properties of ZnO / TiO 2 composites by electrochemical measurements and their relati, (2014) 2–11. https://doi.org/10.1016/j.electacta.2014.06.060.
[74] D. Ramírez-ortega, D. Guerrero-araque, D. Ramírez-ortega, P. Acevedo-peña, Interfacial Charge-Transfer Process across ZrO2-TiO2 Heterojunction and its Impact on Photocatalytic Activity Journal of Photochemistry and Photobiology A : Chemistry Interfacial charge-transfer process across ZrO 2 -TiO 2 heterojunction and its impact on, "Journal Photochem. Photobiol. A Chem. 335 (2016) 276–286. https://doi.org/10.1016/j.jphotochem.2016.11.030.
[75] T. Vijayaraghavan, M. Bradha, P. Babu, K.M. Parida, G. Ramadoss, S. Vadivel, R. Selvakumar, A. Ashok, Influence of secondary oxide phases in enhancing the photocatalytic properties of alkaline earth elements doped LaFeO 3 nanocomposites, J. Phys. Chem. Solids. 140 (2020) 109377. https://doi.org/10.1016/j.jpcs.2020.109377.
[76] S.R. Kumar, C. V Abinaya, S. Amirthapandian, N. Ponpandian, Enhanced visible light photocatalytic activity of porous LaMnO 3 sub-micron particles in the degradation of rose bengal, Mater. Res. Bull. 93 (2017) 270–281. https://doi.org/10.1016/j.materresbull.2017.05.024.
[77] M. Purnachander, S. Musthafa, J.J. Wu, S. Anandan, Facile synthesis of perovskite LaFeO 3 ferroelectric nanostructures for heavy metal ion removal applications, Mater. Chem. Phys. 232 (2019) 200–204. https://doi.org/10.1016/j.matchemphys.2019.04.086.
[78] A. Manikandan, R. Sridhar, S.A. Antony, S. Ramakrishna, A simple aloe vera plant-extracted microwave and conventional combustion synthesis : Morphological , optical , magnetic and catalytic properties of CoFe 2 O 4 nanostructures, J. Mol. Struct. 1076 (2014) 188–200. https://doi.org/10.1016/j.molstruc.2014.07.054.
[79] Y. Slimani, M.A. Almessiere, A.D. Korkmaz, S. Guner, H. Güngüne, M. Sertkol, A. Manikandan, A. Yildiz, S. Akhtar, S.E. Shirsath, A. Baykal, Ni0.4Cu0.2Zn0.4TbxFe2-xO4 nanospinel ferrites: Ultrasonic synthesis and physical properties, Ultrason. - Sonochemistry. 59 (2019). https://doi.org/10.1016/j.ultsonch.2019.104757.
[80] A.M.M. Durka, S.A. Antony, A Novel Synthesis , Structural , Morphological , and Opto-magnetic Characterizations of Magnetically Separable Spinel Co x Mn 1 − x Fe 2 O 4 ( 0 ≤ x ≤ 1 ) Nano-catalysts, (2014) 2841–2857. https://doi.org/10.1007/s10948-014-2771-1.
[81] A.V.T. S.V. Trukhanov, , D.P. Kozlenko, High hydrostatic pressure effect on magnetic state of anion-deficient La0.70Sr0.30MnOx perovskite manganites, J. Magn. Magn. Mater. 320 (2008) 91–94. https://doi.org/10.1016/j.jmmm.2008.02.021.