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Abstract

Background : The aim of this study is to achieve the principles of tissue engineering using biopolymers to
be applied in the field of vital endodontic treatment with the aim of stimulating stem cells and
engineering and regeneration of dentin tissue. the blend was loaded with the steroidal anti-inflammatory
drug, dexamethasone, and the porous drug-loaded bio-sponge was produced by lyophilization. Bio-
sponge, as a direct pulp capping agent, was histologically studied compared to calcium hydroxide
Ca(OH)2 in an animal experiment.

Results: The results indicated the effectiveness of the bio-sponge as a direct pulp agent, where the dentin
bridge was formed faster than Ca(OH)2 treated samples,. There was no inflammatory response in the
pulp tissue throughout the follow-up period.

Conclusions : The porous bio-sponge loaded with dexamethasone with a neutral pH resulted in
enhancement the odontoblast differentiation from stem cells, resulted in the formation of a renewed
dentin bridge without the slightest inflammatory response in the pulp.

1. Introduction

Vital pulp therapy is the treatment of teeth that have a reversible pulp injury in order to help pulp healing
and maintain it. The treatment of vital pulp is intended to treat reversible endodontic injuries by capping

the pulp and stimulating the formation of the dentin bridge("- 2. Direct pulp capping DPC, as known, is
one of the vital pulp treatment methods that based on the treatment of exposed vital pulp by applying a

capping material onto the exposed pulp in order to form a protective barrier for maintaining the pulp® 4.
DPC avoids interference on the pulp and broader therapeutic processes such as endodontics and
extractions(®.

Many materials have been used to cover the exposed pulp, and have been extensively histologically and
clinically studied and have achieved different success rates, such as zinc oxide eugenol (ZoE)(®, glass
ionomer cement (GIC)(”), adhesive systems(®), calcium hydroxide ), mineral trioxide aggregate (MTA)(10),

Biodentine (') and calcium-enriched mixture cement CEM(12),

It is known that bones and dentin are composed of an extracellular matrix ECM consist of mineral
(hydroxyapatite) and organic components which is mainly composed of collagen and glucose

aminoglycan GAG('3). ECM is responsible for cellular metabolism and the forming of new tissues since it

gives the mechanical and biochemical properties for the formed tissue('4). ECM plays a crucial role in
regulating the expression of the differentiated phenotype and in supporting both migration and

proliferation of fibroblast cells('®.

Chitin, the most abundant polysaccharide in nature after cellulose, is synthesized by an enormous
number of living organisms, presents in the exoskeleton of crustaceans, insects and fungal cell walls(19).
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Chitin consists of a saccharide backbone with 3-1,4-linked glucosamine units and characterized by a high
availability of acetyl group('”). Chitin has a cellulose-like structure with the difference of hydroxyl-group
replacement by (-NHCOCHj,) at the C, site('®). Chitosan is the main derivative of chitin and derived by
alkaline deacetylation of chitin('%). The availability of functional groups allows chemical modifications,
making it possible to load and release drugs from chitosan(@9).

Chitosan scaffolds with an interconnected porous structure have been shown to be easily manufactured
by lyophilization of chitosan solution??), and have been widely studied in the bone tissue engineering,
and it has been shown that it promotes osteoblast cells growth and deposition of the mineralized matrix

(22)

by cells\““). The addition of chitosan molecules to the human bone marrow transplantation medium

stimulates bone deposition by promoting cell differentiation(23)

. It has been suggested that chitosan
enhanced bone formation in vivo through indirect mechanisms@®, and it can be used as a standard GAG

in tissue regeneration processes(?4).

Collagen is the most abundant protein in the body and it is the major component in body tissues, it forms
also about 30% of total proteins in mammals(@. About 28 types of collagen have been identified@9),
among which, the type-l collagen is the prevalent type and it is the main component of the ECM@7).

Collagen type-l is the basic protein in animals and it is particularly widespread in the skin, tendons, bones,

and dentin, where its function is to absorb and transfer forces(?®). Because of the special properties of
collagen that promote the adhesion, proliferation and cellular differentiation, it has been extensively
studied in the design of tissue engineering scaffolds; since porous collagen scaffolds have distinctive

physical, chemical and biological properties for using in tissue engineering(?°:39),

Dexamethasone, as known, is a synthetic glucocorticoid clinically used as an anti-inflammatory drug®".
Dexamethasone has been also used to differentiate stem cells into bone cells, as some studies have also
reported that BMSCs proliferate and differentiate into bone cells when dexamethasone was added to the

culture medium®2),

So we tried to synthesis a bio-polymer sponge consists of collagen and chitosan as a substance to
release dexamethasone to use it as a vital pulp therapy agent. We aimed to evaluate the histological
response of animal module teeth pulp to this bio-sponge and compare it with Ca(OH),.

2. Experimental
2. Experimental

2.1. Reagents:
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Collagen type-l (from bovine flexor tendon; 5162) was purchased from Sigma; Chitosan (deacetylation
degree = 75%) was obtained from Sigma. Viscosity-average molecular weight (M,) of chitosan was
determined by viscometry method, the solvent was mixture of 0.3M CH3COOH/ 0.2M CH;COONa, intrinsic
viscosity was measured using a Ubbelohde viscometer and M,, was calculated using the Mark—Houwink

equation [n]= K(M,)? ; where K=0.076 and a = 0.77 and was 332 KD.

Glacial acetic acid (BDH; England). Tris-HCI Buffer (Sigma-Aldrich), dexamethasone (D4902; Sigma-
Aldrich ), Ca(OH), (Dycal). All of the chemical reagents were of analytical grade.

2.2. Preparation of collagen /chitosan sponge:

To dissolve polymers, 1 g of collagen was soaked in 50 mL of precooled water for 24 hours until swilling
and then 50 g of 1 M acetic acid was added. The suspension was homogenized with a high-speed
mechanical stirrer (RZR 2051). The protein solution was placed in a precooled water ultrasonic bath (3Ltr
digital ultrasonic) for 5 minutes until the air bubbles were expelled from the viscous suspension. collagen
was kept at a temperature of 4-8°C.

Chitosan solution 1% (w/w) was prepared in 0.5 M acetic acid by magnetic stirring for 48 hours to obtain
a viscous clear solution. After complete dissolve, collagen and chitosan solutions were mixed at a 1:1
weight ratio by slowly adding the collagen solution to the chitosan solution with the magnetic stirring of
200 rpm. For homogenizing mixing, a solution was mixed slowly by mechanical stirrer 500 rpm for six
hours. air bubbles in solutions were eliminated under vacuum. The mixtures were placed in 24-well cell
culture and frozen at -20°C for 24 hours and then lyophilized for 72 hours using (Telstar 2010 freeze

dryer).

Dexamethasone loaded-polymer sponge was produced using a bulk method, where dexamethasone
solution in ethanol was mixed with chitosan/collagen mixture solution had a concentration 1% w/v (in
0.5 M acetic acid) in order to achieve dexamethasone concentration 1.5mg/10mg polymer, then the
solutions were homogenized by magnetic stirrer 200 rpm/min for 6h.

The polymer solution was placed in a 96-well cell culture plate and then frozen and lyophilized.

All mixing processes were carried out in a precooled water bath with a temperature not exceeding 10 °C.
Sponges were kept in a temperature not exceeding 10°C until use.

2.3. Animals care:

Page 4/25


https://www.sigmaaldrich.com/catalog/product/sigma/d4902?lang=en&region=LB

Twenty adult males of New Zealand white rabbits weighed about 2.5 Kg were used. The animals were
individually housed in animals incubator and maintained under clean housing conditions and fed specific
standard laboratory chow ad libitum.

2.4. Dental procedures:

Rabbits were divided into four groups, each containing four rabbits. The central teeth were divided into
two groups where the dexamethasone-loaded polymer sponge was used to cover the pulp of the upper
and lower right incisors and the upper and lower left incisors were used to evaluate the tissue pulp
response to Ca(OH), capping. In each group, there was one rabbit to use their incisor teeth as a negative

control, covered with zinc oxide and eugenol.

After anesthetizing with an intramuscular injection of diazepam (2 ml/kg body weight) and ketamine (1
ml/kg body weight), about a 5 mm tunnel was drilled at the cervical edge of the incisors until the dentin
became a sieve. A spherical bur of a T mm diameter was used to detect pulp. The bleeding was controlled
by a piece of saline wetted cotton. After immersing it in PBS for five minutes until it becomes gelatinous,
a polymeric sponge was placed on a pulpal wound. The dental cavity was then closed with reinforced
zinc oxide and eugenol. The counterparty was treated in the same way after Ca(OH), capping.

2.5. Animal scarification:

Five rabbits in each group were sacrificed with an intraperitoneal overdose of ketamine after 1,2, 3 and 4
weeks respectively.

2.6. Histological procedures:

Six teeth were assigned in each period of time for each group. The upper and lower jaw were separated
and fixed in a 10% formalin for 48-72h. Samples were then washed with continuous water overnight to
remove an excess of the fixative. Samples were decalcified by immersion in 10% formic acid for 10 days
at room temperature. The samples were then washed with a continuous water stream for 24h, and dried
with a series of increasing concentrations of 40, 50, 60, 70, 80, 90 and absolute ethanol and finally with
xylene. After complete drying, the samples were embedded in paraffin.
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Tissues were cut into sections of 5um thickness, and then stained with Haematoxylin and eosin (H&E)

and examined by optical microscopy (Olympus, Tokyo, Japan) at 40x, 100x and 400x magnifications©3).

2.7. Histological evaluation:

Histological evaluation for pulps was carried out according to inflammatory response grades and
formation of dentine bridge and its thickness, table (1, 2) shows the standards followed for the

histological evaluation®4 3%),

3. Results

3. I. Histopathological evaluation:
1- Ca(OH),:

In the samples of the first week, there was a necrosis layer under the cover material in all treated samples.
There was a congestion layer limited to the coronary pulp tissue under this layer in 25% of the samples,
grade (0) of the inflammatory response, which was characterized by some expansion of coronary blood
vessels. In addition, a slight inflammatory layer was detected in the coronary section under the cover
material in 50% of the samples, grade (1) of the inflammatory response. There was a mild inflammatory
layer of grad (2) in the coronary third and slightly extended to the middle third in 25% of the samples.

25% of the second-week samples showed a inflammatory response; grade (1), 25% showed mild
inflammation of grade (2), and 50% of samples showed severe inflammation extended to the pulp tissue
with partial necrosis; grade (3) inflammatory response.

In the third week, 25% of the samples showed inflammation of grade (1), mild inflammation of grade (2)
in 50% of the samples, and there was severe inflammation in 25% of the samples.

In the fourth week, Low degree of inflammation, grade (0), was cleared in 25% of the samples and mild
inflammation of grade (2) in 75% of the samples. Fig (7).

1- Bio-Polymer sponge group: (Experimental group):

In samples treated with biopolymer sponges, there were no signs of inflammation or inflammatory cells in
all samples during the four weeks, grade (0) of inflammatory response.

2- Control group:
Samples treated with zinc oxide and eugenol showed comprehensive pulp inflammation in 75% of the

samples in the first week, grade (3) of the inflammatory response, and of grade (4) in 25% of the samples.

Page 6/25



In the second week, all samples showed necrosis of the pulp, grade (4) of an inflammatory response, in
all negative controls.Fig (8).

3.2. Evaluation of hard tissue formation:
1- Ca(OH),:

50% of the first week samples showed a partial formation of the precursor of poorly calcified bridge,
grade (1) of forming a hard tissue, deposited directly under the capping material. 50% of the samples
showed no formation of hard tissue or formation of precursor dentin, grade (1) of dentine bridge
formation.

75 % of the second-week samples showed the development of hard tissue of grade (1), and 25% of the
samples exhibited the formation of a calcified hard tissue of grad (2).

In the third week, 50% of the samples showed a grade (2) of a hard tissue formation,

In the fourth week, the hard tissue was heavily deposited and 75% of the specimens owned a grade (3) of
a solid tissue formation, and 25% of the specimens exhibited a hard tissue of grade (2). Fig (9).

2- Biopolymers sponge:

In the first week samples, there was dentin vanguard formation of gade (1) in 50% of the samples with
dense odontoblast cells in the coronary third of the pulp under capping material, and 25% of the samples
showed a hard tissue of grade (2), and 25% of the samples showed no hard tissue formation.

In the second week samples, the dentin bridges of grade (1), (2), (3) in 25%, 50%, 25% of the samples
were placed, respectively.

In the third week samples, a hard tissue of grade (3) was formed in 75% of the teeth, and grade (2) in 25%
of the teeth. The dentin bridge of grade (3) was formed during the fourth week in 100% of the teeth
treated with biopolymer sponges. Fig (10).

4. Discussion

Traditional vital pulp treatments practiced in dentistry do not apply tissue engineering principles, that it
relies on the formation of the dentin bridge on a tissue reaction to the alkaline substances applied at the
exposure site. Since its use in dentistry in 1921, calcium hydroxide has been considered the gold standard
for direct pulp capping(36). calcium hydroxide promotes hard bridge formation slowly, dissolves rapidly
after marginal leakage and may dissolve during acid etching before the resin filling, and it does not
chemically associate with the tooth or with the restored resin(?.

When calcium hydroxide applied directly to the pulp tissue, necrosis of 2mm depth occurs in the pulp

tissue and inflammation in adjacent tissues due to the high pH of the calcium hydroxide®®). The
Page 7/25



formation of hard tissue occurs at the contact area of necrotic tissue and inflamed tissue®?). Under the
necrosis layer, the pulpal stem cells differentiate into the odontoblast like cells, as a tissue reaction, and

the dentin bridge matrix is placed®?).

For these reasons, the aim of this study was to try to regenerate dentin by a combination of bioactive and
biodegradable polymers. A three-dimensional porous scaffold of a combination of biopolymers
analogous to the extracellular matrix for dentin tissue engineering was fabricated. Tissue engineering is a
multidisciplinary science that applies chemistry, materials engineering and medicine, aiming to repair and
replace damaged or diseased tissues and organs®9). It requires three-dimensional, porous polymeric
scaffolds that create the appropriate mechanical, structural and biological environment for tissue repair
and regeneration®'42). Polymers used as a scaffold must be able to mimic the biological structure and
functions of the ECM, which is a diverse composition of saccharides, proteins and signaling

molecules™3), in terms of chemical and physical structure*4. Where ECM is responsible for cellular

(14,44) Biopolymers were preferred in tissue engineering

metabolism and forming new tissues
applications because of reduced inflammatory reactions, non-cellular toxicity, and biodegradation by

blood enzymes in vivo*9).

In our study, we chose to crosslink chitosan and collagen as a result of the excellent properties of both
polymers in tissue engineering and drug delivery. Because of its structural similarity to
glycosaminoglycans in ECM and the possibility of forming it as porous scaffolds with morphological and
mechanical properties similar to those of collagen scaffold, chitosan provides a good choice for tissue
engineering applications® 47). Studies have shown that chitosan is a suitable candidate for tissue
engineering due to non-toxicity, biocompatibility, and biodegradability*®). It also has the ability of
histological regulation and displays the ability to stimulate cell proliferation“®). Chitosan has been shown
to be highly compatible with osteoblast cells in vitro(®%). This ability appeared in various formulations of
chitosan®V). Good biological compatibility between neurons and chitosan has been reported, and it was
found that chitosan is the best membrane for the proliferation of these cells(®2). Chitosan has shown a
characteristic enhancement of the vitality of neuronal cells and the results of in vitro cell culture indicate
selective adhesion of Schwann cells(®3).

Since collagen scaffolds are a distinctive template for renewable cell growth in vitro and in vivo,
crosslinked collagen scaffolds have been used in regenerative medicine to promote the
regeneration/repair of diseased and damaged tissues(®4 3%). Extensive researches have been done on
collagen scaffolds, these scaffolds have been proven to support cellular growth and researches have
shown that collagen types-l can form a scaffold that resembles or even fully mimics the structural and
biological properties of natural ECM collagen(9).

For our study, we selected high-deacetylated chitosan that was calculated by FT-IR spectroscopy to be
87% (data not shown). This implies that each Tmol of chitosan contains 0.87 mol of free positive amine
groups allowing it to crosslink with molecules that have the opposite charge.
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It has been found that a high degree of deacetylation enhances the activity of chitosan in each of its
antimicrobial properties against a wide range of bacteria and fungi due to a strong positive charge that
created by the protonation of free amino groups(®”), positive charge adhering negatively bacteria and
fungi to chitosan and prevents nutrients from reaching them. It was also found that chitosan with a high
degree of deacetylation enhances the activity of fibroblast cells during wound healing processes for the
same reason, high positive charge(8).

Since free radicals scavenging is one of the most useful properties to be achieved in biomedical
compounds that used in regenerative medicine, it prevents the destruction of membrane fats, proteins,
and DNA by radical oxygen reactive molecules(®®. Chitosan has been preferred over other biopolymers in
a tissue regeneration field due to its ability to dismantle active free radicals through fixation them by free
amino and carboxyl groups in chitosan(®?.

Dexamethasone, as known, is a synthetic glucocorticoid used clinically as an anti-inflammatory drug. It
has been hypothesized also that dexamethasone increases the response of stem cells to materials used
for differentiation®"). Increased vitality and proliferation of stem cells derived from human bone marrow
MSCs have been reported as a result of ongoing dexamethasone therapy©?2).

Among biopolymers, collagen and polysaccharide, chitosan, are suitable for topical drug delivery
systems, providing the advantage of using them as a natural biological material with tissue healing
properties©2 ©3)_ A dug can be linked to polymer matrix by physical methods or by chemical reagents due
to the availability of functional groups that is able to interact with the drug in various ways(®4. Whereas
glutaraldehyde is one of the most important chemical reagents in the field of drug binding to chitosan
and polymers containing amine groups(®5%7). The physical crosslinking between the drug and the
collagen matrix plays an important role in loading and releasing the drug from collagen without adding
any crosslinking agents that may be cytotoxic when applying this drug-loaded matrix topically(®®).
Physical methods of linking a drug to chitosan by electrostatic or hydrogen bonds have been also shown
to be effective in controlled drug release(®® 70, This interaction between the polymer and a drug leads to
stable production and loading of the drug with great efficacy and prolonged release of the drug; this has
been reported in other research(").

In the present study, we have used freeze-drying technique to fabricate bio-sponge consisting of chitosan
and collagen, so as to benefit from the properties of collagen which promotes cellular adhesion,

s(18:72,73) also to benefit from the adhesive,

differentiation as well as its hemostatic propertie
antibacterial, antifungal and hemostatic properties of chitosan(’476) that justified our selection of both

polymers for crosslinking and histologically study.

Since most studies about biopolymer matrix for medical applications used a different ways to
crosslinking polymers to form scaffolds by utilizing functional groups in each component within the
mixture, crosslinking treatment is one of the most important issues for bio-scaffolds, consideration
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should be given to the intensity of the crosslinking and the preservation of the biological activity and
biological properties provided by each component before crosslinking. There are two types of
crosslinking methods; Physical and chemical methods. In the chemical methods group, glutaraldehyde is
the most comfortable traditional agent used in the treatment of porous collagen scaffolds, and amino
biopolymers(7?)

this agents©7:78).

, Which achieves a high and undesirable crosslinking degree and potential cytotoxicity of

Physical methods are an attempt to establish a binding without the introduction of cytotoxic chemical
reagents and maintain excellent biocompatibility of tissue engineering materials(’9.

Here we used the physical linking method by creating ionic bonds between amino groups of chitosan and
carboxyl groups of the glutamic and aspartic residues of collagen.

Fig. 1, 2, 3, 4 show FT-IR results of characterization of the polymer blend and dexamethasone-loaded
polymers films synthesized by the solvent cast method showed the forming of electrostatic and H-
bonding between collagen and chitosan and the forming of H-bonding between dexamethasone and
studied homopolymers and polymer blend. Fig. 5 shows SEM images for sponges also showed a porous
structure for homopolymer and hybrid sponges, collagen —chitosan sponge at 1:1 weight ratio showed an
average pore size of 100 um that is suitable for cell growth®%), dexamethasone was clearly shown
immobilized on the surface and embedded in polymer sponges (Fig. 6).

Figure 1. FT-IR for a: dexamethasone, b: collagen, c: chitosan film.
Figure 2. FT-IR for, a: dexamethasone, b dexamethasone-loaded chitosan film, c: chitosan film.
Fig. 3. FTHR for, a: dexamethasone, b: dexamethasone-loaded collagen, c: collagen film.

Fig. 4. FT-IR for, a: dexamethasone, b: dexamethasoneloaded chitosan:collagen (1:1) film, c:
chitosan:collagen (1:1) film.

Fig. 5. SEM for chitosans:collagen (1:1) sponge.

Fig. 6. SEM for dexamethasone loaded chitosan: collagen (1:1) sponge.

The drugs can be loaded into the polymer matrix or condensed on the surface of the matrix, the
maximum loading in the drug formulation can be achieved by incorporating the drug during the
formation of pharmaceutical molecules®"). Here we used the physical method of linking the drug to the
polymer sponge by hydrogen bonding between dexamethasone and the polymer mixture before
lyophilized.
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Drug release study from the sponge shown that the release of drug from the hybrid sponge was faster
than the chitosan sponge, which ended in 16h, and was slower than the collagen sponge which
completed within 5h. The formulation based on collagen-chitosan (1:1 wt %) blend was able to control
drug release within 10h(2) . Thus, the dexamethasone loaded -blend of high molecular weight chitosan
and collagen, to form a bio-sponge hydrogel for DPC, will have advantages of both collagen and chitosan
properties, in addition to the properties of prolonging released dexamethasone, which is about 30 times
more effective than cortisone(®3).

Our results revealed that the combination of bio-polymers that act as a natural extracellular matrix loaded
with a steroidal anti-inflammatory drug, that acts as an osteoconductivity agent, can be considered as an
effective alternative to high-alkaline mineral oxides in order to avoid its side effects occurring in a teeth
pulp, such as pulp calcifications, tissue burns, and pulp stones. Bio-polymer sponge with a neutral PH
activates stem cells to differentiate into odontoplast cells and form the dentin bridge.

The results revealed that the dentin bridge was formed without any inflammatory response in the pulp
tissues, maybe due to the release of dexamethasone, and faster than that in the Ca(OH), group, with a

shorter duration. The dentin bridge was regular and thick under the bio-scaffold, and The odontoblasts
layer appeared to exist under the formed dentin bridge, which indicates that the formation of the hard
tissue was as a renewed dentin layer and not as a tissue reaction towards Ca(OH), alkalinity.

Conclusion

In this study, a porous bio-sponge consisting of high deacetylated chitosan and collagen type-l loaded
with dexamethasone was fabricated by the freeze-drying method. The results indicated that the porous
bio-sponge with a neutral pH proved its superiority over Ca(OH), and resulted in the formation of a

renewed dentin bridge with a dense odontoblast layer beneath it within one week without any burns in the
dental pulp and without the slightest inflammatory response in the pulp. That means; The presence of
bio-sponges stimulated the stem cells of the dental pulp to differentiate into odontoblast-like cells.
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Tables

Table 1: Scoring system of inflammatory response.
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Grade Characterization

0 Absence of inflammatory response or low degree of inflammation limited to the capping site.

1 The slight inflammatory response in the coronary third of the pulp

2 Mild inflammation extends over the coronary third and includes the middle one-third of the
pulp

3 Severe inflammation involving the whall pulp

4 Necrosis of whole pulp

Table 2: Scoring system of dentine bridge formation

Characterization Grade

No deposition of hard tissue 0

Partially formed hard tissue or mild hard tissue formed at the interface of the grafting 1

material

Moderate hard tissue deposition distant from the exposure area 2

Heavy hard tissue deposition distant from the exposure area 3
Figures

Page 18/25



Figure 1

FT-IR for a: dexamethasone, b: collagen, c: chitosan film.
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Figure 2

FT-IR for, a: dexamethasone, b dexamethasone-loaded chitosan film, c: chitosan film.
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Figure 3

FT-IR for, a: dexamethasone, b: dexamethasone-loaded collagen, c: collagen film.
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Figure 4

FT-IR for, a: dexamethasone, b: dexamethasone-loaded chitosan:collagen (1:1) film, c: chitosan:collagen
(1:1) film.
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Figure 5

SEM for chitosans:collagen (1:1) sponge.
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Figure 6

SEM for dexamethasone loaded chitosan: collagen (1:1) sponge.

Figure 7
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A photomicrograph of dental pulp under Ca(OH)2: a) showing moderate inflammation deposition
beneath the capping material in the coronary third and slightly extended to the middle third after one
week of application of capping materials. b) Low degree of inflammation limited to the capping site after
four weeks of application of capping materials.

Figure 8

A photomicrograph of dental pulp in the control sample: a) showing sever inflammation Severe
inflammation extending the whall pulp after one week. b) Necrosis of whole pulp appeared in the fourth
week.

Figure 9

A photomicrograph of dental pulp under Ca(OH)2: a) showing slight hard tissue deposition beneath the
capping material with a mild inflammatory response after one week of application of capping materials.
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b) showing heavy and irregular hard tissue deposition distant from the capping material after four weeks
of application of capping materials.

Figure 10

A photomicrograph of dental pulp under bio sponge capping materials: a) showing moderate hard tissue
deposition beneath the capping material with no inflammatory response after one week of application of
capping materials. b) showing heavy and regular hard tissue deposition at the exposure area at the
interface of the grafting material after four weeks of application of capping materials.
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