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Abstract

Lagrangian particle tracking experiments are a key tool to understand-
ing particle transport in fluid flows. However, tracking particles over
long distances is expensive and limited by both the intensity of light
and number of cameras. In order to increase the length of measured
particle trajectories in a large fluid volume with minimal cost, we devel-
oped a large-scale particle-shadow-tracking method. This technique is
able to accurately track milimeter-scale particles and their orientations
in meter-scale laboratory fluid flows. By tracking the particles’ shadows
cast by a wide beam of collimated light from a high-power LED, 2D
particle position and velocity can be obtained, as well as their 3D orienta-
tion. Compared with traditional volumetric particle tracking techniques,
this method is able to measure particle kinematics over a larger area
using much simpler imaging and tracking techniques. We demonstrate
the method on sphere, disk, and rod particles in a wavy wind-driven flow,
where we successfully track particles and reconstruct their orientations.

Keywords: particle tracking, shadow tracking

1 Introduction

Particle-laden flows in the environment are ubiquitous: examples include
saltating sediments or aeolian transport, blowing snow, and falling ash. Labora-
tory experiments often offer the best way to study these flows under controlled
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2 Large-scale particle shadow tracking

conditions, but tracking particles over long times in large facilities (i.e., with
regions of interest (ROIs) on the order of 1 m3) poses significant challenges,
and existing methods have several limitations.

Currently, most experimental methods involve optical particle tracking
with high-speed cameras, where illumination is provided by a laser, LED back-
light, or ambient light. A laser can be focused into either a 2D sheet for
planar particle tracking velocimetry (PTV) or a 3D volume for tomographic
PTV (tomo-PTV), which uses cameras viewing the ROI from multiple view-
ing angles. For example, 2D tracking over a relatively large ROI of 30 cm × 30
cm was done by Petersen et al (2019) using a laser sheet to track hollow glass
microspheres in homogeneous isotropic turbulence in air. Gerashchenko et al
(2008) performed 3D tracking on particles in a turbulent boundary layer. They
expanded a laser over a 3.5 cm3 volume and extended their particle tracking
distance by mounting their camera and optics on a sled that moved with the
freestream velocity for 50 cm. A similar technique was used by Zheng and
Longmire (2014) to track tracer particles moving through an array of cylin-
ders in a turbulent boundary layer. A laser provides high-intensity illumination
over a small region, but the area or volume over which it can be expanded is
limited before the brightness is too low. In addition, while a laser focused into
a 2D sheet will be brighter than a 3D volume, a 2D laser sheet is only able to
illuminate particles while they intersect the sheet, which may be only ∼ O(1
mm) thick. If particles have significant out-of-plane velocity, their residence
time in the laser sheet will be short, resulting in short particle trajectories.

An LED backlight solves this issue by lighting particles from behind
throughout a volume of fluid. In this way, particle shadows can be measured
with a camera placed opposite of the backlight. LED backlighting was used by
Fong et al (2019), for example, to track glass particles in a riser over a length of
20 cm. It has also been used to track bubbles in water flows (Hessenkemper and
Ziegenhein, 2018; Bröder and Sommerfeld, 2007; Tan et al, 2020). However,
most LED backlights are also limited in size, and it can be difficult to diffuse
the light enough to create a uniformly-lighted background. Imaging particles
inside a 3D volume with ambient light is a third option. This is dependent on
the particles having naturally strong contrast with the background, and like
tomo-PTV requires multiple camera viewpoints unless the particles are natu-
rally limited to a nearly 2D plane, as may occur in bed transport of sediment,
for example. Large-scale 3D tracking has been carried out on tracer particles
inside a room using ambient lighting (Fu et al, 2015) and over a large region
of an atmospheric boundary layer (Rosi et al, 2014).

The above methods are all limited in either size, track continuity, or both,
except those which use more complex, facility-specific tomo-PTV setups. In
the following, we present a large-scale shadow tracking (LSST) method which
results in continuous 2D projections of particle tracks within a large 3D volume.
In this method, a light source shines through the transparent front wall of the
experimental facility onto the back wall, projecting shadows of particles in the
illuminated volume of fluid. The light source is collimated, so the shadow’s
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location exactly maps to the particle’s streamwise and vertical location (x and
z), albeit with no spanwise (y) information. In other words, we can measure
the 2D position and velocity-components of particles in a large 3D volume.
Unlike traditional volumetric particle tracking techniques which need multiple
cameras to image the same volume from different angles, LSST only requires
one viewpoint to capture each particle shadow. This allows us to use multiple
cameras to increase the field of view. In addition, if the particle geometry is
known, then the particle’s orientation can be reconstructed from the geometry
of the projected shadow.

We also demonstrate the LSST method in an experiment to simulate plastic
particle transport near the free surface of the ocean by tracking spherical and
nonspherical particles in turbulent wind-driven waves in a water tank. A large
ROI is required because the flow facility must be large enough to create realistic
waves, and particle motion must be tracked over several wave periods to get
robust Lagrangian statistics. Microplastic particles are ubiquitous, but their
transport and fate in the ocean is not well quantified (Geyer et al, 2017; van
Sebille et al, 2015). Wind-mixing has been established as an important driver
of vertical transport of these particles in the ocean and can submerge particles
up to tens of meters (Kukulka et al, 2012; Thoman et al, 2021). While passive
tracer species are often the focus of these studies, many particles in the ocean
have variable size and shape, the effects of which have yet to be rigorously
investigated in this context.

2 Shadow tracking method

2.1 Imaging

In order to track particles in both the vertical and streamwise directions, we
constructed a facility to image particle shadows over a large region of interest
in a wave tank. The method uses collimated light rays which shine spanwise
horizontally through the water to produce shadows of the particles on the far
sidewall of the tank. The shadows are imaged with an array of four cameras;
see figure 1(a,b) for schematics depicting the setup.

The light source is a 4 W LED (Luxeon Star Saber Z5 20-mm quad LED,
wavelength 470 nm) powered by direct current from an LED driver to eliminate
flicker (ThorLabs T-Cube driver). A monochromatic LED is used to minimize
chromatic aberration due to wavelength-dependent indices of refraction when
the light shines through the collimating lenses. The blue-green color of light
is chosen by optimizing two competing constraints: blue wavelengths transmit
through water with less scattering, but the camera sensor is more sensitive to
red wavelengths. The blue-green 470 nm wavelength is chosen because it is the
shortest wavelength to which the camera sensor is at least 80% sensitive. The
LED has a light-emitting area of 2.6 mm x 2.6 mm, so it is effectively a point
source relative to the region of interest. A 1 m × 0.7 m Fresnel lens (Knight
Optical) is mounted against the glass sidewall of the tank, and the light source
is placed at the lens’ focal length. The lens collimates the light rays so that
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(a) (b)

Fig. 1: Shadow imaging setup showing the LED light source, camera array,
Fresnel lens, and projected light in the tank (a) and a top-view schematic
showing the collimation of the light rays and camera lines of sight (b).

they shine in parallel normal to the sidewalls of the tank. Because the light is
collimated, particles that enter the illuminated area cast shadows on the far
sidewall that are the same size as the particles themselves, regardless of their
spanwise location. To maximize the intensity of the illumination, the light
source is concentrated by reducing its spreading angle from 125◦ to about 60◦

with a plano-convex spherical lens of focal length 25 mm (Edmund Optics)
mounted at a distance of 3 mm from the LED.

A 4×1 array of monochrome machine vision cameras (Basler Boost
boA4096-93cm, Sensory Labs) mounted with 35 mm lenses take composite
images of the ROI with a total image size of 8192 px × 4336 px at approx-
imately 9 px/mm resolution. Each camera is focused on one quarter of the
illuminated sidewall, and they are synchronized by a PC running StreamPix
software (Sensory Labs). A frame grabber reads images from the cameras to the
PC, allowing for a frame rate of up to 90 Hz from all cameras simultaneously
at full resolution. In these experiments, a frame rate of 30 Hz is used.

Over the course of the experiment, several terabytes of image data are
generated. To efficiently handle this data, the following process was developed.
Images are read into the imaging PC and exported as uncompressed .avi movie
files to an external solid-state drive (SSD). When the drive is full, it is moved
to a second PC for analysis, where coordinates of the particle shadows are
extracted from the images (details of the image processing and analysis are
included in the following sections). In the meantime, experiments are continued
with a second SSD. Once the image processing is done, the movie files are
compressed and archived to an external hard disk drive (HDD), and the SSD
is cleared. The SSDs are switched again, and the experiments and processing
continue. This process is outlined in figure 2.
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Fig. 2: Schematic of image data workflow.

2.2 Image rectification

To convert between the image coordinates and world coordinates, we need to
rectify the images. Ideally, the tank in the experiment has both a transparent
front and back wall. This allows shadows to be projected from the front wall
onto the back wall, on which translucent paper or plastic would be mounted
to increase the contrast of the shadows. Finally, cameras would image the
projected shadows straight-on from the back of the tank. However, in our
experimental facility only the front wall is transparent, so the cameras must
view the projected shadows through the front wall and thus they are mounted
on either side of the light source at an angle (see figure 1). The oblique viewing
angle of the cameras distorts the images, which can be corrected with a lin-
ear rectification transformation; however, the short focal length of the camera
lenses also creates lens distortion, which requires a higher-order transforma-
tion. To correct for both types of distortion, we apply a quadratic rectification
transformation of the form

X =
b1x

2 + b2y
2 + b3x+ b4y + b5

b6x2 + b7y2 + b8x+ b9y + 1

Y =
b10x

2 + b11y
2 + b12x+ b13y + b14

b6x2 + b7y2 + b8x+ b9y + 1

(1)

where (x, y) is a point in image coordinates, (X, Y ) is a point in world
coordinates, and b1, b2, ..., b14 are the transformation coefficients, adapted from
the linear transformation described in Fujita et al (1998). The coefficients are
determined by finding a least-squares solution to the equation

AB = Z (2)
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, (3)

B = [b1, b2, ..., b14]
T , (4)

Z = [X1, X2, ..., Xn, Y1, Y2, ..., Yn]
T . (5)

Here, (x1, y1), ..., (xn, yn) and (X1, Y1), ..., (Xn, Yn) are the locations of a set of
n calibration points in image coordinates and world coordinates, respectively.
The least-squares solution to this equation is

B = (ATA)−1ATZ. (6)

Each of the four camera views is calibrated from a set of 80 to 190 calibration
points. To generate the calibration points, a 0.9 m × 1.2 m transparent acrylic
plate marked with a grid pattern of opaque 5 mm circles is mounted in the
tank against the front wall. Shadows of the circles are cast on the back wall
and imaged by the camera array, and their known locations in both image and
world coordinates are used to determine B.

2.3 Particle detection

The captured images appear bright with dark shadows cast by the plastic
particles and by the free surface. Due to the position of the cameras, the real
particles are sometimes visible in the images alongside the shadows. In order to
avoid any effects from the real particles, we have made them white to minimize
their contrast with the white background. We also focus the cameras on the
back wall with the aperture fully open (producing a narrow depth of focus)
so that the real particles will be out of focus. Example raw images are shown
in figure 3, as well as a demonstration of the image processing method. The
following steps are carried out to detect particle shadows in each image. First,
the background is subtracted from the image. The background is obtained
from a set of particle-free images taken before experiments start. The image
intensity is then inverted so shadows show up as bright objects on a dark
background. At this point, we use MATLAB’s adaptive binarization function
to segment the image into bright and dark regions. Most of the bright regions
are particle shadows, but there are some false positives: bubbles, shadows from
the free surface, or actual particles captured in the camera view. The false
positives are rejected by applying bounds on the object area and major and
minor axis lengths; checking that its position is below the free surface; and
checking that it is not a perfect double of an object right next to it, which can
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happen when a particle is near the back wall and the camera captures both
the particle and its shadow.

Once the particle shadows are detected, five key points are extracted from
each silhouette: the centroid and the endpoints of the major and minor axes.
These key points correspond to the shadow position in image coordinates. To
convert the key points into world coordinates, we use equation 2.2. Finally,
the key points, in world coordinates, are converted into physically meaning-
ful centroids, major and minor axis lengths, and tilt angles of the major axis
using trigonometry. This process is repeated for the images from each of the
four cameras taken at the same point in time. The data from all four cam-
eras are then merged to obtain instantaneous particle silhouette information
throughout the entire ROI. Because the camera views overlap slightly at the
edges, duplicate overlapping particles sometimes exist; in this case, the particle
farther from the edge of its image is kept, to ensure that we keep whichever par-
ticle is fully captured in the frame, and the other is discarded. This procedure
is carried out for the entire image series.

2.4 Orientation measurement

This imaging setup is also capable of measuring the orientation of non-
spherical particles. We consider rods and disks in this section, and define a
three-dimensional orientation vector p as the unit vector passing through the
particle’s axis of symmetry (figure 4). Our measurements are only in 2D, and
thus we cannot measure p explicitly. Nevertheless, because we know the par-
ticles’ true length (for rods) or diameter (for disks) Dp, we can reconstruct
the orientation of the detected particles from the tilt angle of the shadow’s
major axis with respect to the horizontal, θ, as well as the apparent major axis
length d1 (for rods) or minor axis length d2 (for disks) of its shadow (figure 5).
A similar method is described in Baker and Coletti (2022) and is summarized
here.

One obstacle in accurately measuring d1 and d2 is that the particle shadows
are blurred by optical aberration from both the Fresnel lens and the scattering
of light passing through the water and suspended particulates. To obtain p,
the blur is corrected by subtracting an offset δ from d1 or d2 for rods or disks,
respectively. The offset δ is found by taking advantage of the fact that one
lengthscale of the particles should always be a constant length in the projected
shadows, regardless of particle’s orientation. For rods, δ is calculated from the
mean minor axis length of the shadows, i.e. d2 in figure 5a. The minor axis
length should correspond to the actual rod thickness, regardless of orientation;
thus, δ is the difference between the measured d2 and known rod thickness.
Similarly for disks, δ is calculated from the difference between the mean major
axis length of the shadows, d1 in figure 5, and the known disk diameter. PDFs
of the original and corrected axis lengths are shown in figure 6(a) (10 mm
rods) and (b) (7 mm disks). If d1 − δ or d2 − δ is negative or greater than
Dp, it is not included in the results. Then, the formulas in table 1 are used
to compute the orientation p. Note that there will always be ambiguity in the
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Fig. 3: Image processing steps to detect particle shadows: (a) a raw image
from one camera (the right-most camera in this case); (b) image inversion
and background subtraction; (c) adaptive binarization and particle detection,
with the major and minor axes of the shadows shown with red and blue lines,
respectively; (d) four simultaneous images covering the entire field of view;
and (e) all detected particles.

out-of-plane orientation, and thus the sign of py cannot be determined from
the 2D shadows.
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(a) (b)

Fig. 4: Definition of the particle orientation vector for a rod (a) and disk (b)
relative to the laboratory coordinate system.

(a) (b)

Fig. 5: Particle orientation from shadows: the tilt angle θ and major axis
length d1 and minor axis length d2 of a rod shadow (a) and a disk shadow (b).

Rods Disks Range

px
d1−δ
Dp

cos(θ) sin(θ)

(

1−
(

d2−δ
Dp

)

2
)

1/2

[0, 1]

|py |

(

1−
(

d1−δ
Dp

)

2
)

1/2
d2−δ
Dp

[0, 1]

pz
d1−δ
Dp

sin(θ) cos(θ)

(

1−
(

d2−δ
Dp

)

2
)

1/2
(

− sign(θ)
)

[-1, 1]

Table 1: Components of the particle orientation vector p from d1, d2, and θ
for rods and disks.
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(a) (b)

Fig. 6: Raw and corrected apparent major axis lengths for the 10 mm rods
(a) and minor axis lengths for the 7 mm disks (b).

2.5 Tracking

Once the particle centroids are obtained, the centroids are tracked between
frames using a nearest-neighbor method. We define a search radius correspond-
ing to the maximum distance a particle is expected to move from one snapshot
to the next, which is about 10 mm; the tracking algorithm then links parti-
cles in each snapshot with their nearest neighbor within the search radius in
the next snapshot. Occasionally, a tracked particle will not be detected for
one or more frames before showing up again. We repair most of these tracks if
five or fewer frames are skipped: we find tracks that end in the middle of the
ROI and use the particle’s last known position and velocity to predict where
it should be in the next five frames. If a new track starts within the search
radius of one of those predictions, it is assumed to belong to the same particle
and the tracks are joined, interpolating the particle position and orientation
in the missing frame(s).

To remove measurement noise from the tracks, the particle positions in
each track are convolved with a Gaussian smoothing kernel, G. They are also
convolved with the first and second derivatives of the Gaussian kernel, Ġ and
G̈, respectively, to obtain velocities and accelerations (Tropea et al, 2007). The
optimal width of the kernel tk is determined from the particle acceleration
variance as a function of kernel width: the smallest value for which the variance
decays exponentially with kernel width is corresponds to tk such that most of
the noise is filtered out but most of the physical accelerations are not (Voth
et al, 2002; Mordant et al, 2004; Gerashchenko et al, 2008; Nemes et al, 2017;
Ebrahimian et al, 2019; Baker and Coletti, 2021). Here, this corresponds to a
duration of 5 successive snapshots, or 167 ms.

Similarly, p is smoothed and the time rates of change of the orientation vec-
tor ṗ and p̈ are obtained by convolving the components of p in each track with
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the same G, Ġ, and G̈ kernels. A particle’s solid-body rotation rate is com-
posed of a spinning component and a tumbling component, Ω = Ωpp+ p× ṗ,
where spinning is rotation about the symmetry axis (ωs = Ωpp) and tumbling
is rotation of the symmetry axis (ωt = p× ṗ). We are unable to measure spin-
ning motion with our shadow tracking. However, the tumbling component of
angular velocity, and similarly the tumbling component of angular acceleration,
can be calculated by

ωt = p× ṗ (7)

αt = p× p̈ (8)

However, sign ambiguities can arise when the components of p wrap around
the limits of their ranges given in table 1, which must be resolved before
smoothing and differentiating to get ṗ and p̈ (see Baker and Coletti, 2022).
Sign ambiguities are identified by finding tracks where any of the components
of p change sign or approach 0, 1, or -1, and are also a local minimum or
maximum, which indicates a possible discontinuity. The ambiguity resolved by
applying a minimum angular acceleration condition to the track. Four sets of
sign changes are applied to the track after the discontinuity: (1) flip only px
and pz, (2) flip only py, (3) flip px, py and pz, and (4) no sign changes. We chose
the case with the minimum tumbling angular acceleration magnitude p̈ · p̈, and
propagate the sign change forward in time along the remainder of the track.
Even though there are four possible choices of sign changes, generally the p̈ · p̈

value associated with the correct set will be at least an order of magnitude
lower than the other three.

3 Experimental demonstration

3.1 Experimental setup

Experiments are performed in the Washington Air-Sea Interaction Facility
(WASIRF) (Long, 1992; Masnadi et al, 2021), a long wave tank in which wind
blows over the surface of the water (figure 7). The test section of the tank is
12.2 m long and 0.91 m wide, and is filled with tap water to a depth of 0.6
m, leaving 0.6 m of headspace for airflow. The top of the tank is covered by
removable panels except where instrumentation must pass through. Wind is
generated by a suction fan (Trane) that drives air through the headspace in the
test section and recirculates it via an overhead duct; the windspeed is set to 16
m/s for these experiments. A sloped foam beach is placed at the downstream
end of the tank to prevent wave reflections. The region of interest (ROI) in
which measurements are taken is centered on a fetch of 7.0 m. The ROI is 1
m long in the streamwise direction and spans the full width and depth of the
tank.

We add plastic rods, disks, and roughly spherical nurdles spanning a range
of sizes into the wind-driven flow. Particles are all made of high-density
polyethylene (HDPE), which is positively buoyant in water. Large nurdles (4
mm diameter) are obtained from McMaster; small nurdles (2 and 2.5 mm
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Fig. 7: Schematic of WASIRF. The red rectangle corresponds to the region of
interest in the present experiment, which is 1 m across.

N2 N3 N4 R10 R20 D5 D7 D10
a [mm] 2.0 2.5 3.9 10.7 20.2 5.0 7.0 10.0
b [mm] – – – 1.8 1.8 0.79 0.79 0.79
λ 1 1 1 5.7 11.4 0.16 0.11 0.08

Table 2: Physical properties of each particle type: nominally 2, 3, and 4 mm
nurdles (denoted by N2, N3, and N4); 10 and 20 mm rods (R10 and R20); and
5, 7, and 10 mm disks (D5, D7, and D10). a is the symmetry axis length, b is
the perpendicular axis length, and λ = a/b is the aspect ratio.

diameter) are obtained from Cospheric. The rods are cut from 1.75 mm thick
3D-printing filament using a razor blade. The disks are cut from a 0.79 mm
thick sheet using circular dies mounted to an arbor press. The dimensions of
the particles are defined in terms of their axis lengths: a is the length of the axis
of rotational symmetry (i.e., the axis through the length of a rod and through
the thickness of a disk), and b is the length of the perpendicular axes. The
major axis length (the larger of a and b) is denoted by Dp. Table 2 summarizes
the dimensions of the particle types used in this experiment.

3.2 Uncertainty analysis

The measurement error is estimated by imaging calibration particles which are
glued to a glass plate. The images are analyzed using the algorithm described
in section 2 to measure particle positions and orientations. Five particles of
each type are glued to the plate. The plate is mounted at known orientations
within the tank, giving the particles glued to the plate known orientations
as well. These orientations are compared to those computed by the detection
algorithm to obtain the uncertainties βpx

, βpy
, and βpz

. The distances between
the particles glued on the plate are also known, so we compare these with the
detected interparticle distances to obtain an uncertainty on particle centroid
locations βxp

. The uncertainties on the centroid location and orientation are
estimated as the mean absolute difference between measured and actual values.
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Particle type N2 N3 N4 R10 R20 D5 D7 D10
βxp [mm] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
βxp/Dp 0.15 0.13 0.083 0.025 0.013 0.050 0.036 0.025
βpx – – – 0.18 0.28 0.03 0.03 0.14
βpy – – – 0.46 0.53 0.10 0.05 0.08
βpz – – – 0.12 0.18 0.26 0.22 0.13

Table 3: Measurement error on the particle centroid location βxp
, in SI units

and normalized by Dp, and orientation components βpx
, βpy

, and βpz
.

Fig. 8: A random sample of 100 tracks of the centroids of the 7 mm disks. The
blue to red color scale indicates slower to faster instantanous particle speeds.

These measurement errors are reported in table 3. Overall, the measurement
error for the particle centroids is 0.25 mm, which is much smaller than the
particle diameters (2 − 10 mm) and the ROI (∼ 1 m). The largest errors are
present in the y component of the rod orientations. This is likely due to the
variation in rod lengths caused by hand-cutting them; the standard deviation
of the rod lengths is about 1 mm, or 5 to 10% of the mean, which introduces
error into the projected lengths captured by the cameras.

3.3 Reconstructed tracks

With this method, we are able to successfully reconstruct 2D projections of
particle trajectories from a 3D volume and with 3D orientation information.
A subset of the tracks of particle centroids are shown in figure 8.

This method returns long tracks, many of which span the entire 1-m field
of view. Particles are temporarily undetectable near the wavy free surface,
where the surface itself periodically blocks optical access; this breaks up many
of the tracks that are near the surface, resulting in shorter tracks. Because the
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(a) (b)

Fig. 9: PDF of track lengths for (a) all tracks and (b) tracks with an obser-
vation at least 10 cm below the free surface for the 7 mm disks.

particles in the experiment are buoyant, they tend to rise to the free surface.
The distribution of track lengths is shown in figure 9 for (a) all tracks and (b)
tracks with at least one observation deeper than 0.1 m below the water surface
(to avoid counting some of the tracks that are cut off by the wavy surface).
Track length is computed by integrating particle speed over the duration of
the track,

∫ tend

tstart
(u2 + w2)1/2dt. Even in the challenging imaging conditions

imposed by the free surface, 56% of the deeper set of tracks were greater than
0.2 m in total length.

Samples of these reconstructed tracks with 3D orientations for disks and
rods are shown in figure 10. The tracks are subsampled so that every fifth snap-
shot is shown for clarity. The particle color corresponds to the instantaneous
value of pz.

4 Conclusion

We have presented a method for measuring 2D projections of particle position
by tracking their shadows cast by a wide beam of collimated light. The novelty
of this technique is its accurate tracking of particles within a large volume with
a relatively simple imaging setup. This method allows highly-resolved track-
ing of particles over long times and distances in a large volume (in this case
a volume of 1 m × 1 m × 0.6 m), scales over which conventional methods of
particle tracking struggle. The four-camera array also provides enough spatial
resolution to reconstruct the 3D orientation of nonspherical disk and rod par-
ticles from the geometry of their shadows, even accounting for the blur due to
the Fresnel lens.

The shadow tracking method is demonstrated with buoyant plastic parti-
cles of varying shape and size in a wind-wave tank. We demonstrated that we
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(a) (b)

(c) (d)

(e) (f)

Fig. 10: Reconstructed tracks of disks (a, c, e) and rods (b, d, f). The blue to
red color scale indicates the instantenous value of pz, where blue corresponds to
pz = 0 (the particle axis p is perpendicular to the z axis) and red corresponds
to pz = 1 (p is parallel to the z axis).

were able to track particles throughout almost the entire field of view, enabling
long trajectories, and were only limited by when particles rose to the free sur-
face where we were unable to image them. We were also able to successfully
reconstruct their 3D orientations. This imaging method provides a new way to
obtain robust Eulerian and Lagrangian statistics of quantities such as particle
velocity, depth, and orientation, which is challenging for conventional imaging
methods over large length and time scales.
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We expect this technique to be useful in large tanks and channels with
a working fluid of either air or water where particle behavior and transport
are of interest. Additionally, we anticipate that particles smaller than those
tested here could also be tracked. Tracking smaller particles would be assisted
by increasing the image contrast. Higher contrast could be enabled by using
a brighter light source, more sensitive cameras, or highly-filtered water or air
to reduce light scattering. In applications where particle orientation is not
needed, less resolution is needed and thus fewer cameras are necessary, which
would further reduce the complexity and cost of the experiment.
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