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Abstract
Purpose: The aim of this study was to examine the diagnostic e�cacy of hippocampal subregions
volume and texture in differentiating amnestic mild cognitive impairment (MCI) from normal aging
changes.

Materials and Methods: Ninety MCI subjects and eighty-eight well-matched healthy controls (HCs) were
selected from the ADNI-1 or ADNI-2 Database.Twelve hippocampal subregions volume and texture
features were extracted using Freesurfer and MaZda based on T1 weighted magnetic resonance images.
Then, two-sample t-test and Least Absolute Shrinkage and Selection Operator (LASSO) regression were
developed to select a subset of the original features. Finally, a support vector machine (SVM) was used to
perform the classi�cation task and the area under the curve (AUC), sensitivity, speci�city, and accuracy
were calculated to evaluate the diagnostic e�cacy of the model.

Results: The volume features with high discriminative power were mainly located in the bilateral CA1 and
bilateral CA4, while texture feature were gray-level non-uniformity, run length non-uniformity and fraction.
Our model based on hippocampal subregions volume and texture features achieved better classi�cation
performance with an AUC of 0.90.

Conclusions: Based on hippocampal subregions volume and texture can be used to diagnose MCI.
Moreover, we found that the features that contributed most to the model were mainly textural features,
followed by volume. These results may guide future studies using structural scans to classify patients
with MCI.

1 Introduction
The incidence of dementia is rapidly increasing worldwide (Gauthier et al., 2016). Its most common cause
is Alzheimer's disease (AD). Therapeutic interventions are important for alleviating the symptoms and
delaying the progression of AD, but diseasemodifying treatments are not successful for patients with
advanced AD (Doody et al., 2014; Prince et al., 2013). Mild cognitive impairment (MCI), refers to the
prodromal phase of AD but without signi�cant disability in daily life (Farias, Mungas, Reed, Harvey, &
DeCarli, 2009). Early detection of ad can be further achieved by identifying MCI (Meyer, Xu, Thornby,
Chowdhury, & Quach, 2002).

Hippocampal atrophy is one of the most sensitive biological indicators of AD (Hata et al., 2019), and
hippocampal volumetry is the most well-established structural biomarker of AD, especially for early
diagnosis (Moon, Lee, & Choi, 2018). Moreover, instead of being a homogeneous structure, the
hippocampus consists of several subregions with different histological characteristics (Moon et al., 2018;
Mueller, Schuff, Raptentsetsang, Elman, & Weiner, 2008), each of which has been assigned a speci�c
functions (Prasad et al., 2019). The association of hippocampal subregions abnormalities and cognitive
impairment is well established in AD (La Joie et al., 2013), vascular dementia (Li et al., 2016), and other
disorders associated with cognitive impairment (Prasad et al., 2019). Hippocampal subregions volume
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have recently been recommended as more speci�c neuroimaging markers for AD compared to
conventional global hippocampal or medial temporal lobe atrophy (Wong et al., 2021).

The combination of different neuroimaging measures may help to improve the diagnosis and prediction
of AD, as single biomarkers only represent a speci�c stage of the ad process and their combination may
provide complementary information (Gao et al., 2018). For example, it has been shown that the shape
and texture of the hippocampus provide diagnostic information independent of hippocampal volume
(Achterberg et al., 2014; Sorensen et al., 2016). The presence of abnormal hippocampal texture, alone or
in combination with data from other modalities, has been shown to be a promising neuroimaging
biomarker for the diagnosis and prediction of AD (Eskildsen et al., 2013; Sorensen et al., 2017).

Machine learning techniques are highly effective in processing high-dimensional data, among which
support vector machines (SVM), the most widely studied data mining technique, have been widely used
to develop diagnostic algorithms for various diseases, including AD diagnosis and prediction (Eskildsen
et al., 2013; Jack et al., 2012; F. Zhang, Petersen, Johnson, Hall, & O'Bryant, 2021).

In summary, hippocampal volume or texture or hippocampal subregions volume received moderate to
good classi�cation in the diagnosis of MCI, but whether a combined biomarker combining hippocampal
subregions volume and texture features would achieve better diagnostic performance is unknown. In this
study, we will use an SVM algorithm to build a model to classify MCI patients and healthy controls (HCs)
based on hippocampal subregions volume and texture features. The �owchart of this study is shown in
Fig. 1.

2 Material And Methods

2.1 Participants
A total of 178 right-handed participants were selected from the ADNI-1 or ADNI-2
(https://adni.loni.usc.edu/) and enrolled in this study. The ADNI-1 cohort comprised 68 patients
diagnosed with MCI (Clinical Dementia Rating ,CDR = 0.5)(Morris, 1993) and 68 HCs, while the ADNI-2
comprised 22 patients diagnosed with MCI (CDR = 0.5) and 20 HCs (Table 1). The clinical and
demographic information about the subjects is provided in (Marcus et al., 2007).
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Table 1
Demography of MCI and patients with HCs

ADNI-1 MCI (n = 68) HCs (n = 68) P

Age 76.51 ± 7.04 75.87 ± 8.74 0.58

Gender(F/M) 38/30 42/26 0.51

MMSE scores 25.56 ± 3.51 29.01 ± 1.23 < 0.001**

ADNI-2 MCI (n = 22) HCs (n = 20) P

Age 74.82 ± 8.75 77.15 ± 7.62 0.97

Gender(F/M) 11/11 12/8 0.36

MMSE scores 24.32 ± 4.20 27.60 ± 2.48 0.004*

Notes: Group differences between the MCI and HCs groups were analyzed by two-sample t test for
age and MMSE or χ2 (chi-squared) test for gender. Values are expressed as the mean ± SD. MMSE:
Mini-Mental State Examination (MMSE)

2.2 Image Acquisition
All calculations in this study were performed using the �rst baseline scan. The images were acquired in
the sagittal plane with a spoiled gradient recalled (SPGR) sequence for the anatomic images. Structural
imaging was conducted using the following parameters: TR = 9.7ms, TE = 4.0ms, TI = 20ms, �ip angle = 
10◦, sagittal orientation with 128 slices, and resolution = 1 × 1 × 1.25mm3.

2.3 Image Preprocessing
All images were preprocessed with FreeSurfer. The images included motion correction and con�rmation,
nonuniform intensity standardization, Talairach transform calculation, intensity standardization, skull
removal, and neck removal. The software can be downloaded online for public use
(http://www.freesurfer.net/fswiki/DownloadAndInstall/). Quality control analysis of Freesurfer
reconstruction included automatic detection of recon-all processing errors and visual inspection for
segmentation, intensity normalization, and skull stripping errors(Jiang et al., 2015). One HCs of ADNI-1
was excluded for recon-all errors, and two MCI subjects of ADNI-2 were excluded for segmentation errors
noted with visual inspection.

2.4 Image Segmentation and Feature Extraction
FreeSurfer automatically segments the hippocampal subregions on the basis of statistical maps
constructed from ultra-high resolution (~ 0.1 mm isotropic) in vitro MRI data(Wisse et al., 2012). Recent
studies have con�rmed the reliability of FreeSurfer in segmenting the hippocampal subregions(Brown et
al., 2020). The hippocampus was divided into 12 subregions, namely, parasubiculum, presubiculum,
subiculum, CA1, CA3, CA4, GC-DG, HATA, �mbria, molecular_layer_HP, hippocampal_�ssure, and
HP_tail(Iglesias, 2015), no head/body subdivision for the hippocampal subregions. The way in which
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labels are merged in the volume is summarized in
http://surfer.nmr.mgh.harvard.edu/fswiki/HippocampalSub�eldsAndNucleiOfAmygdala. After this
module was run, the volumes of all the subjects’ hippocampal subregions were collected and written in a
�le.

MaZda (version 5.3.0) was used to calculate texture features, which can be downloaded for public use
online (http://www.eletel.p.lodz.pl/programy/mazda/) (Szczypiński et al., 2009). According to our
previous study (Yang et al., 2021), in MaZda, �ve various run-length matrices are computed for �ve pixel
run directions: horizontal (Horzl_), vertical (Vertl_), slanted at 45 degrees (45dgr_), slanted at 135 degrees
(135dgr_), and z. There are �ve run-length matrix-based features computed for each of the matrices: short
run emphasis inverse moment, long run emphasis moment, gray-level non-uniformity, run length non-
uniformity and fraction of image in runs(Haralick, 1979).

2.5 Feature Engineering
The hippocampal subregions volume and texture were de�ned as the features. The extracted features
were standardized to remove the unit limit of each feature and reduced the computational complexity of
the model. In this work, a two-stage feature selection procedure was developed to select a subset of the
original features (Chen et al., 2017). Firstly, we adopted two-sample t-test to select features with
statistically signi�cant differences between MCI and HCs (p < 0.05). Secondly, Least Absolute Shrinkage
and Selection Operator (LASSO) regression was used to further optimize the feature subset (Friedman,
Hastie, & Tibshirani, 2010).

2.6 Classi�cation and Model Evaluation
In this study, SVM was used to perform the classi�cation task. All subject were divided as a training set
and a test set by ten-fold cross validation. A �ve-fold cross-validation loop was implemented to determine
the optimal hyper parameters and avoid data leakage (Patel, Khalaf, & Aizenstein, 2016). The test set is
utilized to test and estimate the performance of the classi�er with an optimal hyper-parameter model.
The receiver operating characteristic (ROC) curve of the model was drawn, and the area under the curve
(AUC), sensitivity, speci�city, and accuracy were calculated to evaluate the diagnostic e�cacy of the
model.

2.7 Identi�cation of features with high discriminative power
To understand the abnormal hippocampal subregions in MCI compared to HC, features with high
discriminative power were identi�ed. The discriminative power of a feature was according to its averaged
weights in 10 experiments on the 10-fold cross-validation (Arbabshirani, Plis, Sui, & Calhoun, 2017).

2.8 Statistical Analysis
Feature engineering classi�cation and model evaluation were implemented used a python module
named easylearn (https://github.com/lichao312214129/easylearn). Easylearn is built on top of scikit-
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learn (https://dl.acm.org/doi/10.5555/1953048.2078195), and designed for machine learning mainly in
resting-state fMRI, radiomics and other �elds (such as EEG).

The differences in the demographic data between HCs and patients with MCI were computed by the
independent two sample t-test or χ2 (chi-squared) test with the IBM Statistical Package for the Social
Sciences 24.0 software. The signi�cance level was set to p < 0.05. Values are expressed as the mean ± 
SD.

3 Results

3.1 Demographic Data
The demographic and clinical data are described in Table 1. No signi�cant differences in gender and age
were found between the MCI group and the HCs. MMSE scores between groups were signi�cantly
different.

3.2 Feature Engineering
To further explore altered hippocampal subregions in MCI relative to HCs, we calculated the average
weight of each selected feature across all cross validation paths. The volume features with high
discriminative power were mainly located in the bilateral CA1, and bilateral CA4, while texture feature
were gray-level non-uniformity, run length non-uniformity and fraction. Table 2 shows the top 10 most
discriminative features and corresponding hippocampal regions.

Table 2
Top 10 most discriminative features and corresponding hippocampal

subregions
Features Region |w|

Texture gray-level non-uniformity left CA1 15.773

run length non-uniformity right CA4 13.977

gray-level non-uniformity left CA4 12.214

run length non-uniformity right hippocampal tail 10.806

gray-level non-uniformity right CA1 8.892

fraction right HATA 7.516

Volume right CA1 6.728

left CA1 5.806

left CA4 3.886

right CA4 2.687
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3.3 Classi�cation and Model Evaluation
As shown in Fig. 2, our model based on hippocampal subregions volume and texture features achieved
better classi�cation performance with an AUC of 0.90. Table 3 shows the classi�cation performance of
previous studies, and the results suggest that hippocampal subregions volume and texture combination
may improve the diagnostic performance of MCI.

Table 3
Performance Comparison of Different Methods in MCI/HCs Classi�cation

  Method Features Accuracy Sensitivity Speci�city AUC

Luk, Collin
C et al.

SVM hippocampal texture \ 0.71 0.79 0.82

Gao, Ni et
al.

Gaussian
process

hippocampal texture,
Clinical, volume-based
morphometric

parameters

79.50 \ \ \

  partial
least
squares

83.60 \ \ \

Sørensen,
Lauge et
al.

SVM cortical thickness,
hippocampal shape,
hippocampal texture,
volumetry

\ \ \ 0.68

Sørensen,
Lauge et
al.

Logistic
Regression

hippocampal volume \ \ \ 0.74

    hippocampal texture \ \ \ 0.70

    hippocampal texture,
hippocampal volume

\ \ \ 0.74

Feng,
Feng et al.

SVM radiomic features of
hippocampal subregions

0.71 0.80 0.58 \

Proposed SVM hippocampal subregions
volume and texture

0.84 0.88 0.78 0.90

4 Discussion
In this study, a combined biomarker combining hippocampal subregions volume and texture features
could achieve better diagnostic performance. Showed that imaging measures assessing different
subregions of the hippocampus provide more accurate and sensitive information for diagnosing patients
with MCI. Further illustrate that different locations of the hippocampus differ in their sensitivity to
neuropathology. Moreover, we found that the features that contributed most to the model were mainly
textural features, followed by volume. Showed that texture features play an important role in image
analysis studies and may develop into a useful clinical imaging tool. Texture analysis provides a
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quantitative method to analyze and characterize tissue properties, physiological and pathological stages,
and reveals information that is not normally visible on the tissue of interest (Nanni, Brahnam, Salvatore,
Castiglioni, & Alzheimer's Disease Neuroimaging, 2019; J. Zhang, Yu, Jiang, Liu, & Tong, 2012)

The volume and texture features with high discriminative power were mainly located in the bilateral CA1,
and bilateral CA4. Previous studies have shown that CA1, one of the three core synaptic stations of the
“trisynaptic circuit” (Stepan, Dine, & Eder, 2015), were the most atrophic sub�elds in patients with verbal
and visual memory impairment. In line with this, histopathological studies on AD disclosed CA1
decreased hippocampal neuronal density and dendritic abnormalities (Cacciaguerra et al., 2021;
Padurariu, Ciobica, Mavroudis, Fotiou, & Baloyannis, 2012). The core pathological markers of AD are
amyloid and neuro�brillary tangles (NFTs) (Huang et al., 2022). Neuropathological studies have shown
that NFTs are transmitted along CA1 to CA4 along the AD continuum (Ciarmiello et al., 2019). In addition,
the volume of CA4 was smaller in patients whose MCI converted AD than in those who did not convert to
AD (Barry, Clark, & Maguire, 2021). Showed that calculating the features of hippocampal subregions,
especially CA1 and CA4, had a higher sensitivity than the whole hippocampus in the differential
diagnosis and prognosis of MCI.

However, several major limitations should be mentioned. First, in this study, the FreeSurfer software
hippocampus automatic segmentation tool was used. Although recent studies have con�rmed the
reliability of FreeSurfer in segmenting hippocampal subregions (Brown et al., 2020), different anatomical
templates and tools still inevitably produce errors. Subsequent studies may need to assess the
differences and in�uence of various software and anatomical templates. Second, the present study is a
cross-sectional study, and future research could use longitudinal data on altered values of volume and
texture of hippocampal subregions. Finally, our study demonstrates that features of hippocampal
subregions could improve the diagnostic performance of MCI, which should be extracted later in
combination with multimodal data given the heterogeneity of MR imaging modalities.

5 Conclusions
Our results suggest that features of the combined volume and texture in the hippocampal subregions
could be useful for the diagnosis of MCI. The features contributed most to model classi�cation were
mainly located in bilateral CA1, and bilateral CA4, while textural features contributed more weight values.
These results may guide future studies using high-resolution structural scans and �ner delineation of
anatomic tissue to classify patients with MCI.
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Figures

Figure 1

Work�ow used in this study.
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Figure 2

Classi�cation performance of SVM model based on hippocampal subregions volume and texture
features.


