In this paper, a cooperative spectrum sensing (CSS) model is proposed to sense n-number of primary users (PUs) using n-number secondary users (SUs) in a sequence by applying support vector machine (SVM) algorithm using three different kernels namely linear, polynomial and radial basis function (RBF) respectively. In this method, fusion centre (FC) instructs all the SUs through control channel, which PU is to be sensed by sending a pre-defined primary user identification code (PUid) and each SU sense the Kth PU spectrum information and stored in a database at FC. SU transmits a bit ‘0’ or bit ‘1’ along with PU sensing information to the FC to indicate whether it needs a spectrum band to transmit the data or not. SU add two identification codes along with sensing information to the FC which indicates that from which SU the sensing information received and which PU is sensed by the SU. For simulation 500 data samples are used and the simulation results show an accuracy of 96% and false alarm value of 1.3% in classifying the SU sensing information at FC using RBF kernel. Another method is proposed with multiclass classification by applying SVM algorithm using RBF kernel. The confusion region class is classified with zero false alarm percentage and achieves an accuracy of 99.3% in classifying the SU sensing information at FC.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Loading...
Posted 24 Mar, 2021
Received 21 Mar, 2021
On 08 Feb, 2021
On 06 Feb, 2021
Posted 24 Mar, 2021
Received 21 Mar, 2021
On 08 Feb, 2021
On 06 Feb, 2021
In this paper, a cooperative spectrum sensing (CSS) model is proposed to sense n-number of primary users (PUs) using n-number secondary users (SUs) in a sequence by applying support vector machine (SVM) algorithm using three different kernels namely linear, polynomial and radial basis function (RBF) respectively. In this method, fusion centre (FC) instructs all the SUs through control channel, which PU is to be sensed by sending a pre-defined primary user identification code (PUid) and each SU sense the Kth PU spectrum information and stored in a database at FC. SU transmits a bit ‘0’ or bit ‘1’ along with PU sensing information to the FC to indicate whether it needs a spectrum band to transmit the data or not. SU add two identification codes along with sensing information to the FC which indicates that from which SU the sensing information received and which PU is sensed by the SU. For simulation 500 data samples are used and the simulation results show an accuracy of 96% and false alarm value of 1.3% in classifying the SU sensing information at FC using RBF kernel. Another method is proposed with multiclass classification by applying SVM algorithm using RBF kernel. The confusion region class is classified with zero false alarm percentage and achieves an accuracy of 99.3% in classifying the SU sensing information at FC.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Loading...