Animals
Orange-spotted groupers were obtained from Guangdong Daya Bay Fishery Development Center (Huizhou 516081, Guangdong, China). The fish were kept in indoor pools under controlled water temperatures of 22.7~27.8 °C. All fish were anesthetized with MS222 and then were sacrificed. All animal experiments were conducted in accordance with the guidelines and approval of the respective Animal Research and Ethics Committees of Sun Yat-Sen University.
MT-induced spermatogenisis
In this study, the spermatogenesis was induced by MT (Sigma, USA) treatment artificially. The fabrication of the slow-release strips and MT implantation were referred to our previous paper with minor modification [43]. Fish (body weight, 1.90 ± 0.65 kg; body length, 43.75 ± 9.25 cm) were divided into two groups, sham group (n = 15) and MT implantation group (n = 15). The dosage of MT was 10 mg/kg body weight. Before implantation (Week 0), gonadal tissues of five fish were collected randomly. After MT implantation, five fish were sampled randomly every week from two groups, respectively. The experiment last for 3 weeks. For each fish, one piece of gonadal tissue was fixed in Bouin’s solution for histological examination, one piece of the gonad was immobilized by 4% paraformaldehyde for FISH, and the other piece of gonadal tissue was embedded with optimal cutting temperature compound (Sakura, USA) then frozen immediately in liquid nitrogen for LCM. All the other tissues were frozen immediately in liquid nitrogen, and then stored at ﹣80 °C until further use.
Histology analysis
Gonadal tissues were embedded in paraffin after being fixed for 24 h in Bouin’s solution. The embedded blocks were sectioned at 5~6 μm and stained with H&E staining. The gonadal sections were classified by light microscopy (Nikon, Japan).
Cryostat sections of gonad for LCM
The RNase-free Membrane Slides (MMI, Switzerland) were used to mount the cryosections. A series of procedures were produced before sectioning. The slides were incubated in super clean bench under ultraviolet (UV) radiation for 30 min. Then the slides were coated with 0.1mg/ml poly-L-lysine (Sigma, USA) for 5 min, and rinsed by 0.1% DEPC (Sigma, USA, Diethyl pyrophosphate). At last, the slides were dried and stored in a sealed box for further use [44].
Before sectioning, the microtome (Leica, Germany) was wiped down with RNase inhibitor (Ambion, USA) to avoid cross-contamination, and a new blade (Lecia, Germany) treated with RNase inhibitor was used to cut each sample. The gonad blocks were put into Leica Microtomes for 30 min to adjust the sectioning temperature (﹣20 °C~﹣25 °C). The testis was cryosectioned at 6 μm.
Quick Staining
After drying for 3 min, the sections were stained by H&E Staining Kit Plus (MMI, Switzerland). The procedures were carried out according to the manufacturer’s instructions. The whole process was completed within 30 min [45].
Laser Capture Microdissection
Microdissection was performed on a laser micro-cutting instrument (MMI, Switzerland), and the whole process was controlled in one hour. The targeted cells on the slide were identified under microscope. Three important parameters of laser (cell velocity, laser focus, and laser power) were optimized. After circling the interesting area, the laser starts to capture the cells as many as possible. Finally, the LCM caps containing the captured tissue were uploaded and add 50 μl TPK Lysis Buffer (Micro Elute® RNA Kit, Omega, USA). RNA was extracted immediately or the sample was stored at ﹣80 °C (<2 days).
Library preparation for transcriptome sequencing
RNA were extracted using Micro Elute® RNA Kit (Omega, USA). A total amount of 1.5 µg RNA per sample was used for library preparation. NEBNext® Ultra™ RNA Library Prep Kit were used to generate sequencing libraries for Illumina® (NEB, USA) following the manufacturer's recommendations. Index codes were added to attribute sequences to each sample. Then 3 µl USER Enzyme (NEB, USA) was used with size-selected, adaptor-ligated cDNA at 37°C for 15 min followed by 5 min at 95 °C before PCR. PCR was performed with Phusion High-Fidelity DNA polymerase, Universal PCR primers, and Index (X) Primer. PCR products were purified (AMPure XP system) and library quality was assessed on the Bioanalyzer 2100 system (Agilent, USA). At last, the libraries were sequenced on an Illumina Hiseq platform and 150 bp paired-end reads were generated.
Processing of raw reads and quantification of gene expression levels
Raw data (raw reads) of the fastQ format were first processed through in-house Perl scripts. In this step, clean data (clean reads) were obtained by removing reads containing adapter, reads containing ploy-N and low quality reads from raw data. At the same time, Q20, Q30, GC content and the clean data were calculated. Q20 indicates that every 100 bp of sequencing reads will have an error, and Q30 indicates that every 1000 bp of sequencing reads will have an error. All the downstream analyses were based on clean data with high quality. The clean reads were mapped to the orange-spotted grouper (Epinephelus coioides) genome (unpublished data). Index of the reference genome was built using Bowtie v2.2.3 and paired-end clean reads were aligned to the reference genome using TopHat v2.0.12. TopHat was selected as the mapping tool. HTSeq v0.6.1 was used to count the reads numbers mapped to each gene. And then FPKM of each gene was calculated based on the length of the gene and read counts mapped to this gene.
DEGs analysis
Prior to DEGs analysis, for each sequenced library, the read counts were adjusted by edgeR program package through one scaling normalized factor. Differential expression analysis of two conditions was performed using the DEGSeq R package (1.20.0). The P values were adjusted using the Benjamini & Hochberg method. Corrected P-value of 0.05 and log 2 (Fold change) of 1 were set as the threshold for significant differential expression.
GO and KEGG enrichment analysis of differentially expressed genes
GO terms with corrected P value less than 0.05 were considered to be significantly enriched by DEGs. The identified DEGs were conducted for enrichment analysis subsequently by GO: Termfinder software using the hypergeometric test [46, 47], and P-values were corrected using the Bonferroni method [48]. Significantly enriched GO terms were selected by Q value (Q< 0.05). KEGG is a database resource for understanding high-level functions and utilities of the biological system from molecular-level information (http://www.genome.jp/kegg/). KOBAS software was used to test the statistical enrichment of differential expression genes in KEGG pathways (http://kobas.cbi.pku.edu.cn/m).
Real-time PCR
To validate the RNA-seq data, the relative mRNA levels of 13 differentially expressed genes (nr0b1, erα, erβ, wnt9, gdf9, bmp15, cyp17a1, hibadh, dhrs11, dhrs12, p5cdh, cyp3a40, and dhrs13) were examined by quantitative real-time PCR in the gonad during spermatogenesis of orange-spotted grouper. Total RNA was extracted by TRIzol (Invitrogen, USA) and then 1 µg RNA from each sample was reverse transcribed with random primers by using the First Strand cDNA Synthesis Kit (Roche, USA) according to the manufacturer’s instruction. All mRNA quantification data were normalized to ef1a and presented as a relative control group. The specific primers used in this study were listed in Table 3.
Cloning and sequence analysis of zbtb40 cDNA
Total RNA of the gonad was extracted by TRIzol (Invitrogen, USA). RNA was reversed to cDNA with First Strand cDNA Synthesis Kit (Roche, USA). Based on the cDNA fragments in RNA-seq data, specific upstream and downstream primers (Table 2) were designed. The primers were used to amplify the ORF of zbtb40. After PCR amplification, the band of the desired size was purified by the E.Z.N.A. Gel Extraction Kit (Omega, USA). The purified product was then subcloned into the pGEM-Easy vector (Fermentas, USA). According to the sequencing result, the ORF of zbtb40 was obtained.
The putative amino acid sequences were predicted by DNAMAN software. Nucleic acid phylogenetic analysis was conducted with MEGAX using the method of neighbor-joining method and the top ten motif sites were predicted by motif-based sequence analysis tools (MEME, http://meme-suite.org/).
Tissue distribution of zbtb40 and its expression profile MT-induced spermatogenesis
Total RNA from eight tissues (whole brain, heart, head kidney, liver, kidney, pituitary, ovary, and testis) was extracted. RNA was reversed to cDNA with First Strand cDNA Synthesis Kit (Roche, USA). The reverse transcription process was as follow: 37 °C for 15 min, 98 °C for 5 min, and 4 °C for 5 min. The PCR amplification regime was 35 cycles of 94 °C for 20 s, 55 °C for 10 s, and 72 °C for 20 s, followed by a further amplification at 72 °C for 5 min.
The expression profile of zbtb40 in the gonad during spermatogenesis was detected by real-time PCR during MT-induced spermatogenesis. The methods were carried out as described above. The specific primers used in this study were listed in Table 2.
The protocol of in situ localization (ISH) was referred to previous papers with minor modifications [49]. Probes of zbtb40 (628bp) were synthesized by RNA DIG Labeling Kit (Roche, USA) according to the manufacturer’s instructions. After being permeabilized and acetylated, the cryosections were incubated by hybridization solution which contained 1 ug/ml probe, 20 x saline solution citrate (SSC) buffer, salmon sperm DNA, and deionized formamide, 50 x Denhart’s solution. After incubation for 12-16 h, the sections were washed by SSC and PBS buffer. The DIG label was tested with an alkaline phosphatase conjugated Flu-anti-DIG antibody (Roche Diagnostics; diluted 1:1000) and colored the signal with Fluorescence Systems (Roche, USA). Later the sections were counterstained by 4’ 6-diamidino-2-phenylindole (DAPI) for cell nuclear staining to confirm the number and status of germ cell. At last, sections were mounted with the Gold Anti-fade reagent (Invitrogen, USA) and imaged by laser scanning confocal microscope (Leica, TCS-SP5, Germany).
Statistical analysis
All data were expressed as mean values ± SEM. Significant differences were checked by one-way analysis of variance (ANOVA) and student′s t-test was used, and a probability level less than 0.05 (P < 0.05) was used to indicate significance. All data were performed using GraphPad Prism5.0 (GraphPad Software, San Diego, CA) and analyzed by SPSS17.0 (SPSS, Chicago, IL, USA).