[1] J. Davidovits, Geopolymers - Inorganic polymeric new materials, J. Therm. Anal. 37 (1991) 1633–1656. doi:10.1007/BF01912193.
[2] R. Abbas, M. Al Khereby, H.Y. Ghorab, N. Elkhoshkhany, Preparation of geopolymer concrete using Egyptian kaolin clay and the study of its environmental effects and economic cost, Clean Technol. Environ. Policy. 22 (2020) 669–687. doi:10.1007/s10098-020-01811-4.
[3] K. Komnitsas, D. Zaharaki, Geopolymerisation : A review and prospects for the minerals industry, Miner. Eng. 20 (2007) 1261–1277. doi:10.1016/j.mineng.2007.07.011.
[4] P. Duxson, A. Fernández-Jiménez, J.L. Provis, G.C. Lukey, A. Palomo, J.S.J. Van Deventer, Geopolymer technology : the current state of the art, J. Mater. Sci. (2007) 2917–2933. doi:10.1007/s10853-006-0637-z.
[5] J. Davidovits, Geopolymer Chemistry and Applications, 3rd ed., Institut Géopolymère, France, 2011.
[6] J.S.J. Van Deventer, J.L. Provis, P. Duxson, G.C. Lukey, Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products, J. Hazard. Mater. 139 (2007) 506–513. doi:10.1016/j.jhazmat.2006.02.044.
[7] A. Naghizadeh, S.O. Ekolu, Effects of Compositional and Physico – Chemical Mix Design Parameters on Properties of Fly Ash Geopolymer Mortars, Silicon. (2020). doi:10.1007/s12633-020-00799-2.
[8] N. Meftah, M.S. Mahboub, Spectroscopic Characterizations of Sand Dunes Minerals of El-Oued (Northeast Algerian Sahara) by FTIR, XRF and XRD Analyses, Silicon. 12 (2020) 147–153. doi:10.1007/s12633-019-00109-5.
[9] H. Xu, J.S.J. Van Deventer, The geopolymerisation of alumino-silicate minerals, Int. J. Miner. Process. 59 (2000) 247–266. doi:https://doi.org/10.1016/S0301-7516(99)00074-5.
[10] V.F.F. Barbosa, K.J.D. MacKenzie, C. Thaumaturgo, Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers, Int. J. Inorg. Mater. 2 (2000) 309–317. doi:10.1016/S1466-6049(00)00041-6.
[11] A. Elimbi, H.K. Tchakoute, D. Njopwouo, Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements, Constr. Build. Mater. 25 (2011) 2805–2812. doi:10.1016/j.conbuildmat.2010.12.055.
[12] C.Y. Heah, H. Kamarudin, A.M. Al Bakri, M. Luqman, I.K. Nizar, Y.M. Liew, Potential Application of Kaolin Without Calcine as Greener Concrete : A Review, Aust. J. Basic Appl. Sci. 5 (2011) 1026–1035.
[13] B. Braggs, J. Ralston, R.S.C. Smart, Surface modification of Kaolinite, WO96/017021, 1996.
[14] H. Ming, K.M. Spark, R.S.C. Smart, Comparison of radio-frequency-plasma- and ion-beam-induced surface modification of kaolinite, J. Phys. Chem. B. 105 (2001) 3196–3203. doi:10.1021/jp0031496.
[15] B. Sop Tamo, G. Kamgang-Youbi, E. Acayanka, L. Medjo Simo, A. Tiya-Djowe, D. Kuete-Saa, S. Laminsi, L. Tchadjie, Plasma Chemical Functionalisation of a Cameroonian Kaolinite Clay for a Greater Hydrophilicity, Plasma Chem. Plasma Process. 36 (2016). doi:10.1007/s11090-016-9731-4.
[16] B. Sop-Tamo, E. Acayanka, W.F. Boyom-Tatchemo, S. Nzali, G. Kamgang-Youbi, S. Laminsi, Gliding arc plasma pre-treatment of kaolin in spatial post-discharge mode for removal of Reactive Red 2 dye from aqueous solution, Water Sci. Technol. 78 (2018) 1448–1458. doi:10.2166/wst.2018.419.
[17] 2005 EN196-1, Methods of testing cement - Part 1: Determination of strength, Eur. Stand. (2005) 1–33.
[18] A.P. Rollet, R. Bouaziz, L’analyse thermique: l’examen du processus chimique, Gauthier-Villars, 1972.
[19] A.B.B. Mohd Mustafa, Y.M. Liew, C.Y. Heah, F.M.T. Muhammad, Clay-Based Materials in Geopolymer Technology, in: Cem. Based Mater., Intech Open, 2018: p. 279. doi:10.5772/intechopen.74438.
[20] A.A.& R.O.O. U.O.Aroke, Fourier-transform infrared characterization of kaolin,Granite,Bentonite and barite, J. Chem. Inf. Model. 53 (2013) 1689–1699. doi:10.1017/CBO9781107415324.004.
[21] Y.M. Liew, H. Kamarudin, A.M. Mustafa Al Bakri, M. Luqman, I. Nizar Khairul, C.Y. Heah, Investigating the possibility of utilization of kaolin and the potential of metakaolin to produce green cement for construction purposes – a review, Aust. J. Basic Appl. Sci. 5 (2011) 441–449.
[22] P. Rovnaník, Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer, Constr. Build. Mater. 24 (2010) 1176–1183. doi:10.1016/j.conbuildmat.2009.12.023.
[23] R.I. Yousef, B. El-eswed, M. Alshaaer, F. Khalili, H. Rahier, Degree of reactivity of two kaolinitic minerals in alkali solution using zeolitic tuff or silica sand filler, Ceram. Int. 38 (2012) 5061–5067. doi:10.1016/j.ceramint.2012.03.008.
[24] E. Prud, P. Michaud, E. Joussein, S. Rossignol, Influence of raw materials and potassium and silicon concentrations on the formation of a zeolite phase in a geopolymer network during thermal treatment, J. Non. Cryst. Solids. 358 (2012) 1908–1916. doi:10.1016/j.jnoncrysol.2012.05.043.
[25] Z. Zheng, X. Ma, Z. Zhang, Y. Li, In-situ transition of amorphous gels to Na-P1 zeolite in geopolymer: Mechanical and adsorption properties, Constr. Build. Mater. 202 (2019) 851–860. doi:10.1016/j.conbuildmat.2019.01.067.
[26] H.K. Tchakoute, C.H. Rüscher, J.N.Y. Djobo, B.B.D. Kenne, D. Njopwouo, Influence of gibbsite and quartz in kaolin on the properties of metakaolin-based geopolymer cements, Appl. Clay Sci. (2015) 1–7. doi:10.1016/j.clay.2015.01.023.
[27] A.D. Hounsi, G.L. Lecomte-nana, G. Djétéli, P. Blanchart, Kaolin-based geopolymers : Effect of mechanical activation and curing process, Constr. Build. Mater. 42 (2013) 105–113. doi:10.1016/j.conbuildmat.2012.12.069.
[28] B.B.D. Kenne, A. Elimbi, M. Cyr, J.D. Manga, H.T. Kouamo, Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers, J. Asian Ceram. Soc. 3 (2015) 130–138. doi:10.1016/j.jascer.2014.12.003.
[29] C.Y. Heah, H. Kamarudin, A.M. Mustafa Al Bakri, M. Binhussain, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, Y.M. Liew, Effect of curing profile on kaolin-based geopolymers, Phys. Procedia. 22 (2011) 305–311. doi:10.1016/j.phpro.2011.11.048.
[30] J.G.S. Van Jaarsveld, J.S.J. Van Deventer, A. Schwartzman, The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics, Miner. Eng. 12 (1999) 75–91. doi:10.1016/S0892-6875(98)00121-6.
[31] J.G.S. Van Jaarsveld, J.S.J. van Deventer, G.C. Lukey, The characterisation of source materials in fly ash-based geopolymers, Mater. Lett. 57 (2003) 1272–1280.
[32] B.D. Adkins, B.H. Davis, Comparison of nitrogen adsorption and mercury penetration results I. Pore volume and surface area obtained for type IV isotherms, Adsorpt. Sci. Technol. 5 (1988) 76–93. doi:10.1177/026361748800500108.
[33] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas / solid systems with special reference to the determination of surface area and porosity (recommendations 1984 ), Pure Appl. Chem. 57 (1985) 603–619.
[34] Y. Luna-Galiano, C. Fernández-Pereira, M. Izquierdo, Contributions to the study of porosity in fly ash-based geopolymers . Relationship between degree of reaction , porosity and compressive strength, Mater. Construcción. 66 (2016) e098. doi:10.3989/mc.2016.10215.
[35] X. Yao, Z. Zhang, H. Zhu, Y. Chen, Geopolymerization process of alkali – metakaolinite characterized by isothermal calorimetry, Thermochim. Acta. 493 (2009) 49–54. doi:10.1016/j.tca.2009.04.002.