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Abstract

Background
The topic of whether genetic screening for cancer risk should be implemented is complex. Using UK Biobank data, we 1) computed optimal risk
thresholds for the detection of breast cancer, 2) examined the overlap of high-risk individuals identi�ed by different risk predictors, and 3) evaluated the
performance of risk predictor combinations.

Patients and methods
We studied 246,142 women without breast cancer at study entry. Risk predictors assessed include: the Gail model (GAIL), family history of breast
cancer (FH, binary), 313-SNP breast cancer polygenic risk score (PRS), and carriership of loss-of-function variants in at least one of the 9 breast cancer
predisposition genes (ATM, BARD1, BRCA1, BRCA2, CHEK2, PALB2, RAD51D, RAD51C, and TP53) (LoF). Absolute risk for developing invasive breast
cancer was computed. Youden J-index was used to select optimal thresholds for de�ning high-risk.

Results
In total, 147,399 were considered at high risk for development of breast cancer within the next two years by at least one of the four breast cancer risk
assessment tools examined (Gail2 − year>0.5%: 47%, PRS2 − year>0.7%: 30%, FH: 6%, and LoF: 1%); 92,851 (38%) were �agged by only one risk predictor.
Seventy-nine percent of the breast cancers that did develop within the next two years were from the high-risk group. When compared to a random
sample, the biggest gain in proportion of breast cancer cases was found within women at PRS high-risk, followed by GAIL, FH and LoF. The best-
performing combinatorial model comprises a union of high-risk women identi�ed by PRS, FH, and LoF (AUC2 − year [95% CI]: 62.2 [60.8 to 63.6]).
Assigning individual weights to each risk prediction tool appeared to increase the discriminatory ability.

Conclusion
Our �ndings suggest that risk-based breast cancer screening may require a multi-pronged approach that includes PRS, breast cancer predisposition
genes, family history, and other recognized risk factors.

Introduction
Breast cancer accounts for 15.5% of the 4,429,323 cancer deaths observed globally among women1. The most e�cient way to identify breast cancer at
an early stage and reduce mortality is through serial screening with mammography2–6. The most common target risk group in high-income countries
offering population-based mammography screening is women between 50 to 69 years of age7. However, more than half of the 2,261,419 breast cancers
diagnosed worldwide are outside this age group (< 50 years: 29.4%; ≥70 years: 22.4%) (GLOBOCAN, accessed Sep 19, 2022). The evidence regarding
the degree of breast cancer mortality reduction in women under 50 or over 69, as well as the factors that determine the bene�ts and risks of
mammography, such as the type of mammography (digital vs. screen-�lm), the number of views, and the interval between screenings, are inconsistent3.

A more individualised, risk-based approach to breast cancer screening has garnered considerable lay public, health policy, and academic interest8.
Evidence suggests that personalised risk-based screening, as opposed to one-size-�ts-all age-based screening, improves the balance between the
bene�ts and risks of breast cancer screening9. Knowing who to screen may reduce the negative outcomes of screening on a population level10.
Individual needs may be used to guide and customise screening strategies, including starting age, stopping age, interval, and modality11.

In an otherwise healthy population, breast cancer screening should ideally be done when the risk of the disease is high enough to offset the harms of
overdiagnosis and overtreatment5,12,13. Women between the ages of 40 and 49 have a lower probability of developing breast cancer than older women,
but the forms of breast cancer that do so are frequently more aggressive and have a worse prognosis14. Additionally, younger women are expected to
live longer and have fewer comorbidities14. As for the older age group (≥ 70 years), there are doubts regarding the e�cacy of mammography screening
in reducing mortality due to a higher burden from non-cancer comorbidities15–17. Some have argued that older women may gain little from continuing
routine screening mammography as the risk of overdiagnosis and unnecessary treatment may compromise quality of life and physical function18. “For
whom does screening bene�t” thus becomes an important question. The risk-bene�t ratio for screening mammography for women outside the current
target risk group may be tilted by personalised risk assessments and lead to better patient outcomes14.

The most e�cient method to implement risk-based screening for breast cancer is still being investigated:

A higher risk of breast cancer exists in those who have a family history of the disease19,20. The elevated risk is likely brought on by genetic factors,
but it might also be brought on by common lifestyle variables or other shared family traits21.
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The Gail model, which incorporates classic breast cancer risk factors including age, age at the �rst occurrence of menstruation, age at �rst child,
number of breast biopsies, history of atypical hyperplasia, and number of immediate family members with breast cancer, is widely used and
validated in many populations of different ancestry22–27.

Mammographic density, ascertained from the appearance of the breast tissue on mammograms, is another risk factor for breast cancer28–30.
Studies have argued that mammographic density is more strongly associated with breast cancer risk than risk factors in the Gail model31.

It is possible to predict whether a person's risk of developing breast cancer is caused by a particular genetic vulnerability (such rare loss-of-function
variants in BRCA1 or BRCA2)32–35. Absolute lifetime risks of developing breast cancer associated with BRCA1/2 mutations have been reported to
be ~ 80%, much higher than the ~ 12% typically observed in the general population36. Large consortia efforts have also identi�ed other clinically
useful breast cancer predisposition genes (ATM, CHEK2, PALB2, BARD1, RAD51C, RAD51D, and TP53)37.

Polygenic risk scores (PRS) that sums up the effects of multiple common variants associated with breast cancer have been implemented in pilot
precision health initiatives that strati�es individuals by their personal disease risk38–47.

With the continuous development and re�nement of breast cancer risk assessment tools, “How much does genetics add?” becomes of interest. There is
increasing evidence that combining genetic data with standard risk instruments meaningfully enhances risk strati�cation and improves discriminatory
value in mammography screening programmes48,49. However, the extent of overlap between the high-risk individuals identi�ed by different tools is
unclear. In this study, we use the large UK Biobank dataset comprising 246,142 women to assess the proportion of women identi�ed at high-risk of
developing breast cancer ascertained by different means and evaluate the proportion of high-risk individuals who eventually developed the malignancy.

Methods

Study population
The UK Biobank is a publicly available scienti�c database and research tool which has curated comprehensive genetic and health data from ~ 500,000
individuals in the United Kingdom 50(10.1371/journal.pmed.1001779). Participants were recruited between 2006 and 2010 via mail invitation (5%
response rate). Aged between 40 and 70 years, enrolled with a general practitioner, and residing within 20 miles of one of 22 evaluation centres in
England, Scotland, and Wales were requirements for participants. A touch screen survey, a nurse interview, and physical measures were all completed by
participants. Additionally, participants agreed for data to be linked to primary care, hospital episode data, and death registers. Our cohort was restricted
to 264,741 female participants (application 86846) (Supplementary Fig. 1).

Breast cancer polygenic risk score (PRS)
Genome-wide genetic data is available for 487,201 UK Biobank participants (Data-Field 22828). The UK Biobank genotyping project, quality control,
imputation, and related processes have been previously described51:

“Genotype calling was performed by Affymetrix (now part of ThermoFisher Scienti�c) on two closely related purpose-designed arrays. ~50,000
participants were run on the UK BiLEVE Axiom array (Resource 149600) and the remaining ~ 450,000 were run on the UK Biobank Axiom array
(Resource 149601). The dataset combines results from both arrays (see Data-Field 22000) and there are 805,426 markers in the released genotype
data. The positions of markers in the data are in GRCh37 coordinates. It was not possible to assay genotypes for some participants (~ 3%) as su�cient
DNA could not be extracted from their blood samples.

The genotype data were quality controlled (QC). In addition, the dataset was phased and ~ 96M genotypes were imputed using computationally
e�cient methods combined with the Haplotype Reference Consortium and UK10K haplotype resources. Variants are stored in the compressed and
indexed BGENv1.2 format. The imputed genotypes are aligned to the + strand of the reference and the positions are in GRCh37 coordinates.

Information from the QC pipeline, such as array, and important genetic properties of the data such as population structure and relatedness are
available. Details of these analyses, and the methods used to derive other data such as imputation and haplotypes, are given in Bycroft et al52.”

A list of the 313 SNPs and associated weights included in the breast cancer PRS is given in Supplementary Table 1 38. The plink code used to extract
313 SNPs for building the breast cancer PRS (using chr21 as example) is: “plink2 --bgen ukb22828_c21_b0_v3.bgen --sample
ukb22828_c21_b0_v3_s487201.sample --keep-females --remove-nosex --extract temp$1.bim --make-bed --out ukb22828_c21_b0_v3”. In the extraction,
308 variants and 264,246 females pass �lters and QC (total genotyping rate = 0.977395).

Carriers of loss-of-function (LoF) variants in nine breast cancer risk genes
The WES analyses using population level exome OQFE variants (PLINK format - �nal release, ukb23158_c*_b0_v1) were conducted on the Research
Analysis Platform (https://ukbiobank.dnanexus.com)53. The Swiss Army Knife (v4.8.0) executable was used to run PLINK254.

Poor quality variants were excluded with the provided helper �le (ukb23158_500k_OQFE.90pct10dp_qc_variants.txt), which is a single-column text �le
containing variants failing the “90pct10dp” depth �lter in the CHR:POS:REF:ALT format. The quality control criteria require that at least 90% of all
genotypes for a given variant - independent of variant allele zygosity - have a read depth of at least 10 (i.e. DP > = 10).
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The �le ukb23158_500k_OQFE.annotations.txt.gz provided by the UK Biobank de�nes a functional annotation for each variant given a gene set.
Variants annotated with missense(0/5), missense(5/5), missense( > = 1/5), or synonymous were excluded. LoF variants (n = 795) in nine breast cancer
risk genes (ATM [ENSG00000149311], n = 222; BRCA1 [ENSG00000012048], n = 115; BRCA2 [ENSG00000139618], n = 179; CHEK2 [ENSG00000183765],
n = 60; PALB2 [ENSG00000083093], n = 85; BARD1 [ENSG00000138376], n = 49; RAD51C [ENSG00000108384], n = 23; RAD51D [ENSG00000185379], n 
= 47; or TP53 [ENSG00000141510], n = 15) were extracted (10.1056/NEJMoa1913948). The max minor allele frequency was set at 0.01.

The command line option (using chr21 as an example) to extract LoF variants was "plink2 --b�le ukb23158_c21_b0_v1 --no-psam-pheno --exclude
ukb23158_500k_OQFE.90pct10dp_qc_variants.txt --extract ukb23158_500k_OQFE.annotations-9genes-795LoF --keep-females --max-maf 0.01 --make-
bed --out chr21".

The resulting WES dataset included 508 LoF variants with at least one carrier in 254,635 females.

Non-genetic risk factors
Demographic and reproductive risk factors were obtained from the �rst instance: age at recruitment (Data-Field: 21022), race (Data-Field: 21000), age at
menarche (Data-Field: 2714), parity (Data-Field: 2734), age at �rst childbirth (Data-Fields: 2754 and 3872), family history of breast cancer (Data-Fields:
20110 for mother and 20111 for siblings), menopausal status (Data-Field: 2724). A maximum value of 2 is possible for family history of breast cancer,
where the individual’s mother and at least one sibling had breast cancer. Information on ever had breast cancer screening visits (Data-Field: 2674) was
also retrieved.

Breast cancer case ascertainment
Invasive breast cancer was determined using the 9th (174*) and 10th (C50*) versions of the International Classi�cation of Diseases (Data-Fields 40013
and 40006, respectively). Age at cancer diagnosis (Data-Fields: 20007 and 40008) was used to determine if the cancer diagnosis was before the age of
80. A total of 26 breast cancers were diagnosed at age 80 and above. Due to the late age at diagnosis, these cases were considered as non-case in our
analysis. In situ breast cancer cases were included as non-cases.

A total of 253,953 females had information on both PRS and LoF (Supplementary Fig. 1). Prevalent breast cancer cases (n = 7,811) were excluded. The
resulting analytical cohort consisted of 246,142 females, with 7,620 incident cases of breast cancer (latest case diagnosed in year 2020).

Statistical analysis
Associations between risk factors of interest and invasive breast cancer diagnosis before age 80 years were tested using Chi-square test for categorical
variables and Kruskal-Wallis test for continuous variables.

Our outcomes of interest are invasive breast cancer diagnosis within 2-, 5-, and 10-years post-study entry and lifetime (before age 80 years). For each
period of interest, the corresponding x-year absolute risk (2-, 5-, 10-year, and lifetime cumulative risk [before age 80 years]) was computed.

The x-year absolute risk (2-year, 5-year, 10-year, and lifetime at age 80 years) was predicted using the package (BCRA) for the Gail model22,55. The
method to obtain the x-year absolute risk computed from PRS is described previously39. Breast cancer incidence rates from 2011 to 2015, and mortality
rates of 2016, were used in the PRS absolute risk calculation56,57. The distributions of x-year absolute risks predicted by PRS and the Gail model are
illustrated in Supplementary Fig. 2.

To our knowledge, there is no consensus on the threshold to determine high-risk women based on the x-year absolute risks computed from PRS. We
selected the threshold based on the highest Youden J-ndex (from pROC package in R)58,59. This threshold optimization was repeated for the x-year
absolute risks computed from the Gail model. Family history of breast cancer was treated as a binary variable (FH, yes or no) when used as a risk
predictor on its own; in the Gail model, values 0, 1, 2 + were adopted. Carriers of LoF variants in at least one of the 9 breast cancer predisposition genes
(ATM, BARD1, BRCA1, BRCA2, CHEK2, PALB2, RAD51D, RAD51C, and TP53) were considered LoF variant carriers.

The women identi�ed to be at high risk of developing breast cancer according to the four risk prediction tools (PRS, Gail, family history, LoF) were
represented in a Venn diagram to illustrate the extent of overlap of at-risk individuals. The discriminatory ability of different risk prediction tools was
assessed as single predictors and in combinations (union of high-risk women identi�ed) by computing area under the receiver operating curve (AUC).
The backward stepwise logistic regression analysis (R function step()) was used to examine the relations (beta coe�cients) of the four risk prediction
tools on breast cancer risk (Additional File 1).

R version 4.0.3 was used in all analyses.

Results

Study population characteristics
We studied 246,142 women without breast cancer at study entry. The median age was 56 years (interquartile range [IQR]: 50 to 63) (Table 1). The
majority (n = 232,118, 94%) were of White background, were menopausal at study entry (n = 147,683, 60%), and attended breast cancer screening (n = 
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194,441, 79%). Six percent (n = 15,304) and < 1% (n = 466) reported one (mother or sibling) and two (mother and at least one sibling) �rst-degree family
history of breast cancer, respectively. As of year 2020, 3% of the study population (n = 7,620) developed invasive breast cancer. The median age at
diagnosis was 63 years (IQR: 57 to 69). Differences in the distribution of risk factors (age at menarche, age at �rst live birth, and number of children) by
case status were small but statistically signi�cant due to the large sample size (Table 1).
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Table 1
Characteristics of study participants. Column percentages are shown within brackets. IQR: interquartile range; P: p-value from Chi-square test

(categorical variable) or Kruskal-Wallis test (continuous variable).   

    Breast cancer diagnosis before age 80
years

  All No Incident P

  N = 246,142 n = 238,522 n = 7,620  

Median age at recruitment (IQR) 56 (50 to 63) 56 (50 to 63) 57 (51 to 63) < 
0.001

Median age at breast cancer diagnosis (IQR)     63 (57 to 69)  

Race        

White (includes British, Irish, and other white background) 232,118 224,843 (94%) 7,275 (95%) < 
0.001

African American (includes African, Caribbean, Black or Black British, and other
Black background)

4,092 4,017 (2%) 75 (1%)  

Chinese American (includes Chinese) 887 868 (0%) 19 (0%)  

Other Asian (includes Bangladeshi, Indian, Pakistani, Asian or Asian British, and
other Asian background)

4,092 3,971 (2%) 121 (2%)  

Other (includes mixed, White and Black, White and Black African, White and
Asian, unknown, and prefer not to answer)

4,953 4,823 (2%) 130 (2%)  

First degree family history of breast cancer (mother and siblings)        

None 230,372 223,519 (94%) 6,853 (90%) < 
0.001

1 15,304 14,576 (6%) 728 (10%)  

2 or more 466 427 (0%) 39 (1%)  

Age at menarche, years        

≥ 14 87,577 84,981 (36%) 2,596 (34%) 0.009

12 to 13 103,892 100,562 (42%) 3,330 (44%)  

≤ 11 47,014 45,534 (19%) 1,480 (19%)  

Unknown 7,659 7,445 (3%) 214 (3%)  

Number of children        

0 45,798 44,291 (19%) 1,507 (20%) 0.002

1 32,833 31,765 (13%) 1,068 (14%)  

2 107,513 104,218 (44%) 3,295 (43%)  

3+ 59,442 57,707 (24%) 1,735 (23%)  

Unknown 556 541 (0%) 15 (0%)  

Age at �rst live birth, years        

No child 45,798 44,291 (19%) 1,507 (20%) < 
0.001

≤ 19 21,460 20,905 (9%) 555 (7%)  

20 to 24 63,671 61,831 (26%) 1,840 (24%)  

25 to 29 70,749 68,525 (29%) 2,224 (29%)  

≥ 30 43,513 42,044 (18%) 1,469 (19%)  

Unknown 951 926 (0%) 25 (0%)  

Menopausal status        

Yes 147,683 142,940 (60%) 4,743 (62%) < 
0.001

No 59,266 57,586 (24%) 1,680 (22%)  
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    Breast cancer diagnosis before age 80
years

Unknown 39,193 37,996 (16%) 1,197 (16%)  

Ever attended breast cancer screening        

Yes 194,441 188,111 (79%) 6,330 (83%) < 
0.001

No 50,979 49,707 (21%) 1,272 (17%)  

Unknow 722 704 (0%) 18 (0%)  

Median polygenic risk score (IQR) -0.315 (-0.730
to 0.096)

-0.324 (-0.737
to 0.087)

-0.055 (-0.473
to 0.365)

< 
0.001

High-penetrance breast cancer genes (ATM, BARD1, BRCA1, BRCA2, CHEK2,
PALB2, RAD51D, RAD51C, TP53)

       

No 243,137 235,728 (99%) 7,409 (97%) < 
0.001

Yes (at least one loss-of-function variant) 3,005 2,794 (1%) 211 (3%)  

Optimal thresholds for the de�nition of high-risk
The Youden J-Index is frequently used to summarize the receiver operating characteristic curve 59. In this study, we used it to assess the e�cacy of a
diagnostic marker and to select the best threshold value or cut-off point for PRS and Gail model-computed absolute risks. The most optimal Youden J-
Index was achieved with absolute risk cut-offs of 0.7% (PRS2 − year AUC [95%CI]: 65.1 [63.6 to 66.7]) and 0.5% (Gail2 − year AUC [95%CI]: 59.3 [57.7 to
60.9]). Supplementary Fig. 3 summarizes the corresponding AUC values when considering 2-, 5-, 10-years and lifetime absolute risks. The most optimal
cut-offs were used for subsequent analyses.

Overlap of high-risk individuals identi�ed by different breast cancer risk assessment
tools
The proportion of women �agged as high risk by Gail2 − year>0.5%, PRS2 − year>0.7%, FH, and LoF were 47% (n = 115,986), 30% (n = 73,775), 6% (n = 15,770),
and 1% (n = 3,005), respectively (Fig. 1). Supplementary Fig. 4 shows corresponding Venn diagrams for 5-year, 10-year, and lifetime absolute risks.
Thirty-eight percent of the 246,142 women in the study were considered high-risk by only one risk prediction tool (PRS2 − year>0.5% unique individuals = 
28,630, Gail2 − year>0.7% unique individuals = 61,911, FH unique individuals = 1,142, LoF unique individuals = 1,168).

Seventy-nine percent of the 1,209 breast cancer cases that developed within two years were identi�ed to be at high risk by at least one of the four breast
cancer predictors examined. Using a two-year absolute risk cut-off of 0.5% and 0.7%, the Gail model and PRS identi�ed 60% (n = 728) and 52% (n = 632)
of the cases, respectively. FH made up 12% (n = 145) of the breast cancer cases that developed within the next two years of assessment; LoF carriers
made up less than 4% (n = 44).

Improvement in the number of breast cancers identi�ed within a high-risk group vs a random sample

Figure 2 shows the proportion of individuals �agged as high-risk by different breast cancer risk assessment tools (x-axis) and the proportion of cases
diagnosed within x years identi�ed as high-risk (where x is 2, 5, 10 years or lifetime, y-axis). When considered as single risk predictors, breast cancer
PRS was associated with the highest gain in proportion of breast cancer cases detected in the assessed period compared to the null line, followed by
the Gail model (GAIL), �rst-degree family history of breast cancer (FH), and carriership of LoF variants in high-penetrant breast cancer genes. The best-
performing combinatorial model comprises PRS, FH, and LoF (AUC2 − year [95% CI]: 62.2 [60.8 to 63.6]) (Fig. 2, Table 2).

Table 2
Discriminatory ability and performance measures when women were �agged as high-risk by taking the union of the risk predictor combination
selected in Fig. 2. *x-year absolute risk threshold to de�ne high risk. PRS: breast cancer polygenic risk score; GAIL: the Gail model; LoF: carrier

of loss-of-function variants in high-penetrance breast cancer genes; AUC: area under the receiver operating curve; FPR: false positive rate; FNR:
false negative rate; TPR: true positive rate; TNR: true negative rate.

            95% CI of AUC        

x-year absolute risk PRS* Model Sensitivity Speci�city AUC lower upper FPR FNR TPR TNR

2-year 0.7 PRS ⋃ FH ⋃ LoF 59.1 65.4 62.2 60.8 63.6 99.2 0.3 0.8 99.7

5-year 1.4 PRS ⋃ FH ⋃ LoF 66.1 54.4 60.2 59.4 61.0 98.1 0.8 1.9 99.2

10-year 2.9 PRS ⋃ FH ⋃ LoF 64.2 55.3 59.8 59.2 60.4 96.2 1.8 3.8 98.2

Lifetime at age 80 years 4.2 PRS ⋃ FH ⋃ LoF 55.3 61.8 58.5 58.0 59.1 95.6 2.3 4.4 97.7
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Assigning weights to each risk prediction tool improves discriminatory ability
We next examined whether the discriminatory ability changes when risk prediction tools were assigned different weights (Table 3). This model would
account for effect overlap between the different tools. The best-performing backward stepwise logistic regression model retained all four risk prediction
tools (Youden J-Index = 24.7, AUC2 − year [95% CI]: 66.4 [64.8 to 67.9]). After manual removal of the Gail model, the AUC2 − year achieved was 66.3 (95% CI:
64.7 to 67.8).
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Table 3
Discriminatory ability and performance measures of different strategies in identifying high-risk women. The models show beta weights from a stepwise

logistic regression with backward removal predicting breast cancer risk using the four different risk prediction tools. p: probability from the
combinatorial model; PRS: polygenic risk scores; GAIL: the Gail model; LoF: carrier of loss-of-function variants in high-penetrance breast cancer genes;

AUC: area under the receiver operating curve; FPR: false positive rate; FNR: false negative rate; TPR: true positive rate; TNR: true negative rate.

        Model statistics        

  Absolute
risk cut-off
(%)

            95% CI of AUC        

x-year
absolute
risk

PRS GAIL Model Threshold
(p)

Sensitivity Speci�city Youden
J-
statistics

AUC lower upper FPR FNR TPR TNR

Full
model
(also the
best by
stepwise
backward
selection)

                           

2-year 0.7 0.5 Logit(p):
-6.29 + 
0.70
PRS + 
0.80
GAIL + 
0.16 FH 
+ 1.03
LoF

0.5 61.4 63.4 24.7 66.4 64.8 67.9 99.2 0.3 0.8 99.7

5-year 1.4 1.4 Logit(p):
-5.15 + 
0.29
PRS + 
0.21
GAIL + 
0.15 FH 
+ 0.90
LoF

1.2 59.6 61.5 21.1 64.4 63.5 65.4 98 0.9 2 99.1

10-year 2.9 3 Logit(p):
-4.43 + 
0.15
PRS + 
0.10
GAIL + 
0.16 FH 
+ 0.85
LoF

2.5 59 60.6 19.6 63.5 62.9 64.2 96 1.8 4 98.2

Lifetime
at age 80
years

4.2 9.5 Logit(p):
-4.42 + 
0.10
PRS + 
0.07
GAIL + 
0.04 FH 
+ 0.81
LoF

3 53.4 65.3 18.7 62.5 61.9 63.2 95.3 2.2 4.7 97.8

Model
without
GAIL

                           

2-year 0.7 - Logit(p):
-5.91 + 
0.75
PRS + 
0.59 FH 
+ 1.02
LoF

0.5 56.2 68.3 24.5 66.3 64.7 67.8 99.1 0.3 0.9 99.7

5-year 1.4 - Logit(p):
-4.88 + 
0.30
PRS + 
0.43 FH 
+ 0.90
LoF

1.3 53.6 67.2 20.7 64.4 63.5 65.4 97.9 0.9 2.1 99.1
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        Model statistics        

10-year 2.9 - Logit(p):
-4.16 + 
0.15
PRS + 
0.43 FH 
+ 0.85
LoF

2.5 55.8 63.8 19.6 63.5 62.9 64.2 95.9 1.9 4.1 98.1

Lifetime
at age 80
years

4.2 - Logit(p):
-3.86 + 
0.08
PRS + 
0.44 FH 
+ 0.82
LoF

2.9 54.9 62.1 17.1 61.4 60.8 62.1 95.6 2.3 4.4 97.7

Discussion
Stratifying population-level service users by their individual breast cancer risk may improve resource utilization and alleviate the issue of
overdiagnosis60. We identi�ed individuals at high risk of developing breast cancer based on different established genetic (PRS and LoF) and non-
genetic (FH and the Gail model) risk calculators in the large UK Biobank study. Two-, �ve-, ten-year and lifetime breast cancer absolute risks were
computed. The analysis associated with two-year breast cancer absolute risk was associated with the highest discriminatory value. Among the 246,142
women in the analytical cohort, 147,399 were considered at high risk for development of breast cancer within the next two years by at least one of the
four breast cancer risk assessment tools examined. Among the high-risk individuals, 92,851 (38%) were �agged by only one risk predictor. Seventy-nine
percent of the breast cancers that did develop within the next two years were from the high-risk group. The union of high-risk individuals identi�ed by
PRS, FH, and LoF yielded the best improvement in the number of breast cancer cases detected when compared to a random sample. Assigning
individual weights to each risk prediction tool appeared to increase the discriminatory ability.

Our observation that a large proportion of women are uniquely �agged as high-risk by only one risk assessment tool suggests that breast cancer
screening may bene�t from a multi-prong approach including genetic and non-genetic risk factors. Numerous studies have shown that breast cancer
PRS exerts an effect distinct from traditional risk factors61. The effect of PRS on breast cancer risk is known not to be correlated with family
history38,41,62−64. PRSs have also been shown to be largely independent of other known risk factors for breast cancer, such as mammographic
density65, lifestyle factors62,66−68, reproductive factors and hormone use62,68. In a European study comprising using 72,284 cases and 80,354 controls
from the Breast Cancer Association Consortium, Kapoor et al. showed that the effects of PRS did not differ across different strata of conventional risk
factors66.

Considering different risk prediction models in tandem improves performance. In a study comprising 126,894 women, Yang et al. showed women at the
highest risk of developing breast cancer (top 5th percentile) estimated by PRS and non-genetic risk factors 3.84- and 2.10-times more likely to develop
the disease compared to the average risk group (40th to 60th percentile)48. While the non-genetic risk score had limited predictive ability by itself, the
joint predictive model performed better than PRS or non-genetic risk score alone48. In the FinnGen study (n = 122,978, 8,401 breast cancer cases),
authors showed that PRS improves risk prediction in women with �rst-degree family members who have been diagnosed with breast cancer69. In the
Predicting the Risk of Cancer At Screening (PROCAS study), Evans et al. evaluated the risk prediction capacities of traditional risk factors,
mammographic density, PRS, and a gene panel49. The authors found that whilst PRS improved risk strati�cation signi�cantly when compared to a
model based only on mammographic density and conventional risk factors, the inclusion of gene panels showed no appreciable effect. In our study, the
best discriminatory ability was associated with a combinatorial model including PRS, FH, and LoF.

We show that risk strati�cation using PRS, FH and LoF offered best gain in terms of the number of breast cancer cases detected in a high-risk
population when compared to a random sample. Fifteen percent (63% in high-risk women vs 48% of random selection) more cases may be identi�ed by
looking within the high-risk women (48% of the population) as compared with taking a random sample of the same proportion. This result is in
agreement with previous works examining the impact of using multiple risk prediction tools in risk-based breast cancer screening scenarios. Darabi et al
estimated that a customised screening strategy with input from multiple risk models (e.g. conventional risk factors, mammographic density, and
polygenic risk scores) captures 10% more cases than an age-based approach70. For every thousand 50-year-old women in Nurses’ Health Study, the Gail
model alone identi�ed 2 individuals associated with double the average �ve-year absolute risk (2.27%)71. However, the addition of PRS and
mammographic density and exogenous hormone use identi�ed 6.6% at elevated risk71. In another study, Hsieh et al showed that PRS enhanced the
discriminatory ability of the non-genetic model and �agged more breast cancer cases as high-risk72. In a scenario where breast cancer screening in the
UK is adapted to screen women aged 35 to 79 years based on PRS rather than age alone, it is anticipated that the proportion of women eligible for
screening may be decreased by 24%, resulting in a 14% reduction in screen-detectable cases73.

An issue that emerged from this analysis is the large number of women considered high-risk by PRS and the Gail model. All breast cancer cases would
be detected if all women were considered high risk, which defeats the aim of risk strati�cation. We thus assigned weights to individual risk assessment
tools and found that the discriminatory value improved (95%CI of the AUCs did not overlap). However, the threshold for what is considered high risk will
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ultimately depend on the healthcare resources available in each country. In addition, randomised trials, preferably with breast cancer mortality as the
outcome, would be needed to establish the bene�t of risk strati�cation.

Another issue is that many women who are considered at high risk may never experience the disease, and many tumors show no alterations in known
breast cancer genes38,74. Each breast-cancer-associated common variant typically accounts for far less than 1% of an individual's risk. The culmination
of GWAS efforts in identifying common variants to date explains no more than 40% of the two-fold familial relative risk for invasive breast cancer75.
Twenty-one percent of breast cancer cases in this study were not �agged as high risk by any of the four risk assessment tools examined.

The UK Biobank sample size offers signi�cant statistical power, well-documented and de�ned data collection processes, and case identi�cation by
linking to national cancer registries. As with any cohort study, the potential for selection bias, such as a healthy volunteer selection bias, cannot be
discounted76. Participants in the UK Biobank are known to be of higher economic status and to have fewer risk factors related to lifestyle77. In addition,
UK Biobank participants may be more health-conscious, have fewer comorbidities, and, among older women, be associated with lower all-cause death
rates than the general population76. Generalizability of our �ndings may be limited to women of European heritage. Limited access to non-genetic risk
factors in the UK Biobank, such as detailed family history, number of breast biopsies, and history of atypical hyperplasia may explain the poor
performance of the Gail model in breast cancer risk strati�cation. Mammographic density, a strong risk factor for breast cancer, is also not available as
a variable for breast cancer risk assessment. As information on breast cancer stage and hormone-receptor subtype is not available in the UK Biobank,
we were unable to subset the analyses by tumor features.

Our �ndings suggest that risk-based breast cancer screening programmes may bene�t from a multi-pronged approach that includes PRS, pathogenic
mutations in breast cancer predisposition genes, family history, and other recognized risk factors. Nonetheless, to be successful, screening programs
require signi�cant health resources, a strong infrastructure, and capability within the country's health care system78. There are other remaining issues
regarding optimal risk thresholds, how participants are informed of risk assessment �ndings, and how future policies may be shaped before the
potential of precision screening for breast cancer is realised.
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Figures

Figure 1

Number of incident invasive breast cancer events by the four risk prediction tools represented in a Venn diagram. The percentages of breast cancer
events in high-risk women are shown within brackets. High-risk women were identi�ed using the following criteria: (i) x-year absolute risk above
threshold as predicted by polygenic risk score (PRS: >0.7% for 2-year absolute risk, respectively), (ii) x-year absolute risk above threshold as predicted by
the Gail model (GAIL: >0.5% for 2-year absolute risk, respectively), (iii) family history of breast cancer (yes, FH), and (iv) carriers of loss-of-function
variants (LoF) in any of the 9 breast cancer predisposition genes (ATM, BARD1, BRCA1, BRCA2, CHEK2, PALB2, RAD51D, RAD51C, and/or TP53).
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Figure 2

Comparison of how different combinations of breast cancer risk assessment tools perform in the UK Biobank (n=246,142 females, median age [IQR]=56
[50 to 63] years). The �gure shows the proportion of individuals �agged as high-risk by different breast cancer risk assessment tools (x-axis) and the
proportion of cases diagnosed within x years identi�ed as high risk (where x is 2, 5, 10 or lifetime, y-axis). Breast cancer polygenic risk score (PRS) was
associated with the highest gain in proportion of breast cancer cases detected in the assessed period compared to the null line, followed by the Gail
model (GAIL), �rst-degree family history of breast cancer (FH), and carriership of loss-of-function variants in high-penetrant breast cancer genes (LoF).
The best-performing combinatorial model (in boxed labels) comprises PRS, FH, and LoF.
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