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Abstract: Global warming has accelerated surface water loss around the world. This study investigates in detail the 
change and attribution of  potential evapotranspiration (PET) across China from 1901 to 2100 by the Hargreaves 
model, based on a 1-km temperature dataset downscaled from the low-spatial-resolution datasets using a Delta 
downscaling framework. Results showed that (1) relative to 1961–1990, PET increased by 0.62% in the historic 
period (1901–2017) and 6.43–12.89% for the future period (2018–2100), suggesting considerable future drying for 
China. Moreover, these increments had strong spatial variations and the largest increases were detected in 
high-elevation regions; (2) PET over entire China demonstrated a nonsignificant upward trend during the historic 
period and significant upward trends for the future period. For each period and GCM, significant upward PET 
trends occupied a much larger percent area than significant downward trends; (3) PET variations during the historic 
period were most sensitive to mean temperature (TMP), while in the future period it was more sensitive to 
maximum temperature (TMX), suggesting a change in the primary sensitivity factor due to global warming; (4) 
minimum temperature (TMN) made the largest contribution (45%) to PET variations during the historic period, 
while TMX had the largest contribution (36–40%) in the future period. Therefore, the primary contributing factor 
might transform from TMN to TMX under climate change; and (5) PET variations exhibited strong spatial 
heterogeneity, detected on fine geographic scales, due to the use of  downscaled dataset. Overall, the results present a 
deep insight for planning coping strategies of  global warming in China. 
 
Keywords: Potential evapotranspiration; Hargreaves model; Delta downscaling framework; Attribution; High spatial resolution; 
China 
 

1  Introduction 

Global warming has become an indisputable fact and has large long-term effects on water resources, plant 

growth, crop yields, and economic behavior (Naumann et al., 2018). Its impacts on water resources are the 

most obvious and extensive, because it can directly and quickly increase surface evaporation (Cook et al., 

2014). Furthermore, global temperatures are projected to continuously increase (IPCC, 2013), which will 

accelerate water loss from Earth’s surface (Aouissi et al., 2016). Potential evapotranspiration (PET), a 

crucial hydrological variable that can quantify the water loss of a region, could be used to calculate actual 

evapotranspiration (Aouissi et al., 2016), plan crop irrigation (Fan et al., 2018), project vegetation 

dynamics (Peng and Li, 2018), and could act as input for ecosystem or hydrological models (Odusanya et 

al., 2019). Therefore, detailed spatiotemporal PET changes and attribution should be investigated to help 

develop sustainable strategies that cope with negative effect of warming in the globe. 

Numerous approaches have been employed to estimate PET, including Budyko (Budyko, 1974), 

Priestley–Taylor (Priestley and Taylor, 1972), Hargreaves (Hargreaves and Samani, 1985), and FAO 

Penman–Monteith (Allen et al., 1998) models. These models have been widely evaluated and employed to 
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study PET variations around the world. Of these, the Hargreaves and FAO Penman–Monteith models have 

generally performed best (Odusanya et al., 2019; Yang et al., 2017; Zhao et al., 2004). However, the 

Hargreaves model is more suitable than the FAO Penman–Monteith model for use in a drier climate and 

for longer time periods (Hargreaves and Allen, 2003; Odusanya et al., 2019).  

Many studies have examined PET attribution using the FAO Penman–Monteith model and discussed the 

relative contributions of wind speed, solar radiation, mean temperature, and vapor pressure (Han et al., 

2018; Ning et al., 2016; Zheng et al., 2009). However, few studies have investigated the specific influences 

of temperatures on PET changes under climate warming. The Hargreaves model adopts monthly minimum, 

maximum, and mean temperatures (TMN, TMX, and TMP, respectively) to calculate PET and thus can 

better attribute long-term PET variations to changes of these temperature variables, which in turn would 

enhance our understanding of how global warming induces surface water loss. Therefore, the Hargreaves 

model should be employed to investigate long-term PET changes and the attribution of such changes to a 

warmer climate. 

Currently, climate data used to calculate PET typically comes from either station observations (Ning et 

al., 2016; Zheng et al., 2009) or proxy climate data (Cook et al., 2014; Yang et al., 2017). Although these 

data can produce reliable and long-term PET results, respectively, they cannot elucidate the detailed spatial 

patterns of PET because of poor weather station density and climatic proxy data spatial resolution 

(e.g., >50 km) (Gao et al., 2018; Harris et al., 2014). In contrast, high-spatial-resolution PET results would 

help develop suitable adaptation and mitigation strategies at sub-regional and even local scales (Giorgi et 

al., 2009; Peng et al., 2017; Peng et al., 2019). Therefore, to generate high-spatial-resolution climate 

datasets containing a long PET time series is very urgent. 

Several studies reported that the Delta downscaling method can be used to generate the 

high-spatial-resolution climate datasets (Brekke et al., 2013; Peng et al., 2017; Wang and Chen, 2014). 

This method employs a low-spatial-resolution monthly time series and high-spatial-resolution reference 

climatology as inputs; the latter helped draw a fine-scale pattern of the climate that considered 

topographical effects (Mosier et al., 2014; Peng et al., 2017). The resulting downscaled dataset exhibited 

higher accuracy than raw datasets because of its ability to resolve topographical effects (Peng et al., 2018).  

To date, many investigations regarding PET have been completed for China. However, these studies 

were conducted using datasets based on low-density weather stations with short time series (Chang et al., 

2019; Jiang et al., 2019; Li et al., 2019; Liu et al., 2019; Xu et al., 2019) or climatic proxy data with low 

spatial resolution (Chai et al., 2018; Tian et al., 2018; Wang et al., 2019). Limited knowledge on the 

detailed spatial patterns of PET over China impedes the development of sustainable strategies to adapt and 

mitigate the climatic warming of China. Further, little work concern to the detailed contributions of 

temperature changes to long-term PET variations, leaving a gap how climatic warming influences potential 

water loss across the China. 

Current work studied the changes and attribution of long-term PET in China. Specifically, the Delta 

downscaling framework and Hargreaves model were employed to generate high-spatial-resolution 

temperature time series and calculate PET for China, respectively. First, monthly TMN, TMX, and TMP 

with 0.5’ from January 1901 to December 2100 were generated based on climatic proxy data with 30’. 

Next, the downscaled temperatures and calculated PET were compared to observations. Spatiotemporal 

changes and trends in annual PET during 1901–2100 were then analyzed over China. Finally, the 

sensitivities and contributions of TMN, TMX, and TMP changes on annual PET variations over China 

were assessed.  
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2  Material and methods 

2.1  Data acquisition and process 

This study used the Climatic Research Unit (CRU) TS v. 4.02 datasets (Harris et al., 2014) and CMIP5 

datasets simulated by 27 general circulation models (GCMs) (Reclamation, 2013) with 30’ (approximately 

55 km) as the climatic proxy data, including monthly TMN, TMX, and TMP. These two datasets are global 

and have been widely employed to study climate change. Currently, the CRU covers a period of 1901–

2017, while CMIP5 has data for 1950–2100 under several representative concentration pathway (RCP) 

scenarios. For generating high-spatial-resolution climate dataset based on these two datasets, the dataset 

with 0.5’ (approximately 1 km) obtained from the WorldClim v. 2.0 was seen as the reference data. The 

reference dataset has mean monthly data for 1970–2000 and includes orographic effects and observed 

monthly climate information (Fick and Hijmans, 2017).  

The Delta method was employed to downscale the CRU and CMIP5 temperature data to 1-km 

temperature dataset over China. The produces of Delta spatial downscaling have been described in Peng et 

al. (2019). The new temperature dataset covers two periods, i.e., the historical period (1901–2017) and 

future period (2018–2100) under the RCP2.6, RCP4.5, and RCP8.5 scenarios. The temperature from 27 

GCMs during 1950–2005 periods was also downscaled, which was used to to select the best GCMs for 

temperature projections through comparing with the observations. This study employed the three best 

GCMs to downscale future temperatures and calculate PET, which may reduce the uncertainty of future 

PET changes in GCMs. 

Monthly observed TMN, TMX, and TMP data during 1951–2016 and from 745 national weather 

stations (Fig. 1) was downloaded from the National Meteorological Information Center of China 

(http://data.cma.cn/en), for evaluating the accuracy of downscaled data. In addition, the monthly mean 

observed pan evaporation from 1981 to 2010 were obtained from 1795 national weather stations across 

China (Fig. 1); this dataset was used to validate the calculated PET. 

 

Fig. 1  National weather stations for observing temperatures and pan evaporation over China. 
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2.2  Calculating PET 

This study employed the Hargreaves model (Hargreaves and Samani, 1985) to calculate monthly PET 

based on downscaled 0.5’ monthly temperature data. Monthly PET (mm) is calculated as: 

!"# = 0.0023 × Ra × (TMP + 17.8) ×	(TMX− TMN)!.#                   (1) 

where Ra is monthly theoretical insolation (mm) (Allen et al., 1998), which is calculated using the solar 

constant, latitude, solar decimation, and day number. The unit of temperature is degrees Celsius (°C). 

2.3  Evaluating downscaled temperatures and PET 

To evaluate the 0.5’ downscaled temperatures, this study employed mean absolute error (MAE), the Nash–

Sutcliffe efficiency coefficient (NSE), and root mean square error (RMSE) as followings: 

             MAE = $

%
∑ |!& − 3&|%
&'$                                 (2) 

                RMSE = 6$

%
∑ (!& − 3&)(%
&'$                               (3) 

                 NSE = 1 − ∑ (+!,-!)
"#

!$%

∑ (-!,-/)
"#

!$%

                                 (4) 

where Pi is the raw/downscaled value, Oi is the observed value, and n is the number of observations. After 

evaluating the downscaled values for the 27 GCMs during 1950–2005, the three best GCMs were chosen 

to project downscaled temperatures over China. 

  In addition, this study used mean monthly observations of pan evaporation during the 1981–2010 period 

to compare to the calculated PET values. Linear statistic relationships were established for each season to 

reduce the influence of seasonality on PET. 

2.4  Analyzing PET trends 

To detect PET trends, the linear regression relationship between annual PET and time was established at 

each grid point over China, using: 

                 !"# = 9 + ; × <=9>                                  (5) 

where b represents the annual trend of PET during a period. We used b/10 for long-term PET trends 

(mm/decade). Trends were deemed significant at the 95% confidence level. 

2.5  Attributing PET changes 

Following the Hargreaves model (Eq. 1), PET is a function of Ra, TMP, TMX, and TMN, and can be 

expressed as:  

            !"# = ?(@0 , #B!, #BC, #BD)                             (6) 

  The sensitivity of PET to an independent variable x was calculated from the derivative of PET with 

respect to x (EPET/Ex). To compare the sensitivity of factors in Eq. 6, the partial derivative was 

transformed into a non-dimensional form (McCuen, 1974): 

              F(G&) = 1+23

14!
× 4!

+23
                                   (7) 

where S(xi) is the sensitivity coefficient of climatic factor xi. According to Eq. (1), the sensitivity 

coefficient for Ra is equal to 1. A positive sensitivity coefficient indicated that PET increases with the 

magnitude of the associated climatic factor, and vice versa. 

  PET variations stimulated by a climatic factor were calculated through multiplying the long-term trend 

of the factor by its sensitivity coefficient (Ning et al., 2016). Accordingly, the contribution of climatic 

factors on PET changes was calculated using the following differential equation (Zheng et al., 2009): 

      
5+23

56
= 1+23

17&

57&

56
+ 1+23

138+

538+

56
+ 1+23

1389

5389

56
+ 1+23

138:

538:

56
                     (8) 
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More simply:  

    TR;<= = H!"# HI =⁄ K(@0) + K(#B!) + K(#BC) + K(#BD)                 (9) 

where TRPET is the long-term PET trend; C(Ra), C(TMP), C(TMX), and C(TMN) are the contributions of Ra, 

TMP, TMX, and TMN changes on the long-term PET trend, respectively. In addition, the long-term trend of 

each climatic factor was calculated similarly to Eq. (5). Because Ra in Eq. (1) is a theoretical solar 

radiation, it is a constant on annual timescales for each grid point over China. Thus, the contribution of 

solar radiation on annual PET variations = 0, according to the Hargreaves model. To evaluate the 

robustness of the calculation, we compared the total contributions in Eq. (9) with the PET trend calculated 

in Eq. (5). Furthermore, the proportional absolute contribution of each climate factor was estimated as: 

                   p(G) = |?(4)|

|?(38+)|@|?(389)|@|?(38:)|
× 100%                         (10) 

where p(x) is the relative percent contribution of climatic factor x (i.e., TMP, TMX, and TMN), and ranges 

from 0 to 1. 

3 Results 

3.1 Accuracy of downscaled temperatures and calculated PET 

Table 1 presents the comparisons between raw/downscaled and observed temperatures. Results showed 

that (1) compared with the raw temperatures, the downscaled temperatures had lower MAE and RMSE and 

higher NSE; (2) downscaled CRU temperatures had lower bias than downscaled GCMs temperatures; and 

(3) of 27 GCMs, downscaled temperatures from GFDL-ESM2M, CESM1-CAM5, and BNU-ESM 

performed best. We can therefore conclude that the Delta method has good performance in downscaling 

and correcting CRU and GCM temperatures and the best three GCMs could project future temperatures for 

China. Fig. 2 compares calculated and observed seasonal PET. Overall, PET values calculated from 

downscaled CRU temperatures are close to observed values. This indicated that the Hargreaves model 

could calculate PET across China. Therefore, we could adopt the downscaled temperatures generated from 

the CRU, and three GCMs, and the Hargreaves model to assess and attribute long-term PET variations 

over China. 
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Table 1 Comparisons between raw/downscaled and observed monthly TMN, TMP, and TMX. 

 Monthly TMN (°C)  Monthly TMP (°C)  Monthly TMX (°C) 

 Raw values Downscaled values  Raw values Downscaled values  Raw values Downscaled values 

 MAE RMSE NSE MAE RMSE NSE  MAE RMSE NSE MAE RMSE NSE  MAE RMSE NSE MAE RMSE NSE 

CRU 1.624 1.893 0.891 1.143 1.372 0.961  1.384  1.539  0.871  0.842 1.006 0.974  1.882  2.355  0.737  1.224 1.447 0.923  

ACCESS1.0 2.206  2.667  0.857  1.828  2.313  0.928   2.110  2.562  0.858  1.692  2.151  0.939   2.586  3.119  0.762  2.255  2.822  0.843  

BCC-CSM1.1 2.202  2.660  0.856  1.862  2.343  0.915   2.112  2.564  0.856  1.694  2.155  0.931   2.590  3.123  0.761  2.286  2.858  0.830  

BCC-CSM1.1(m) 2.201  2.656  0.857  1.865  2.341  0.918   2.108  2.561  0.857  1.686  2.147  0.936   2.592  3.125  0.761  2.301  2.870  0.827  

BNU-ESM 2.185  2.636  0.859  1.815  2.286  0.934   2.098  2.539  0.859  1.669  2.116  0.942   2.567  3.089  0.765  2.235  2.791  0.847  

CanESM2 2.179  2.636  0.858  1.807  2.287  0.933   2.098  2.546  0.858  1.669  2.128  0.940   2.580  3.110  0.763  2.259  2.824  0.840  

CESM1-BGC 2.208  2.664  0.857  1.866  2.348  0.915   2.128  2.580  0.856  1.706  2.162  0.928   2.606  3.147  0.760  2.301  2.877  0.827  

CESM1-CAM5 2.178  2.633  0.859  1.807  2.286  0.935   2.092  2.544  0.859  1.663  2.125  0.941   2.584  3.111  0.763  2.245  2.810  0.842  

CMCC-CM 2.202  2.656  0.857  1.837  2.317  0.925   2.116  2.568  0.857  1.708  2.171  0.928   2.603  3.142  0.760  2.302  2.880  0.820  

CNRM-CM5 2.218  2.682  0.856  1.848  2.332  0.924   2.134  2.589  0.856  1.733  2.195  0.924   2.622  3.160  0.759  2.308  2.882  0.827  

CSIRO-Mk3.6.0 2.198  2.649  0.858  1.830  2.303  0.931   2.119  2.564  0.857  1.710  2.169  0.934   2.618  3.144  0.760  2.290  2.849  0.832  

EC-EARTH 2.199  2.662  0.857  1.854  2.336  0.919   2.118  2.575  0.857  1.706  2.172  0.929   2.606  3.150  0.761  2.313  2.890  0.824  

FIO-ESM 2.205  2.675  0.857  1.868  2.359  0.918   2.128  2.593  0.857  1.711  2.181  0.932   2.614  3.163  0.761  2.329  2.912  0.822  

GFDL-CM3 2.229  2.702  0.854  1.854  2.347  0.920   2.123  2.588  0.855  1.715  2.197  0.926   2.596  3.137  0.760  2.238  2.820  0.847  

GFDL-ESM2G 2.190  2.640  0.858  1.817  2.292  0.931   2.102  2.547  0.858  1.675  2.125  0.939   2.583  3.115  0.763  2.282  2.852  0.826  

GFDL-ESM2M 2.191  2.641  0.858  1.814  2.286  0.932   2.093  2.537  0.858  1.672  2.127  0.939   2.564  3.084  0.763  2.234  2.788  0.844  

GISS-E2-H-CC 2.200  2.663  0.858  1.846  2.331  0.921   2.121  2.584  0.857  1.716  2.191  0.924   2.606  3.150  0.760  2.292  2.876  0.825  

GISS-E2-R 2.202  2.669  0.856  1.842  2.338  0.923   2.124  2.590  0.855  1.704  2.176  0.932   2.611  3.165  0.759  2.300  2.888  0.831  

GISS-E2-R-CC 2.215  2.671  0.855  1.833  2.318  0.926   2.113  2.562  0.856  1.686  2.143  0.937   2.582  3.111  0.762  2.235  2.796  0.845  

HadCM3 2.213  2.672  0.856  1.841  2.330  0.925   2.127  2.583  0.856  1.719  2.189  0.926   2.611  3.146  0.759  2.281  2.852  0.838  

INMCM4 2.222  2.686  0.856  1.878  2.361  0.915   2.132  2.590  0.857  1.720  2.184  0.930   2.593  3.130  0.764  2.289  2.856  0.831  

IPSL-CM5A-LR 2.228  2.704  0.855  1.883  2.381  0.913   2.128  2.595  0.856  1.723  2.199  0.923   2.594  3.127  0.762  2.280  2.844  0.834  

MIROC4h 2.175  2.636  0.858  1.833  2.314  0.923   2.098  2.553  0.858  1.677  2.139  0.939   2.585  3.124  0.762  2.288  2.854  0.836  

MIROC5 2.209  2.659  0.856  1.822  2.294  0.933   2.121  2.571  0.856  1.700  2.164  0.931   2.617  3.150  0.758  2.253  2.820  0.847  
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MIROC-ESM 2.228  2.694  0.855  1.871  2.353  0.917   2.135  2.599  0.855  1.737  2.212  0.921   2.618  3.168  0.758  2.308  2.893  0.819  

MIROC-ESM-CHEM 2.231  2.715  0.854  1.890  2.396  0.910   2.152  2.632  0.853  1.749  2.236  0.919   2.631  3.191  0.757  2.340  2.936  0.817  

MRI-CGCM3 2.229  2.698  0.855  1.882  2.373  0.914   2.147  2.619  0.853  1.736  2.220  0.921   2.633  3.188  0.755  2.307  2.900  0.829  

NorESM1-M 2.190  2.643  0.858  1.828  2.302  0.927   2.104  2.551  0.857  1.674  2.126  0.939   2.589  3.116  0.761  2.257  2.817  0.840  
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Fig. 2  Comparison of calculated (y) and observed (x) PET at seasonal scale during 1981–2010 over 1795 national weather 

stations. The calculated PET was obtained according to the downscaled CRU temperatures. 

3.2  Spatiotemporal changes of annual PET 

Fig. 3 shows annual PET change from 1901 to 2100 over all of China. Compared to the base period (1961–

1990), PET exhibited a slight (0.62%) increase for the historic period (1901–2017). For the future period 

(2018–2100), PET increased by 6.43, 8.47, and 12.89% for RCP2.6, 4.5, and 8.5, respectively. The 

increase in the historic period was non-significant, while significant upward trends were detected for the 

future period with 2.45, 8.64, and 22.0 mm/decade under RCP2.6, 4.5, and 8.5, respectively.  
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Fig. 3  Annual PET change over entire China during 1901–2100 with the 1961–1990 period as base. 1901–2017 and 2018–

2100 are the historic and future periods, respectively. 

Figs. 4 and 5 show spatial patterns of PET changes during the historic and future periods, and standard 

errors introduced by the three best GCMs are presented in Figs. S1 and S2. Compared to the historic period, 

PET exhibited large projected changes in the future period and its subperiods. For each RCP and each 

future period, the intense PET change was detected in the high-altitude areas such as the Tibetan Plateau, 

Tianshan Mountains, Aertai Mountains, and Qilian Mountains. The region with the smallest PET change 

was southern China (e.g., Hainan and Taiwan Islands).  
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Fig. 4  Averaged PET changes during the (1901–2017) and future (2018–2100) periods with 1961–1990 as the base. 

 

 

Fig. 5  Averaged PET changes during future sub-periods, with 1961–1990 as base. 
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Table 2 presents the statistical information for each spatial pattern in Figs. 4 and 5. The results indicated 

that (1) PET changes in the historic and future periods increased by 0.66% and 7.1–14.24%, respectively, 

relative to the base period. This is similar to the PET changes over all of China (Fig. 3); (2) under each 

RCP, PET increased with time; and (3) PET increased more with each higher emission scenario in the 

future periods except 2018–2040. The coefficient of variation indicated that although the historic period 

had lower standard deviation (0.70%) than the future periods (2.81–8.78%), the historic period had larger 

spatial variation (106.06%) than future periods (37.58–50.87%). However, the difference between 

maximum and minimum showed that the future period had more extreme spatial variation (380.55–

803.66%) than the historic period (38.38%), especially in 2071–2100 under RCP8.5 (1216.47%). 
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Table 2  Statistical information of PET change (%) for historic and future periods relative to 1961–1990. 

 1901-2017 2018-2040 2041-2070 2071-2100 2018-2100 

RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 

Min -8.88 -1.75 -13.86 -29.96 0.46 1.69 3.42 -0.66 3.03 3.89 0.44 1.78 3.76 

Max 29.50 322.52 308.41 352.47 401.34 554.66 759.68 408.66 659.16 1220.36 380.99 519.74 807.42 

Mean 0.66 6.03 5.95 6.86 7.62 9.93 12.96 7.69 11.69 21.51 7.10 9.41 14.24 

Std 0.70 2.81 2.97 3.49 3.32 4.50 5.49 2.89 4.94 8.78 3.00 4.16 6.05 

CV (%) 106.06  46.60  49.92  50.87  43.57  45.32  42.36  37.58  42.26  40.82  42.25  44.21  42.49  

Note: Min, Max, Mean, Std, and CV represent the minimum, maximum, mean, standard deviation, and coefficient of variation, respectively.  

 

 

Table 3  Statistical information of annual PET trend (mm/decade) in the historic and future periods. 

 1901-2017 2018-2100 

BNU-ESM CESM1-CAM5 GFDL-ESM2M 

RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 

 ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ 

Min 0.14  0.24  1.38  0.58  – 1.00  2.90   2.48  – 0.33  – 0.68  – 1.31  0.61  1.19  1.70  0.55  3.66   1.35  

Max 13.93 6.15  16.10 15.68  – 22.09  22.37 44.14  – 9.25  – 23.20  – 37.82  9.46 9.03  19.73 23.54  5.64 37.34  

Mean 3.48  2.33  5.01  4.15  – 9.10  10.57  23.06  – 5.11  – 11.74  – 25.47  2.77  4.45  6.04  5.90  4.55  17.43  

Std 1.12  0.96  2.94 1.54  – 2.93  4.92  5.91  – 1.49  – 2.93  – 4.10  0.94  1.21  3.37  1.89  0.57  3.68 

CV (%) 34.48  41.29  58.72 37.05  – 32.14  46.52  25.63  – 29.16  – 24.98  – 16.11  33.95  27.16  55.77  31.93  12.52  21.09 

PA (%) 15.14  40.67  1.19  37.52  – 94.34  0.20  99.62  – 78.30  – 99.99  – 99.99  1.90  21.03  0.94  90.17  <0.01  99.94  

Note: PA represents the percent area. ↑and↓ represent significant increasing and decreasing trends at the 95% significance level, respectively. – show that significant trend has been not detected. 
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3.3  Spatiotemporal trends of annual PET 

Figs. 6 and 7 present the spatial distributions of annual PET trends and their significance, while Table 3 

lists the statistical information of the zones with significant trends across China. Because future PET trends 

in GCMs had large spatial differences, results are independently presented for BNU-ESM, CESM1-CAM5, 

and GFDL-ESM2M. Overall, the annual PET trends varied with the future RCP scenarios, GCMs, and 

study periods. Moreover, for each period and GCM, the percent area of significant increase trend was 

greater than that of decrease trend. Specifically, during historical period, significantly upward and 

downward trends were detected, with mean values of 3.48 and 2.33 mm/decade and percent areas of 15.14 

and 40.67%, respectively. Based on average of three best GCMs, future period had both significantly 

upward and downward trends, with mean values of 3.89±0.79 mm/decade and 4.57±0.23 mm/decade under 

RCP2.6, 6.04 mm/decade and 8.91±1.38 mm/decade under RCP4.5, and 7.56±2.13 mm/decade and 

21.99±1.95 mm/decade under RCP8.5. Besides, they had percent areas of 1.55±0.25% and 45.62±13.90% 

under RCP2.6, 0.94% and 94.83±2.32% under RCP4.5, and 0.20% and 99.85±0.09% under RCP8.5. 

Moreover, the significant positive trend in the future period was larger for each higher emission scenario in 

each GCM.  
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Fig. 6  Trend magnitude of yearly PET during 1901–2017 and 2018–2100. 
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Fig. 7  Trend significance of yearly PET during 1901–2017 and 2018–2100. 

The coefficient of variation showed that under RCP2.6 the BNU-ESM trend had the largest spatial 

variation (58.72%), while the smallest was detected from GFDL-ESM2M under RCP8.5 (12.52%). The 

BNU-ESM and GFDL-ESM2M trends under RCP8.5 showed the most extreme (41.66 mm/decade) and 

moderate (1.98 mm/decade) spatial variations, respectively. Moreover, spatial distributions of annual PET 

trends and their significance for future sub-periods were showed in the Figs. S3–S8 and Tables S1–S3. 

3.4  Attribution of annual PET change 

Fig. 8 maps the spatial patterns of TMN, TMP, and TMX sensitivity coefficients on annual PET variations 

from 1901–2100 and their standard errors are shown in Fig. S9. Results indicated that (1) for each 

temperature, sensitivity coefficients in historic and future periods were quite spatially similar; and (2) 

positive and negative TMN sensitivity coefficients were mainly distributed over high-elevation regions 

(e.g., Tibetan Plateau, Tianshan Mountains, Aertai Mountains, Qilian Mountains, and northeast China) and 

low-elevation regions (e.g., Tarim Basin, center and south of China), respectively. The opposite 

distribution was observed for TMX and TMP.  
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Fig. 8  Sensitivity coefficients of minimum, maximum, and mean temperatures on PET variations during historic and future 

periods. 
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Table 4  Spatial characteristics of sensitivity coefficients of minimum, maximum, and mean temperatures (TMN, TMX, and TMP) on PET variations in the historic and future periods. 

 1901-2017 2018-2100 

RCP2.6  RCP4.5 RCP8.5 

TMN TMX TMP TMN TMX TMP TMN TMX TMP TMN TMX TMP 

Min -2.53 -22.58 -119.92 -2.72 -18.07 -39.87 -2.91 -17.91 -27.40 -4.20 -13.62 -19.11 

Max 23.07 3.03 0.59 18.57 3.22 0.60 18.41 3.41 0.60 14.12 4.70 0.61 

Mean -0.11 0.61 -0.82 -0.17 0.67 -0.52 -0.19 0.69 -0.43 -0.24 0.74 -0.26 

Std 0.44 0.44 1.58 0.47 0.47 1.33 0.47 0.47 1.28 0.48 0.48 1.06 

CV (%) 400.00  72.13  192.68  276.47  70.15  255.77  247.37  68.12  297.67  200.00  64.86  407.69  

Note: Min, Max, Mean, Std, and CV represent the minimum, maximum, mean, standard deviation, and coefficient of variation, respectively.  

 

Table 5  Spatial characteristics of contributions (mm/decade) of minimum, maximum, and mean temperatures (TMN, TMX, and TMP) on annual PET variations in the historic and future 

periods. The values in the brackets are the spatial statistic information on the absolute percent contribution of the temperature. 

 1901-2017 2018-2100 

RCP2.6  RCP4.5 RCP8.5 

TMN TMX TMP TMN TMX TMP TMN TMX TMP TMN TMX TMP 

Min -15.31 (0%) -2.78 (0%) -0.45(0%) -9.15 (0%) -2.22 (0%) -0.49(5%) -22.76 (0%) -4.69 (0%) 0.81 (8%) -50.52 (0%) -9.74 (0%) 2.44 (8%) 

Max 3.76 (96%) 13.60 (99%) 7.21(100%) 1.71(64%) 8.90 (73%) 4.12(99%) 3.87(49%) 26.24 (53%) 12.72 (99%) 9.40 (46%) 55.40 (49%) 29.46 (99%) 

Mean -4.83 (45%) 2.57(23%) 3.33(32%) -1.91(31%) 2.70(40%) 1.60 (29%) -9.14(33%) 10.57 (37%) 7.53 (30%) -26.00 (35%) 27.42 (36%) 20.00 (29%) 

Std 2.71 (11%) 1.71(9%) 1.70 (11%) 1.62(7%) 2.15(10%) 0.71 (9%) 3.47(5%) 4.78 (6%) 1.12(9%) 7.34 (4%) 9.02(6%) 3.11 (9%) 

CV (%) 56.11 

(24.44%) 

66.54 

(39.13%) 

51.05 

34.38%) 

84.82 

(22.58%) 

79.63 

(25.00%) 

44.38 

(31.03%) 

37.96 

(15.15%) 

45.22 

(16.22%) 

14.87 

(30.00%) 

28.23 

(11.43%) 

32.90 

(16.67%) 

15.55 

(31.03%) 

Note: Min, Max, Mean, Std, and CV represent the minimum, maximum, mean, standard deviation, and coefficient of variation, respectively. 
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Table 4 lists corresponding geographic statistical information for the sensitivity coefficients. Results 

indicated that (1) the Mean of sensitivity coefficients for TMN and TMP were negative, ranging from -0.11 

to -0.24 and -0.26 to -0.82, respectively. This suggested decreasing PET with increasing TMN and TMP. 

However, TMX exhibited the opposite results, because its mean ranged from 0.61 to 0.74; (2) the absolute 

Mean for TMN and TMX increased from historic to future periods, while it decreased for TMP. Meanwhile, 

the absolute Means for TMP (-0.82) and TMX (0.67 under RCP2.6, 0.69 under RCP4.5, and 0.74 under 

RCP8.5) were the largest in the historic and future periods, respectively, This suggests a transformation in 

the primary sensitivity factor on PET variations under future warming; and (3) in the future period, the 

absolute Mean for TMN and TMX increased with higher emission scenarios, but decreased for TMP. 

According to Eq. (1) and (7), the sensitivity coefficient of Ra = 1 at each grid point over China, suggesting 

that a 10% increase in Ra would induce a 10% PET increase. Compared to temperature, PET was overall 

more sensitive to solar radiation. However, the Min, Max, Std, and CV results in Table 4 suggested that 

PET was more sensitive to temperatures than solar radiation in some regions, such as southern China, for 

TMN and TMX, and the Tibetan Plateau, Tianshan Mountains, Aertai Mountains, Qilian Mountains, and 

northeast of China for TMP (Fig. 8). 

To further investigate the influences of temperatures on annual PET variations, the contribution of each 

temperature was analyzed. To validate the rationality of this method, we compared the total contributions 

of temperatures and the actual PET trend (Fig. 9); results showed good statistical consistency between 

them during the historic and future periods.  

Fig. 10 maps spatial patterns of the contributions of TMN, TMX, and TMP on annual PET variations 

and their standard errors are showed in Fig. S10, while Table 5 lists the corresponding statistical 

information. Overall, the contribution of each temperature on annual PET variations was different from its 

sensitivity coefficient due to the incorporation of its trend. Statistics indicated that (1) a positive 

contribution was detected in the Mean for TMX and TMP for historic and future periods, ranging from 

2.57 mm/decade to 27.42 mm/decade and from 1.60 mm/decade to 20.00 mm/decade, respectively. In 

contrast, a negative contribution was observed for TMN, ranging from -1.91 mm/decade to -26.00 

mm/decade; (2) TMN had the largest contribution (-4.83 mm/decade, 45%) in the historic period, followed 

by TMP (3.33 mm/decade, 32%) and TMX (2.57 mm/decade, 23%). However, TMX had the largest 

contribution (ranging from 2.70 to 27.42 mm/decade, from 40% to 36%) in the future under each RCP, 

followed by TMN (ranging from -1.91 to -26.00 mm/decade, from 31% to 35%) and TMP (ranging from 

1.60 to 20.00 mm/decade, from 29% to 30%); and (3) with higher emission scenarios, the negative 

contribution for TMN and positive contribution for TMX and TMP both increased. The Min, Max, Std, and 

CV in Table 5 suggested that there were large spatial variations for the contributions of these temperatures. 

However, the CV in Tables 4 and 5 revealed that the sensitivity of each temperature was greater than its 

contribution. In addition, because Ra in Eq. 1 is constant on annual timescales. Therefore, the actual annual 

PET variation was completely controlled by the aforementioned temperature variations. 

Fig. 11 maps spatial patterns of the dominant temperature contribution on annual PET variations during 

historic and future periods, based on Eq. (10). Results indicated that (1) for both historic and future periods, 

high-elevation PET variations were dominated by TMP; and (2) low-elevation PET changes were primarily 

associated with TMX and TMN for the historic period, but TMX in the future period.  
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Fig. 9  Comparisons of actual PET trends (x) and total contributions (y) of three temperatures on PET variations during 

historic and future periods. 
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Fig. 10  Contributions of minimum, maximum, and mean temperatures on annual PET variations. 
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Fig. 11  Dominant contribution factors on annual PET variations during historic and future periods. The red, green, and 

blue synthesis was performed on the stretched relative percent contributions of maximum, mean, and minimum temperatures 

(TMX, TMP, and TMN). 

4  Discussion 

Although numerous work have studied PET changes, trends, and attribution in China, they typically used 

low-density weather station or low-spatial-resolution climatic proxy data (Chai et al., 2018; Chang et al., 

2019; Jiang et al., 2019; Li et al., 2019; Liu et al., 2019; Tian et al., 2018; Wang et al., 2019; Xu et al., 

2019). Moreover, they often employed the FAO Penman–Monteith model to attribute PET variations to 

wind speed, solar radiation, TMP, and vapor pressure (Han et al., 2018; Ning et al., 2016; Zheng et al., 

2009). These approaches may limit understanding of PET variations at fine geographic scales and the 

detailed attribution of temperatures on PET changes as a result of climate change. This study investigated 

the detailed changes, trends, and attribution (including TMN, TMX, and TMP) of PET across China from 

1901 to 2100, based on a 1-km temperature dataset downscaled from CRU and CMIP5 GCMs using the 

Delta downscaling framework and Hargreaves model. The results can help plan coping strategies of the 

global warming in China. 

The PET change over China in each period relative to the base period exhibits strong spatiotemporal 

variability (Figs. 3–5 and Table 2). Although PET increased only slightly (0.62%) for the 1901–2017 

historical period, there were much larger increases (6.43–12.89%) for the 2018–2100 future period. These 

PET increases over all of China were induced by ongoing global warming (Cook et al., 2014). In general, 

PET increased more in high-elevation regions than low-elevation regions. This is because temperature 

increases in high-elevation regions were greater than those in low-elevation regions (Peng et al., 2017).  

PET trends and associated significance exhibited strong spatiotemporal variability over China during 
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each time period (Figs. 6–7 and S3–S8, Tables 3 and S1–S3). Overall, significant increasing and 

decreasing trends were observed across different regions of China. However, the PA of the former was 

much greater than the latter, for each period and GCM. Chen and Frauenfeld (2014) reported that 

precipitation by the end of the century (2071–2100) would increase by 6% (5 mm/decade) under RCP2.6, 

12% (11 mm/decade) under RCP4.5, and 16% (15 mm/decade) under RCP8.5. For the same period, we 

projected PET increases of 7.69% (12.83 mm/decade) under RCP2.6, 11.69% (17.13 mm/decade) under 

RCP4.5, and 21.51% (26.65 mm/decade) under RCP8.5 (Tables 2 and S3). This suggested that water loss 

over China may be accelerated in the future, which would threaten food and ecological security of this 

region. Moreover, the PET changes and trends showed deep spatial heterogeneity, suggesting that coping 

strategies should be planned at small geographic scale. 

Current work attributed PET variations to temperatures (Figs. 8–11 and Tables 4–5), based on the 

Hargreaves model. The sensitivity analysis indicated that PET variations were more sensitive to TMP 

(-0.82), followed by TMX (0.61) and TMN (-0.11) in the historic period. In the future period, PET was 

more sensitive to TMX (from 0.67 to 0.74), followed by TMP (from -0.52 to -0.26) and TMN (from -0.24 

to -0.17). Therefore, the main sensitivity factor on PET variations over China would transform from TMP 

to TMX and from negative to positive under global warming. However, the spatial pattern of each 

temperature’s sensitivity would remain stable between the historic and future periods. The contribution 

analysis indicated that TMN had the largest contribution (45%) on PET variations during the historic 

period, followed by TMP (32%) and TMX (23%). In the future period, TMX had the largest contribution 

(36–40%), followed by TMN (31–35%) and TMP (29–30%). Therefore, the main contributing factor on 

PET variations over China will transform from TMN to TMX under climate change.  

The above results allow us to infer that (1) in the historic period, although the PET was most sensitive to 

TMP over China, TMN had the largest contribution to PET variations; and (2) future PET was most 

sensitive to TMX, which also had the largest contribution to future PET variations. However, the primary 

temperature contributor varied widely spatially, as TMP and TMX was dominant in high- and 

low-elevation regions, respectively (Fig. 11). In addition, although the total contributions of temperatures 

were close to the actual PET trend for each period, they were not an exact match (Fig. 9). Such differences 

were also detected by other studies (Ning et al., 2016; Zheng et al., 2009), and may be due to the fact that 

only a first-order differential equation was used to calculate contributions. In other words, non-linear 

interactions among climatic factors may also impact PET variations (Ning et al., 2016). Our future work 

will involve reducing uncertainties and improving the accuracy of resolved temperature contributions. 

To cut down uncertainty of future temperature data (Hawkins and Sutton, 2011; Ning and Bradley, 2015; 

Ning and Bradley, 2016), this study evaluated 27 GCMs by comparing historic downscaled temperatures 

from GCM and observations. The three best GCMs (i.e., GFDL-ESM2M, CESM1-CAM5, and BNU-ESM) 

were selected to downscale future temperatures. However, Wang and Chen (2014) downscaled raw GCMs 

dataset to a higher spatial resolution over China and reported that EC-EARTH, with the smallest MAE (> 

2.0 °C), performed best to generate future monthly TMP across China. Moreover, the aforementioned four 

GCMs were evaluated in this and their studies; our study represented lower MAE (1.66 °C) than Wang and 

Chen (2014). These differences are because our study adopted high-spatial-resolution reference 

climatology to generate the temperature and surface observations to evaluate the downscaled results. 

Overall, spatial uncertainty for climate change investigations can reduce result accuracy. Accordingly, this 

study highlighted the spatial heterogeneity of climate change and the associated development of 

sustainable strategies on fine spatial scales. 
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Figures

Figure 1

National weather stations for observing temperatures and pan evaporation over China. Note: The
designations employed and the presentation of the material on this map do not imply the expression of
any opinion whatsoever on the part of Research Square concerning the legal status of any country,
territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This
map has been provided by the authors.



Figure 2

Comparison of calculated (y) and observed (x) PET at seasonal scale during 1981–2010 over 1795
national weather stations. The calculated PET was obtained according to the downscaled CRU
temperatures.



Figure 3

Annual PET change over entire China during 1901–2100 with the 1961–1990 period as base. 1901–2017
and 2018–2100 are the historic and future periods, respectively.



Figure 4

Averaged PET changes during the (1901–2017) and future (2018–2100) periods with 1961–1990 as the
base. Note: The designations employed and the presentation of the material on this map do not imply the
expression of any opinion whatsoever on the part of Research Square concerning the legal status of any
country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or
boundaries. This map has been provided by the authors.



Figure 5

Averaged PET changes during future sub-periods, with 1961–1990 as base. Note: The designations
employed and the presentation of the material on this map do not imply the expression of any opinion
whatsoever on the part of Research Square concerning the legal status of any country, territory, city or
area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been
provided by the authors.



Figure 6

Trend magnitude of yearly PET during 1901–2017 and 2018–2100. Note: The designations employed
and the presentation of the material on this map do not imply the expression of any opinion whatsoever
on the part of Research Square concerning the legal status of any country, territory, city or area or of its
authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by
the authors.



Figure 7

Trend signi�cance of yearly PET during 1901–2017 and 2018–2100. Note: The designations employed
and the presentation of the material on this map do not imply the expression of any opinion whatsoever
on the part of Research Square concerning the legal status of any country, territory, city or area or of its
authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by
the authors.



Figure 8

Sensitivity coe�cients of minimum, maximum, and mean temperatures on PET variations during historic
and future periods. Note: The designations employed and the presentation of the material on this map do
not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal
status of any country, territory, city or area or of its authorities, or concerning the delimitation of its
frontiers or boundaries. This map has been provided by the authors.



Figure 9

Comparisons of actual PET trends (x) and total contributions (y) of three temperatures on PET variations
during historic and future periods.



Figure 10

Contributions of minimum, maximum, and mean temperatures on annual PET variations. Note: The
designations employed and the presentation of the material on this map do not imply the expression of
any opinion whatsoever on the part of Research Square concerning the legal status of any country,
territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This
map has been provided by the authors.



Figure 11

Dominant contribution factors on annual PET variations during historic and future periods. The red,
green, and blue synthesis was performed on the stretched relative percent contributions of maximum,
mean, and minimum temperatures (TMX, TMP, and TMN). Note: The designations employed and the
presentation of the material on this map do not imply the expression of any opinion whatsoever on the
part of Research Square concerning the legal status of any country, territory, city or area or of its
authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by
the authors.
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