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Abstract

Robotic grasping has been widely used in various industries. How to

meet the requirements of grasping accuracy and grasping speed at the

same time is a challenging problem in real-time grasping tasks. In this

paper, aiming at the real-time grasping task in retail warehousing, a

lightweight grasping pose estimation model for retail warehousing is

proposed. The model first uses the Focus module to perform lossless

double downsampling, and learns each feature map of the upper layer

through the dilated convolution block to expand the receptive field;

then, the R-Resblock structure is improved to perform multi-scale fea-

ture fusion, and a lightweight RFB-SE module is designed to enrich

feature information and reduce the number of parameters. Finally, after

upsampling and restoring the image, the grasping quality, grasping angle,

and grasping width of the target are regressed to obtain the optimal

grasping pose of the target item. Experiments are carried out in the

Cornell dataset, Jacquard dataset, and simulation environment respec-

tively. The experimental results show that the method has a grasping

accuracy of 97.8% and a grasping speed of 78FPS on the Cornell
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dataset. The success rate is 91.5%, and the grasping task in a retail

warehouse environment is simulated in grasping simulation experiments.

Keywords: Lightweight grasping,R-Resblock,RFB-SE,Dilated
convolution,V-rep

1 Introduction

Robot grasping is an important way for robots to interact with the environ-
ment. At present, robots have been used in industrial production and service
fields, such as parts assembly, workpiece sorting, and intelligent welding. With
the rapid development of the retail industry, many companies have begun to
develop robots for retail environments. High grasping success rate and grasp-
ing efficiency have always been two key indicators for robotic grasping tasks.
However, grasping tasks in retail environments, such as real-time grasping
and sorting of irregular-shaped items under complex backgrounds, are not
the success rate and real-time performance of grasping has high requirements.
Therefore, how to ensure the grasping accuracy and speed in the real-time
grasping process is still a big challenge in the grasping field.

Robot grasp detection methods can be divided into two categories: analysis-
based methods and data-driven methods. Analysis-based methods use manual
design to extract object features or obtain the best grasping position of the
object based on the 3-D model of the object [1, 2], but it requires the object
to be known and is not suitable for use in an unstructured environment. Data-
driven grasping methods[3] currently mainly use end-to-end methods.

The end-to-end method[4–6] extracts image feature information by con-
structing a neural network and directly obtains the grasping position infor-
mation, which has good performance. Cheng et al. [7] proposed a Randomly
Cropped Ensemble Neural Network (RCE-NN), which solved the detection of
similar overlapping objects but could only detect objects with similar features.
Park et al. [8] used a deep neural network (DNN) to fuse object detection and
grasp detection, but ignored the shape information of the object and lacked a
grasp of grasping angle, making it difficult to achieve effective grasping in com-
plex environments. Zhu et al. [9] proposed a feature pyramid-based grasping
prediction network to complete the uncertainty estimation of network grasping.
Shang et al. [10] combined the grasping pose prediction network and grasp-
ing rectangle detection network to construct a multi-level convolutional neural
network (ML-CNN), which effectively improved the grasping accuracy, but the
number of parameters was too large. Zhang et al. [11] proposed a coarse-to-fine
cascade Faster R-CNN based on multi-scale feature maps to achieve stacked
fruit grasping. Liu et al. [12] developed a structure that combines interactive
exploration with a composite robotic hand for robotic grasping in complex
environments, but deep reinforcement learning methods have high hardware
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requirements and are currently difficult to achieve in industrialized applica-
tions. Chiu et al. [13] fused object detection with image segmentation and used
key points for grasping. Yu et al. [14] integrated the detection segmentation
network with the optimal grasp pose selection network, which can optimize
the grasp pose. The method of object detection and image segmentation can
effectively improve the grasping accuracy, but at present, both object detec-
tion and image segmentation require a large number of parameter operations,
which will lead to the problem of poor real-time detection and high hardware
requirements for deployment in industrial applications. Chen et al. [15] pro-
posed an edge-based grasp detection strategy, which fused low-level features
and convolutional neural networks, but they did not consider depth image
information, resulting in insufficient detection accuracy. Xu et al. [16] proposed
a detection method by key points, which reduces the detection difficulty by
grouping key points. Ruan et al. [17] proposed a novel surface contact model
to parameterize the contact area, thereby evaluating the grasping quality and
improving grasping accuracy.

At present, the research on grasping algorithms mainly focuses on
improving the accuracy, and there are few types of research on lightweight
development aimed at improving the speed. Most of the algorithms have
high requirements on hardware system conditions, so it is difficult to real-
ize industrial production and application. Aiming at grasping accuracy and
grasping speed requirements in a retail environment, this paper proposes a
lightweight grasping pose estimation method for retail warehousing. The main
contributions are as follows:

1) A lightweight grasping detection algorithm (RS-ConvNet) is proposed,
which can make full use of feature information to improve the detection accu-
racy, and at the same time, the number of parameters is lower, which can meet
the requirements of robot grasping accuracy and speed at the same time.

2) A multi-scale fusion R-Resblock module is designed, and a multi-scale
feature segmentation layer is added based on the residual structure, which
can better utilize the features of different scales to optimize the algorithm
performance.

3) A lightweight module RFB-SE is designed to enrich feature information
while reducing the number of parameters. The attention mechanism SE is used
to grasp the learning area and obtain richer and more effective image features.

The structure of this paper is summarized as follows: Section 2 describes
the grasp representation method. In Section 3, a lightweight grasp pose estima-
tion method RS-ConvNet is proposed. Then, the corresponding experimental
verification is carried out in Section 4. Finally, Section 5 presents a summary
and outlook for future work.

2 Problem Statement

In the retail warehousing environment, the robot needs to perform grasping
and handling tasks in complex objects to ensure that the grasping task is
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completed with the best grasping posture, and at the same time, the robot
is required to meet the real-time operation requirements, which requires more
position information to optimize the grasping position of the robotic arm. In
common grasping frameworks, the 5-D grasping pose representation method
is mostly used, and the grasping pose Gr representation method in [18] is used
in this paper. As shown in formula (1):

Gr = (P,Θr, wr, Q) (1)

Where P = (x, y, z) represents the three-dimensional coordinates of the grasp-
ing center point, Θr represents the rotation angle of the gripper around the
positive direction of the x-axis, Wr is the width of the gripper opening, and
Q represents the probability of each pixel in the image, which is a probability
distribution between 0 and 1.

As shown in figure 1, an RGB-D image of size h×w from the Kinect camera,
the grasp pose Gi of the image can be defined as:

Gi = (u, v, θi,Wi, Q) (2)

where (u,v) represents the grasping center in image coordinates, θi is the rota-
tion angle in the image coordinate system,Wi is the grasping width in image
coordinates, and Q has the same meaning as in formula (2).

After obtaining the predicted value in the image coordinate system, the
five-dimensional grasping pose in the image coordinate system can be con-
verted into the robot pose in the end-effector coordinate system through
the robot kinematics analysis, to realize the robot in the retail warehousing
environment object grasping task.

Fig. 1: Schematic diagram of grasping position
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3 Principles and Methods

The robot grasping task needs to establish the relationship between the visual
sensor information and the robot grasping pose. How to quickly and effectively
obtain the best grasping pose is the key to completing the robot grasping task.
Aiming at the above problems, this paper proposes a lightweight grasping
pose estimation method for retail warehousing. As shown in Fig. 2, the image
information obtained by the depth camera is first input into the Focus for
lossless double downsampling, and the dilated convolution is used to expand
the receptive field and learn the rich information in the feature map. After
standard convolution downsampling, the improved R-Resblock module is used
for multi-scale feature fusion, and the lightweight RFB-SE is used to better
grasp the feature information of each scale. Finally, after three upsampling,
the grasping quality evaluation, grasping angle regression, and grasping width
detection are obtained. Through the three kinds of information, the grasping
pose estimation of the robot is finally obtained.

Fig. 2: Robotic grasping network architecture in retail warehousing scenario

3.1 Focus module

Inspired by YOLOv5, the Focus module can cut the input image, obtain a value
for every other pixel, and finally generate four images, which can quadruple the
channel expansion without information loss. If the input channel is an RGB-
D four-channel, it will become 16 channels after passing through the Focus
module. Finally, the obtained new image is subjected to convolution operation,
the number of channels is further expanded to 32 by standard convolution, and
the feature map of double downsampling without information loss is obtained.
Fig. 3 shows the processing of the Focus module.

3.2 Dilated convolution and standard convolution

After downsampling without information loss, feature maps with rich infor-
mation are obtained. To better learn more feature information without
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Fig. 3: Processing of the Focus module

introducing other parameters, this paper uses dilated convolution to expand
the receptive field. Compared with the standard convolution operation, no
additional parameters need to be introduced, and the output feature map size
of the image can’t be changed, which can better meet the needs of lightweight
operations.

As shown in Fig. 4, the receptive field of the ordinary convolution in the
left picture is 3, the receptive field of the dilated convolution with the dilation
rate of 2 in the right picture is 5, and the dilated convolution can obtain more
feature information. This paper sets the dilation rate of dilated convolution to
5.

Fig. 4: Comparison of ordinary convolution and dilated convolution (dilation
rate=2)

If the dilated convolution is used multiple times, the network may
degenerate, so the standard convolution is used for the second dimension down-
sampling after the dilated convolution. The standard convolution stride used
is 2, the convolution kernel size is 3×3, and the activation function is SiLU.
Compared with Relu, it has the characteristics of no upper bound and lowers
bound, smooth and non-monotonic.

3.3 R-Resblock for multi-scale feature fusion

In order to better learn multi-scale feature information and improve the detec-
tion performance of the network, this paper designs an R-resblock structure for
multi-scale feature fusion based on the standard residual structure, as shown
in Fig. 5.

First, the obtained feature map is extracted by convolution of 1×1, and
then it is divided into three parts, namely IN1, IN2, and IN3. The first part
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directly through the 3×3 convolution for feature extraction, and then transmit
the feature image to OUT1; the second part inputs the output feature map
of the previous part together with the input feature map of IN2 into a 3×3
convolution kernel for feature extraction, to obtain the output feature OUT2;
the third part of the output feature map of the previous part and the input
feature map of another group of input feature maps fuse information and input
IN3 of the group into the convolutional kernel of 3×3 for feature extraction, to
obtain output features OUT3.Finally, after obtaining the feature information
of three scales, the network learning ability is enhanced by ECA attention, the
convolutional kernel sent to 1×1 is sent for processing, the feature information
is fully fused with the cross-layer connection, and the output feature map is
finally obtained.

Fig. 5: R-Resblock structure of multi-scale feature fusion, 1×1, 3×3
represents the size of the convolution kernel

3.4 Lightweight RFB-SE

The traditional RFB and RFB-s models are designed based on the Inception
module, which utilizes a multi-layer convolutional nested structure to improve
accuracy. To make better use of the precision advantage of RFB and simplify
the model parameters, the existing RFB model is improved. The improved
RFB-SE structure is shown in Fig. 6.

The RFB-SE designed in this paper has a total of 5 branches, includ-
ing a Shortcut connection branch and 4 feature extraction branches, and the
convolution kernel settings of the specific 4 branches are shown in Fig. 6.
After obtaining feature images of different scales in 4 branches, the images
are stitched together and convoluted 1×1 to generate new feature images. The
processed feature map is added to the Shortcut connection branch, and the
result is reactivated by SE attention and fed into the next connection layer.

3.5 Loss function

To better determine the network output parameters, this paper tested a vari-
ety of regression loss functions, including MSE, L1, L2, and Smooth-L1, and
finally found that the Smooth-L1 function performed better, so this paper uses
Smooth-L1 as the regression loss function of the output value, and the loss
function of the grasp model is defined as follows:
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Fig. 6: RFB-SE structure

Lr(x, y) =

N
∑

i

∑

m∈{q,cos(2θ),sin(2θ),W} SmoothL1(xi − yi) (3)

The SmoothL1(xi − yi) is calculated as follows

SmoothL1(xi, yi) =

{

0.5(yi − xi)
2
, if |yi − xi| < 1

|yi − xi| − 0.5, otherwise
(4)

where N is the number of grabbing candidate boxes, q and w rep-
resent the grabbing quality and the width of the grabber opening,
respectively,cos(2θ), sin(2θ) are the parameter representations of the grabbing
angle. yi represents the output prediction box of the network, and xi represents
the real grasp box.

4 Experiments and analysis

This paper trained and tested the proposed model on the datasets Cornell and
Jacquard, which are publicly available in the field of grasping, and compared
our method with the latest analysis methods. In addition, this paper conducted
ablation experiments on the improvements proposed in this article and verified
the effectiveness of each improvement. For the retail warehousing environment,
this paper conducted a crawl simulation experiment to verify the effectiveness
of the proposed crawling method.

4.1 Evaluation indicators

This paper adopts the currently popular Jaccard index to measure our grasp
detection accuracy.
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(1) The difference between the rotation angle of the predicted grasping
rectangle and the ground-truth grasping rectangles is within 30º;

(2) The Jaccard index between the predicted grasping rectangles and the
ground-truth grasping rectangle exceeds 0.25.

The Jaccard index is defined as follows:.

J(GP , GT ) =
GP ∩GT

GP ∪GT

(5)

Where Gp represents the area of the predicted grasping rectangle, GT

represents the area of the real grasping rectangle, GP ∩ GT represents the
intersection of the two grasping rectangles, and GP ∪GT represents the union
of the two grasping rectangles.

4.2 Data analysis

The Cornell Grasping dataset contains 885 RGB-D images with a resolu-
tion of 640×480 pixels containing 240 different real objects. Each image in
the dataset has several correspondingly labeled positive grasping rectangles
(positive samples) and negative grasping rectangles (negative samples). The
positive grasping rectangles represent feasible grasping boxes, and the negative
grasping rectangles Represent a marker box that cannot be grasped. In the
experiment, only the positive samples of the labeled boxes are used as training
data.

This paper chose to carry out network training on the Cluster Engine
equipped with 40G video memory, and the Pytorch1.10 and CUDA11.3 envi-
ronments have been set up on the platform, and the CPU is set to 10 cores to
ensure the computing power of the system.

Before network training, the image size is first converted from 640×480
to 320×320. This paper used the Adam optimizer for optimization training,
the initial learning rate was set to 1e-3, and the batch size was 8 for training.
During training, this paper created an augmented dataset using random crop-
ping, scaling, and rotation, expanding the original dataset by a factor of 5 and
splitting the dataset into training and validation sets in a 9:1 ratio. According
to the above evaluation indicators, this paper compares the grasping accuracy
and speed of the proposed method on the Cornell dataset with other popular
grasping methods, and the results are shown in Table 1.

It can be seen from Table 1 that the RS-ConvNet model proposed in this
paper has an accuracy rate of 97.8% and a speed of 78FPS. Although the detec-
tion accuracy of Stefan[24] is higher than that of the method proposed in this
paper, the fusion of the two models leads to higher requirements on the hard-
ware system and greater training difficulty, while the method in this paper is
simple to training, and the parameter amount is only 711,430, which is less than
half of the GR-ConvNet proposed by Kumra [22] and much smaller than other
complex structures containing millions of parameters. Which are less compu-
tationally expensive, faster, and more suitable for application development in
lightweight scenarios.
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Table 1: Comparison of grasp accuracy and speed in Cornell dataset.

Author Algorithm Grasp Accuracy(%) Speed(FPS)

Asif et al.[19] GraspNet(2018) 90.6 41.67
Guo et al.[20] ZF-Net(2017) 93.2 -
Zhang et al.[21] Resnet-101(2019) 93.6 25.2
Kumra et al.[22] GR-ConvNet(2020) 96.6 52
Chu et al.[23] Resnet-50(2018) 94.4 8.33
Stefan et al.[24] Faster-RCNN(2022) 98.2 63

Our RS-ConvNet 97.8 78

The Jacquard grasping dataset consists of 54,000 RGB-D images and anno-
tations of successful grasp locations performed in a simulated environment, for
a total of 1.1 million grasp examples. The amount of data in this dataset is
enough to train our model, so it is not augmented. The image size is prepro-
cessed during training, and the dataset is trained in a 9.5:0.5 ratio, and the
other conditions are consistent with the Cornell dataset training except for no
data enhancement. The analysis of the grasping results is shown in Table 2.

Table 2: Comparison of grasp accuracy in Jacquard datasets

Author Algorithm Grasp Accuracy(%)

Kumra et al.[22] GR-ConvNet(2020) 92.1
Stefan et al.[24] Faster-RCNN(2022) 92.95

Our RS-ConvNet 91.5

From the analysis in Table 2, it can be seen that this algorithm has a
small number of model parameters, and is insufficient in the ability to obtain
more detailed information. However, the multi-scale and large receptive field
modules designed can ensure that the capture accuracy rate is above 90%.
Compared with other network models with more complex structures, its accu-
racy can meet the daily grasping tasks. Fig. 7 shows some prediction results
of RS-ConvNet in the Jacquard dataset.

Equations in LATEX can either be inline or on-a-line by itself (“display
equations”). For inline equations use the $...$ commands. E.g.: The equation
Hψ = Eψ is written via the command $H \psi = E \psi$.

For display equations (with auto generated equation numbers) one can use
the equation or align environments:

4.3 Ablation experiment

To prove the effectiveness of each improvement proposed in this paper, this
paper uses GG-CNN as the base network model and uses ablation experiments
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Fig. 7: RS-ConvNet prediction results

to verify the effectiveness of all improvements. The training set in the exper-
iment adopts the 885-sheet version of the Cornell grasping dataset, of which
796 (90%) are used as the training set and 89 (10%) are used as the valida-
tion set. The training epoch is uniformly set to 500, the Adam optimizer is
used to improve the training speed during the training process, and the initial
learning rate is set to 1e-3. The Cluster Engine equipped with pytorch1.10 and
CUDA11.3 environment is used for training. To better fit the samples, and
considering that the total number of samples in the data set is not large, the
batch size is set to 8 during training. The number of CPUs on the supercom-
puting platform is uniformly set to 20, and CUDA11.3 is used for accelerated
training. After the training is completed, download the trained weight file, and
perform verification and comparison on the experimental platform of Ubuntu
20.04. The experimental platform is equipped with AMD Ryzen 7 5800H CPU
with a main frequency of 3.2GHz, and the GPU adopts NVIDIA Geforce RTX
3060-6G, which supports CUDA11. The PyTorch and CUDA versions are the
same as during training. During the verification, the five weights with the
highest IOU in the training process are selected for testing, and the average of
the five sets of results is taken as the final result. The verification results are
shown in Table 3.

Table 3: Experimental verification results of ablation based on GG-CNN
network

Base Focus DilatedConv R-Resblock RFB-SE Accuracy(%) Speed(ms)

✓ 79.5 19
✓ ✓ 80.9 20
✓ ✓ ✓ 82.9 20
✓ ✓ ✓ ✓ 85.8 22
✓ ✓ ✓ ✓ ✓ 88.3 23

As shown in Table 3, first of all, the basic model is the unimproved GG-
CNN network model, which does not use cross-layer local connections, dilated
convolution blocks, ECA attention, and Focus module. Although the detection
speed of GG-CNN is fast, the detection effect is poor. After adopting Focus, the
input RGB-D image is sliced, which retains more input features and improves
the accuracy. The dilated convolution block is used to improve the receptive
field, better learn the RGB-D image features, and achieve a good grasping
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effect. On the other hand, after adding the multi-scale fusion R-Resblock, the
feature information of multiple scales can be better integrated, and the use
of ECA attention can make the network pay more attention to the grasped
area for learning, which significantly improves the detection effect. Finally, a
lightweight RFB-SE module is added, so that the model can obtain a larger
receptive field and improve the accuracy of grasp detection.The training curve
of the model is compared as shown in Fig. 8.

Fig. 8: Comparison of training IOUs in ablation experiments

When comparing the detection effects, the basic network and the two
groups of models with the most improvements were selected for prediction
experiments. As shown in Fig. 9, the first row is the prediction result of the
GG-CNN model, and the second row adds all the improved model prediction
effects. It can be seen that the improved model can make better use of image
features, learn to grasp the angle information of the predicted frame and pro-
vide the robot with a better grasping position. It can be closer to the grasping
center for rod-shaped objects, and the grasping success rate is also relatively
higher.

Since the Cornell dataset is manually labeled, it cannot guarantee that all
positive samples meet the grasping conditions. At the same time, consider-
ing that the mean square error (MSE) loss function is sensitive to negative
samples, it will give negative samples a higher weight at the expense of other
samples. The prediction results of the verification sample will reduce the over-
all model performance. Change the regression loss function to the Smooth-L1
loss function, which is more effective in the object detection field. It corrects
the shortcomings of the L1 loss with inflection points and non-smoothness. At
the same time, it does not sacrifice the prediction results of positive samples,
which can ensure the performance of the overall model. The loss functions of
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Fig. 9: Comparison of the prediction effect of the GG-CNN model and the
model after adding all the tricks

the improved training and test sets drop faster and more smoothly, as shown
in Fig. 10.

Fig. 10: Comparison of the prediction effect of the GG-CNN model and the
model after adding all the tricks

It can be seen from Fig. 10 that the curve of the Smooth-L1 loss function
is smoother and has less impact on the negative samples during training, indi-
cating that the Smooth-L1 loss function can better fit the positive samples in
the captured data set. It is more suitable for application in grasping detection.

4.4 Grasp Simulation Experiment

4.4.1 Experiment Platform

In the grasping experiment, this paper chooses to build a robotic object grasp-
ing system in the educational version of the V-rep simulation environment to
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simulate grasping tasks. The robotic object grasping system consists of UR3,
Kinect depth camera, and RG2 gripper. The robot is used to grasp objects
to the target position within the right range. Kinect depth cameras are used
to provide RGB and depth images of complex scenes and transmit them to
DisplayPort. Experiments were carried out using a top-grasp strategy, with
the camera mounted above the platform. The simulation platform is equipped
with a CPU of AMD Ryzen 7 (5800H) with the main frequency of 3.2GHz, a
graphics card of NVIDIA Geforce RTX 3060-6G, and an operating system of
Windows 11. The simulation experiment is carried out by combining V-rep and
Pycharm programming environments. The built grasping simulation platform
is shown in Fig. 11.

Fig. 11: Grasp simulation platform

4.4.2 Grasp Experiment

After obtaining the position information of the grasp target, coordinate trans-
formation needs to be performed to convert it into the world coordinate system.
After obtaining the target data to be grasped through the Kinect depth cam-
era, use the deep learning model to generate the grasping position information,
use the obtained pixel position information to perform the coordinate trans-
formation, convert it to the world coordinate system, and obtain the position
of the target to be grasped in the world coordinate system.Finally, the posi-
tion information is input to the robotic arm for inverse kinematics solution,
different joint values are obtained, and the grasping task is completed.

Fig. 12 shows the recognition process of a total of 6 items in a grasping
experiment. The first row, the second row, and the third row in the Fig.12
is the grasping quality heatmap, grasping angle heatmap, and grasping width
heatmap of the item to be grasped. After the robot arm recognizes the target
to be grasped, it will preferentially select the target with the highest grasping
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quality Q value for grasping. After the first grasping task is completed, the
robotic arm will return to the original position and wait for the second grasping
task. Finally, until there are no more grasping targets in the camera, the
grasping task ends. Fig. 13 shows the process of the robotic arm grasping the
can.

Fig. 12: The completion process of a grasping experiment

Fig. 13: Simulation of grasping cans

This paper carried out grasping simulation experiments on 6 kinds of
objects, including bananas, cans, boxes, clips, detergents, and Lego blocks [25].
The objects were rearranged every 5 experiments during runtime, and each
target was only grasped once. Take the opportunity, if it is not successfully
grasped or dropped in the middle, it will be judged as a grasping failure. A
total of 80 groups of grasping experiments were conducted, and the grasping
success rate of each item is shown in Table 4.
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Table 4: The number of successful grasps and the rate of grasping success
for different items

Class Number of successful grasps Grasp Accuracy(%)

Banana 76/80 95.0
Can 70/80 87.5
Box 75/80 93.8
Clip 73/80 91.3
Detergent 75/80 93.8
Lego block 74/80 92.5

Average 74/80 92.3

During the experiment, due to the smooth surface of the pop-top can,
there will be a phenomenon of falling off during the gripping process, so the
gripping difficulty is high, and the success rate of gripping is only 87.5%. For
other items, the success rate of grasping can be kept above 90%. Although our
model is only trained on the Cornell grasping dataset, it still maintains a good
grasping success rate for items not present in the dataset. Overall, this paper
achieves an average grasping success rate of 92.3%, which meets the accuracy
requirements for grasping tasks in a retail warehouse environment.

5 Conclusion

Aiming at the problem of grasping applications in retail warehousing scenarios,
this paper proposes a lightweight grasping pose estimation model RS-ConvNet.
The model first uses the Focus module to perform downsampling without
information loss and learns each feature map of the previous layer through
the dilated convolution block. The multi-scale fusion R-Resblock structure is
used to fuse the information of each scale, and a lightweight RFB-SE module
is designed to enrich the feature information. Finally, after upsampling and
restoring the image, the target’s grasping quality score, grasping angle, and
grasping width are regressed to obtain the optimal grasping pose of the item.
The number of parameters of the model this paper designed is only 711,430,
which has good conditions for lightweight application. The experimental results
show that the method can effectively obtain the grasping pose of the item.
The grasping accuracy rate on the Cornell dataset can reach 97.8%, and the
grasping speed is 78FPS, while the grasping success rate on the Jacquard
dataset can reach 91.5%. In the grasping simulation experiment, the compre-
hensive grasping success rate for retail commodities is 92.3%, which meets the
requirements of grasping accuracy and grasping speed in the retail warehous-
ing environment. This paper focuses on the accuracy and speed of grasping
objects of various shapes, and does not consider grasping tasks in complex
environments for the time being, and will continue to consider grasping pose
estimation in complex environments in the future.
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