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Abstract 

Hippocampal representations that underlie spatial memory undergo continuous refinement following 

formation during exploration. Understanding the role of sleep in this process has been challenging 

because of the inaccessibility of place fields when animals are not actively exploring a maze. Here, we 

used a novel Bayesian learning approach based on the spike-triggered average decoded position in 

ensemble recordings to track dynamically the spatial tuning of individual neurons during offline states in 

freely moving rats. Measuring these dynamic tunings, we found spatial representations within 

hippocampal sharp-wave ripples that were stable for hours during sleep and were strongly aligned with 

place fields initially observed during maze exploration. These representations were explained by a 

combination of factors that included the pre-configured structure of firing rates in sleep before 

exposure to the environment, and representations that emerged during theta oscillations and awake 

sharp-wave ripples on the maze, revealing the contribution of these events in forming ensembles during 

sleep. Strikingly, the ripple representations during sleep predicted the future place fields of neurons 

during re-exposure to the maze, even when those fields deviated from previous place preferences. 

These observations demonstrate that ripples during sleep drives representational drift observed across 

maze exposures. In contrast, we observed tunings with poor alignment to maze place fields during other 

time periods, including in sleep and rest before maze exposure, during rapid eye movement sleep, and 

following the initial several hours in slow-wave sleep. In sum, the novel decoding approach described 

here allowed us to infer and characterize the retuning of place fields during offline periods, revealing the 

rapid emergence of representations following novel exploration and the active role of sleep in the 

representational dynamics of the hippocampus. 

  



Introduction 

Memories are continuously refined after they form. Different stages of sleep play important roles in the 

transformations that memories undergo, but many aspects of these offline processes remain unknown. 

Memories that involve the hippocampus are particularly affected by sleep, which alters molecular 

signaling, excitability and synaptic connectivity of hippocampal neurons 1,2. Memories are considered to 

be represented by the activity of ensembles of neurons that form with experience 3. In the rat 

hippocampus, these ensembles are tuned to locations within a maze environment 4. Indeed, an animal’s 

position can be decoded from the spike trains recorded from a population of neurons (Fig. 1a)5. Spatial 

representations, however, do not remain stationary following initial formation. In many cases the place 

fields (PFs) of hippocampal neurons develop and shift during traversals of an environment 6,7, remap 

upon exposure to different arenas 8, and reset or remap even with repeated exposure to the same place 
9,10.  

We conjectured that modifications of spatial representations would take place during sleep when 

connections between some neurons are strengthened while those between other neurons are 

weakened 1,11. Consistent with this conjecture, cells that become active in a new environment continue 

to reactivate for hours during sharp-wave ripples in sleep 12, suggesting that offline processes during 

sleep involve the spatial representations of hippocampal neurons. Moreover, the collective hippocampal 

map of space shows changes following sleep 13 and some cells express immediate early genes during this 

period which can mark them for sleep-dependent processing 14. However, while spatial representations 

are readily measured from the spiking activities of neurons when animals explore a maze environment, 

access to these non-stationary representations is lost when animals cease exploring, making it 

challenging to evaluate how spatial representations are shaped over time.  

To evaluate and track the spatial preferences of a neuron across online and offline periods, we 

developed a novel method based on the principle of Bayesian learning 15 (Fig. 1b). Under the assumption 

of conditional independence of Poisson spike counts from hippocampal neurons conditioned on 

location, we derived the Bayesian learned tuning (LT) of a neuron from the spike-triggered average of 

the posterior probability distribution of position determined from the simultaneous spiking patterns of 

all other neurons in the recorded ensemble, including for time periods when animals are remote from 

the maze locations for which position was specified. In this formalism, the internally generated 

preference of a neuron for a location is revealed through its consistent coactivity with other neurons in 

the ensemble associated with that position.  

These Bayesian learned tunings allowed us to track, for the first time, the place-preferences of neurons 

as they evolved in exceptionally long-duration (up to 14 h) hippocampal unit recordings, enabling us to 

identify those periods and events in which the firing activities of neurons were consistent or inconsistent 

with place fields on the maze and to characterize the plastic offline changes in tuning relative to the 

broader ensemble. This analysis led to multiple novel insights. We found that in sleep following 

exposure to a maze, hippocampal neurons rapidly reconfigured to provide spatial representations that 

aligned with the place fields on the maze. Regression analysis revealed that these representations were 

explained by a combination of factors that included firing patterns pre-configured in pre-exposure sleep, 

and ensembles that emerged during theta oscillations and awake sharp-wave ripples on the maze, 

demonstrating the importance of these events in the formation of ensemble patterns in post-maze 



sleep. For hours of sleep following the maze, these ripple representations remained stable despite the 

scarcity of sequential replay trajectories through the maze environment. Remarkably, the 

representations in sleep predicted the place fields of neurons manifested on repeat exposure to the 

same maze, including for neurons whose fields deviated from their previous place preferences. Thus, we 

find that the ensemble firing patterns during ripples account for the representational drift observed 

across maze exposures 16, demonstrating that drift is not a passive process but instead involves an active 

processes during sleep. During other time periods, however, such as in sleep and rest before maze 

exposure, during rapid eye movement sleep, and following the initial several hours of slow-wave sleep, 

the observed spatial tunings were poorly aligned to the place fields on the maze, highlighting the unique 

role of sharp-wave ripples in the representational dynamics of hippocampal place fields.  

Results 

Spatial tunings during ripples in post sleep align with place fields on the maze.  

We first examined how tuning curves are impacted by an animal’s experience on a maze by 

characterizing the representations of neurons from spike trains recorded from the rat hippocampus in 

experiments where rest and sleep in a home cage both preceded (PRE) and followed (POST) exposure to 

a novel track (MAZE), where rats ran for water reward. To examine spatial tunings in each brain state 

separately, we first separated unit and local field potential data recorded from hippocampal region CA1 

into different states using general criterion (see Methods) for rapid eye movement sleep (REM, sleep 

featuring prominent theta), ripple periods during rest and sleep (150-250 Hz band power accompanied 

by high multi-unit firing rates), slow-wave sleep (SWS) periods exclusive of ripples, and active wake (with 

prominent theta). We calculated place fields and the learned tunings for each epoch for all units with 

peak spatial firing rates > 1 Hz on the maze (Fig. 2a-c). We limited the initial analysis to the first 4h of 

POST, during which we expect greater similarity with maze firing patterns 12.  Learned tunings showed a 

wide distribution of fidelity to place fields from PRE to POST depending on brain state. Population vector 

(PV) correlations between spatial bins in place fields and learned tunings (Fig. 2b) and LT-PF Pearson 

correlation coefficients (Fig. 2c) demonstrated that the highest fidelities to place fields were observed in 

spatial representations during theta and ripples on the maze, as expected 17,18. However, among offline 

periods only spatial tunings evidenced during POST ripples and non-ripple slow-wave sleep showed 

significant correlations with unit place fields in MAZE, and notably not those during PRE ripples. 

Surprisingly, we also failed to find representations consistent with the maze during REM sleep, when 

vivid dream episodes are frequently experienced 19. This may reflect that the bulk of REM sleep 

corresponds only weakly to previous experience 20. Thus, we find that only during POST slow-wave sleep 

do place fields maintain internal tunings consistent with their place fields on the maze.   

Spatial representations are more stable in post-maze sleep. 

We next tracked the learned tunings of neurons over time and examined the consistency of their place 

preferences within different epochs. We calculated LTs in 15 min windows sliding in 5 min steps during 

each session, from PRE through MAZE and the first 4 h of POST. Sample unit tunings from a recording 

session are shown in Fig. 3a (additional examples provided in Extended Data Fig. 1). These examples 

show stable LTs for multiple successive time windows during POST, and in some instances, also during 

PRE. To quantify the LT stability for each unit, we used Pearson correlation coefficients to assess the 



consistency of the learned tunings across time windows within and between behavioral epochs (Fig. 3b). 

High off-diagonal values in the correlation matrices within an epoch indicated that the LT remained 

stable during that epoch. For the example units in Fig. 3c we compared the median LT stability values 

from each epoch against shuffle distributions generated by randomizing the unit identities of the LTs at 

each time window. This z-scored LT stability was > 0 in both PRE and POST in this session (Fig. 3d) and 

for data pooled across all sessions (Fig. 3e), but it was significantly higher in POST compared to PRE, 

revealing that POST sleep representations were more stable than those in PRE. When we measured the 

LT stability across time windows from PRE to POST epochs, to examine their consistency from before 

and after the novel maze exposure when place fields first form, the PRE w/ POST LT stability was 

significantly > 0 in the example session (median = 0.58, p = 0.02) as well as in the pooled data (median = 

0.66 , p < 10-11,  Wilcoxon signed rank test (WSRT, n = 682)) but this was significantly lower than the 

stabilities observed within PRE and POST (PRE vs PRE w/ POST: z = 13.2, p < 10-39; POST vs PRE w/ POST: 

z = 18.4, p < 10-75, WSRT (n = 682)), signaling that only a small minority of units maintained the same 

consistent spatial tuning from before to after maze exposure.  

A subset of units showed remarkably stable learned tunings during PRE which compelled us to consider 

whether the LTs of those units might show higher fidelity with maze PFs. To test this conjecture, we 

divided units into “stable” and “unstable” by whether their z-scored LT stability was > or < 2 (PRE: 379 

stable vs 304 unstable; POST:491 stable vs 192 unstable), respectively, in both PRE and POST. In POST, 

units with both stable and unstable LTs showed significant PF fidelity (p < 10-4, comparison against 

10000 unit identity shuffles). However, the PF fidelity of units with stable LTs was significantly higher 

compared to units with unstable LTs in POST. Importantly, in PRE there was no significant difference 

between PF fidelities of stable and unstable units, and neither of these subsets showed significantly 

greater PF fidelity compared to a surrogate distribution obtained by shuffling unit identities (stable LTs: 

p = 0.58; unstable LTs: p = 0.54). Furthermore, we found little alignment with maze place fields even 

during ripple events in PRE that featured high replay scores (Extended Data Fig. 2). These findings 

demonstrate that although some units in PRE display stable learned spatial tunings, these tunings do not 

typically anticipate the future place fields of these neurons but rather show a broad distribution of 

alignments with the maze place preferences. In contrast, both the low score and high score LTs from 

MAZE and POST showed strong fidelity to maze PFs, despite the absence of sequential trajectories in low 

score events (Extended Data Fig. 2). Thus, even events that would typically be classified as non-replays 

in POST maintain representations that are faithful to the maze place-fields.  

While the stability and fidelity of spatial tunings were significantly greater in POST, these features did 

not last indefinitely. In our data that involved multiple hours of POST, we observed decreases in both 

the fidelity and stability of Bayesian learned tunings over the course of sleep (Fig. 4a-c).  The similarity of 

sleep representations to maze place-fields decreased progressively over POST, eventually reaching levels 

similar to PRE. The stability of spatial tunings also decreased over this period, indicating that these 

representations become unreliable in later periods of sleep. The dissolution of representational 

alignment with the maze over the course of sleep may reflect an additional important aspect of sleep, 

distinct from that of reactivation and replay 21,22.  

Retuning of representations during sharp-wave ripples in sleep 

https://www.mathworks.com/help/stats/signrank.html#bti40ke-8


Recent studies report that place fields drift and frequently remap upon repeat exposures to the same 

environment 9,10,13,16,23 though it is unclear when and how these representational changes emerge. Given 

that the tunings learned during POST ripples display a diversity of place-field fidelities, some aligned but 

others misaligned with maze PFs, we asked whether these representations relate to the future spatial 

tunings of the cells. In three recording sessions from two animals, we re-exposed rats back to the maze 

environment after ~9 h of POST rest and sleep (Fig. 5a). We labelled these epochs “reMAZE” and 

compared the place fields across maze exposures with the ripple LTs from the intervening POST period 

(Fig. 5b-d). POST ripple LT’s showed significant correlations with place fields from both maze exposures, 

indicating a continuity of representations across these periods. However, PFs were not identical 

between MAZE and reMAZE (Fig. 5b), illustrating that neuronal representations drift and remap in the 

rat hippocampus 10. Consistent with our hypothesis that representational remapping emerging during 

POST could account for the deviations in PFs observed between repeated exposures to the maze, in 

instances where we saw reMAZE PFs congruent with MAZE PFs (top panel, Fig. 5e), the POST LTs for 

those cells showed strong fidelity with the maze period. However, in instances where reMAZE PFs 

deviated from the MAZE PFs (bottom panel, Fig. 5e), the POST LTs for those units predicted the PFs 

observed during maze reexposure. Likewise, we observed a significant correlation between PF fidelities 

in POST and the reMAZE-MAZE similarity (Fig. 5f) To better examine whether ripple representations 

during POST can presage representational changes across maze exposures, we performed a multiple 

regression analysis to test the extent to which reMAZE PFs are explained by MAZE PFs and LTs from PRE 

or POST (first 4 h). We also included the average LTs (over PRE and POST) to control for the general 

deviations of LTs that were not specific to any unit (Fig. 5g). This regression demonstrated a significant 

contribution (beta coefficient) for MAZE PFs, as expected, indicating that there is significant continuity in 

place-fields across maze exposures. However, it also revealed that POST LTs, but not PRE LTs, impact the 

PF locations in maze reexposure. Remarkably, when we repeated this analysis for last 4 hours of POST 

prior to reMAZE, we found no significant contribution from the late POST LTs (Fig. 5h), indicating that 

our observations do not simply arise from temporal proximity between POST sleep and the maze 

reexposure, but rather reflect rapid changes in representations that are manifested in the initial hours of 

sleep. Overall, these results demonstrate the critical role of POST sleep in stabilizing and reconfiguring 

the spatial representations of hippocampal neurons across exposures to an environment.  

Sleep representations are driven by awake ripples and theta oscillations. 

Our findings thus far indicate that the neuronal firing patterns during POST ripples reflect and retune the 

place-field representations on the maze. We next investigated the factors that conspire to establish 

these patterns. One recent study 24 reported that, more so than place field activity, the spike patterns of 

neurons during waking theta oscillations provide the necessary conditions for establishing the firing 

patterns observed during POST sleep. Another study, however, indicated that waking ripples are a 

primary mechanistic candidate for generating stable representations 25. Adding further complication, 

several studies have indicated that PRE and POST ripples share overlapping activity structure 12,26, 

suggesting limits on the flexibility of sleep representations. To better understand the respective 

contributions of these different factors on the representations in POST sleep, we performed a multiple 

regression to test the extent to which POST LTs are explained by: PRE LTs, MAZE PFs, LTs of MAZE theta 

periods, and LTs of MAZE ripples (Fig. 6a). Remarkably, we found that the beta coefficients for all of 



these regressors were significant. While the beta coefficient for MAZE theta LTs was significant, 

indicating that waking theta oscillations are important for the formation of ensemble representations, in 

support of the previous report 24, MAZE ripple LTs had the largest beta coefficient, indicating that firing 

patterns during waking ripples on the maze have the most lasting impact on POST sleep activity. 

Surprisingly, the second largest beta coefficients were observed for PRE ripple LTs, indicating that next 

to MAZE patterns, patterns configured in PRE also provide an important determinant of POST sleep 

activity 26,27. Consistent with this, we observed a significant correlation between the PF fidelity in PRE 

and the PF fidelity in POST (Fig. 6b).  

These observations suggest that despite the absence of maze tuning in PRE sleep, some cells maintain 

similar representations between PRE and POST. Sleep similarity, which measures the consistency of LTs 

across PRE and POST by assessing the correlation between PRE LTs and POST LTs, was significantly 

correlated with PF fidelity in PRE (Fig. 6c); thus, PRE LT’s that aligned with maze PFs, presumably by 

chance, maintained those LTs in POST (see also individual examples in Extended Data Fig. 1, e.g. in Rat 

N). On the other hand, sleep similarity showed only a weak negative correlation with the PF fidelity in 

POST. To better understand the difference between PRE and POST LTs, we separated units into “PRE-

tuned” cells (PRE PF fidelity > 0), and “PRE-untuned” cells (PRE PF fidelity < 0).  PRE-tuned cells showed 

generally high POST PF fidelity along with high sleep similarity (Fig. 6e). In contrast, PRE-untuned cells 

showed a significant negative correlation between sleep similarity and POST fidelity (Fig. 6f); those with 

high sleep similarity were poorly tuned in POST, while those that reconfigured from PRE to POST, 

showed better fidelity to maze PFs. These analyses therefore reveal the contribution of PRE sleep to 

maze representations and POST activities; cells whose representations are already aligned with  maze 

place fields in PRE maintain those same representations in POST, but other neurons display a broad 

range of flexible reconfiguration that is inversely proportional to their rigidity 27 across PRE and POST.   

Discussion 

The observations of dynamic representations in offline states made possible by Bayesian learning have 

important implications for our understanding of how learning and sleep impact the place-field 

representations of hippocampal neurons. First, we found that spatial representations emerge rapidly 

upon exposure to a novel environment, but not beforehand. While ripple events during pre-exposure 

occasionally scored highly for replays, spatial representations were not coherent among active neurons 

during these periods, as cells with very divergent place fields often fire within the same time bins 

(Extended Data Fig. 2). These observations suggest that continuous patterns in the decoded posteriors 

of spike trains could emerge spuriously. Consistent with this notion, it has been noted that the measures 

and shuffles used to quantify replays inevitably introduce unsupported assumptions about the nature of 

spontaneous activity 28-31. We propose that only for those periods and events in which there is strong 

correspondence between the Bayesian learned tunings and neurons’ place-fields, can the collective 

ensemble activity be considered to provide trajectories through internally generated representations of 

space 29,32.  

Among the brain states we examined, sharp-wave ripples in early sleep offered the representations that 

best aligned with the place fields on the maze. These early sleep representations emerged from a 

confluence of factors, including carryover of firing patterns from pre-maze sleep (in both PRE-tuned and 



PRE-untuned units)30. Most notably, however, our analysis revealed a key role in awake activity patterns 

during theta oscillations, and more prominently, those during sharp-wave ripples in generating the 

ensemble coordination that underlies spatial representations during sleep. These observations are 

consistent with the hypothesis that an initial cognitive map of space is first laid down during theta 

oscillations 18,24,33, then stabilized and continuously updated by awake replays based on the animal’s 

(rewarded and/or aversive) experiences on the maze 25,32,34-36. Once ensembles are established, they 

reactivate during early part of sleep 12,37. However, sleep representations were not always exact mirror 

images of the maze place-fields, and our Bayesian learning approach allowed us to measure those 

deviations for individual neurons. Remarkably, we found that these early-sleep ripple representations 

proved predictive of place fields on re-exposure to the maze. Based on these observations, we propose 

that representational drift in fact arises rapidly from retuning that takes place during early sleep sharp-

wave ripples rather than noisy deviations that develop spontaneously over time. Furthermore, we 

conjecture that hippocampal reactivations during sleep does not play a passive role in simply 

recapitulating the patterns already seen during learning but represents a key optimization process 

generating and integrating new spatial tunings within the recently formed spatial maps.   

Overall, representations remained stable and consistent with the maze for hours of sleep in POST, 

despite the absence of strong sequential replay trajectories during ripples in POST sleep. Reconciling 

observations based on studies that measure neuronal reactivation using pairwise or ensemble measures 

with those that focus on trajectory replays has until now represented a challenge to the field 38. Our 

study consolidates these views by demonstrating that faithful representations, which are consistent 

with pairwise and ensembles measures of reactivation, persist for hour-long durations. However, the 

trajectories produced by these cell ensembles do not necessarily provide continuous high-momentum 

sweeps through the maze environment 39,40, as we found high fidelity spatial tunings even among low 

replay score ripple events in post-maze sleep. Instead, trajectories simulated by the hippocampus during 

sleep ripples may explore pathways that were not directly experienced during waking but can serve to 

better consolidate a cognitive map of space.  Additionally, we found increasing instability and drift in the 

spatial representations of neurons over the course of sleep, indicating that late sleep, like PRE, features 

more randomized activity patterns 21,41. It is also worth noting that we did not find alignment between 

maze place fields and learned spatial tunings during REM sleep. It may be that under a different 

behavioral paradigm such as with frequently repeated maze exposures42 or salient fear memories 43, or 

limiting analyses to specific phases of theta 44, we might have uncovered tunings more consistent with 

dream-like replays of maze place-fields 45. On the other hand, it is also worth noting that the bulk of 

dreams do not reprise awake experiences 46. The randomization of representations, as we see during 

REM and late stages of slow-wave sleep, may reflect an important function of sleep, driving activity 

patterns from highly-correlated ensembles to those with greater independence 22,47, which may be 

important for resetting the brain in preparation for new experiences 11.  

In sum, the Bayesian learning approach provides a powerful means of tracking the stability and plasticity 

of representational tuning curves of neurons over time, which provides significant insights into how 

ensembles patterns form and reconfigure during offline state. A similar approach can be readily 

extended to investigate the dynamics of internally-generated representations in other neural systems 

during both sleep and awake states, including within rehearsal, rumination, or episodic simulation 48.  



Figure Legends 

Fig.1. Bayesian learning of hippocampal spatial tunings during offline states. (a) Hippocampal place 

cells show tuning to specific locations (place fields) on a linear track maze. When animals sleep or rest 

outside of the maze, the spiking of these neurons is no longer driven by maze location but may 

represent an internally generated simulation of 𝑥𝑥 or another location. (b) We employed Bayesian 

learning to assess each neuron’s tuning 𝑝𝑝′(𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠|𝑥𝑥) for internally generated cognitive space, 𝑥𝑥, using 

the place fields of all other neurons recorded on the maze, under the assumption of conditional 

independence among Poisson spiking neurons conditioned on space. Top left, sample spike raster during 

an example maze traversal. Top right, spiking patterns of the same cells during a brief window in sleep. 

For each iteration, one cell is selected as the learning neuron. Bottom, left to right, population activity 

extracted for time bins in which the learning neuron spikes. Next, posterior probability distributions are 

constructed using the spikes and track tunings of the other neurons during these time-bins. The 

Bayesian learned tuning 𝑝𝑝′(𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠|𝑥𝑥) is set to the summation of the posterior distributions over these 

time-bins (∑𝑝𝑝(𝑥𝑥|𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠)), normalized by the overall likelihood of each track location (∑𝑝𝑝(𝑥𝑥)) obtained 

across the entire offline period.  

Fig. 2. Bayesian learned tunings during MAZE and offline states. (a) Place fields (PFs) of hippocampal 

units pooled across sessions (814 units from 13 sessions and 10 rats) alongside Bayesian learned tunings 

(LTs) calculated separately for each behavioral epoch (PRE, MAZE, POST) and brain state (ripples, non-

ripple NREM, REM, and active home cage). Only tunings learned during ripples on the MAZE and POST 

bear a visual resemblance to place fields. (b) The LT-PF correlations of the population vectors across 

space calculated between place fields and each set of learned tunings in (a). (c) Cumulative distributions 

of PF fidelity for each set of LTs in (a), defined as Pearson correlation coefficients between the LTs and 

PFs (r(LT, PF)). Only tunings learned during ripples on the MAZE and POST, along with non-ripple NREM, 

were significant compared to null distributions from 10000 unit identity shuffles (PRE;  ripples: p = 0.83; 

non-ripple NREM: p = 0.57; REM: p = 0.67; active home cage: p = 0.71; MAZE; theta: p < 10-4; ripples: p < 

10-4; POST; ripples: p < 10-4; non-ripple NREM: p = 2×10-4; REM: p = 0.72; active home cage: p = 0.11). ** 

p < 0.01, *** p < 0.001.  

Fig. 3. Stability of learned tunings during ripples in PRE and POST. (a) Heat maps of ripple LTs for 

sample units in sliding 15 min windows throughout a sample session from PRE through MAZE to POST 

(maze PFs in gray on right) show generally stable LTs during POST. Interestingly, units 5 and 6 also show 

stable tunings during PRE ripples, but those tunings do not align well with their maze place fields. (b) 

The matrix of correlation coefficients between LTs from different time windows for the units in (a) 

illustrate periods of stability. (c) Stability of the LTs (black) for the units in (a) in PRE and POST, defined as 

the median of the correlation coefficient between LTs from non-overlapping 15-min windows. Violin 

plots (gray) show the chance distributions obtained from non-identical units randomly scrambled across 

windows (1000x). While LTs of units 5 and 6 were stable within PRE and POST, they were not consistent 

across these epochs. (d and e) Unit LT stabilities z-scored against unit ID shuffles were significantly > 0 

for the sample session (d) (PRE: median = 3.05, p < 10-4; POST: median = 12.59, p < 10-4; PRE-POST: 

median = 0.58, p = 0.02, WSRT (n = 84)) with individual units shown as dots, and (e) all sessions pooled 

together (PRE: median = 2.50, p < 10-4; POST: median 4.68, p < 10-4;  across PRE w/ POST median = 0.66, 



p < 10-4, WSRT (n = 682 units)). However, LT stability in POST was higher than for both PRE or PRE w/ 

POST (p < 10-4, WSRT (n = 682)). (f) Distributions of PF fidelity (r(LT, PF)) for units with stable (z > 2) 

versus unstable (z < 2) LTs showed no difference in PRE but were higher for stable units in POST (p < 10-4, 

MWUT (n = 682)). ***P < 0.001; ns, not significant. 

Fig. 4. Spatial representations are randomized over the course of sleep. (a) Heat maps of ripple LTs for 

sample units in sliding 15 min windows throughout a sample long duration session show gradual 

decreases in LT stability over time. A matrix of correlation coefficients between LTs from different time 

windows is provided on the right for each unit. (b) PF fidelity (correlation coefficient between LTs and 

PFs) shows a gradual decrease over time in POST. The color traces show median values across units 

within each individual session. The black trace and gray shade depict the median and interquartile range 

of the pooled data. PRE and MAZE epochs of differing durations were aligned to the onset of MAZE 

while POST epochs were aligned to the end of MAZE.  (c) Left panels show LT stability correlation 

matrices averaged over all recorded units, shown separately for each dataset. Here, the matrix for each 

unit was z-scored against unit-ID shuffles prior to averaging. Right panels show the distribution of z-

scored LT stability in overlapping 2-hour blocks during POST, separately for each dataset. The asterisks 

above each block represent the p-value of difference in LT stability compared with the previous block. 

*p < 0.05, ***p < 0.001. 

Fig. 5. POST ripple tunings predict future place fields on maze re-exposure. (a)Timeline for sessions 

(n=3) in which the animal was re-exposed to the same maze track (reMAZE) after > 9 h from initial 

exposure (MAZE). We used the first 4 h of POST to calculate LTs. (b) Cumulative distribution of PF 

similarity between MAZE and reMAZE. (c) Cumulative distribution of POST PF fidelity (correlation 

coefficient between POST LTs and MAZE PFs). (d) Cumulative distribution of correlation coefficient 

between POST LTs and reMAZE PFs. (e) Example units with high MAZE/reMAZE similarity and high POST 

PF fidelity (top row), or low MAZE/reMAZE similarity and low POST PF fidelity (bottom row). The 

rightmost column shows the degree of similarity between the reMAZE PFs and POST LTs for each unit. (f) 

MAZE/reMAZE similarity correlated with POST PF fidelity. (g) Multiple regression analysis for modeling 

reMAZE PFs using PRE LTs, MAZE PFs, and POST LTs as regressors (RMSE = 0.91, R2 = 0.17, p < 10-4, c0 = 

1.9×10-16, c1 = 0.12, β1  = -0.004, p = 0.50, β2  = 0.25, p < 10-4, β3 = 0.15, p < 10-4; p-values against 

surrogate distributions from 10000 unit-identity shuffles of reMAZE PFs).  (h) Same as (g) but using late 

POST (last 4 h) instead of POST LTs as a regressor (RMSE = 0.92, R2 = 0.16, p < 10-4, c0 = 2.6×10-16, c1 = 

0.16, β1 = 0.04, p = 0.10, β2 = 0.28, p < 10-4, β3 = 0.03, p = 0.13).   

Fig. 6. Ensemble patterns during awake theta and ripples and a diversity of pre-existing 

representations impact the tunings in POST sleep. (a) Multiple regression analysis for estimating the 

dependence of POST LTs on PRE LTs, MAZE PFs, MAZE theta LTs, and MAZE ripple LTs shows that POST 

LTs were most significantly impacted by PRE LTs and MAZE ripple LTs (RMSE = 0.75, R2 = 0.43, p < 10-4, c0 

= -0.0002, c1 = 0.15, β1 = 0.27, p < 10-4, β2 = 0.07, p < 10-4, β3 = 0.15, p < 10-4, β4 = 0.30, p < 10-4, p-values 

against surrogate distributions from 10000 unit-identity shuffles). (b) PF fidelity (correlation with MAZE 

PF) was significantly correlated between PRE and POST LTs. (c) Sleep similarity (correlation between PRE 

and POST LTs) was correlated with PRE PF fidelity, indicating that high fidelity PRE LTs are preserved in 

POST. (d) An overall weak negative correlation between sleep similarity and POST PF fidelity. When we 



split units into PRE-tuned (PRE PF fidelity > 0) and PRE-untuned PFs (PRE PF fidelity < 0), (e) there was 

little correlation between sleep similarity and POST fidelity for PRE-tuned cells. (f) For PRE-untuned cells, 

a negative correlation between POST PF fidelity and sleep similarity indicates a continuum of flexible 

retuning to maze PF.  

 

  



Methods 

Behavioral task and data acquisition. We trained four water-deprived rats to alternate between two 

water wells in a previously habituated home box. Water rewards during the alternation were delivered 

via water pumps interfaced with custom-built Arduino hardware. After the animals learned the 

alternation task, they were surgically implanted under deep isoflurane anesthesia with 128 channel 

silicon probes (8 shanks, Diagnostic Biochips, Glen Burnie, MD) either unilaterally (one rat) or bilaterally 

(three rats) over the dorsal hippocampal CA1 subregions (AP:-3.36 mm , ML:± 2.2 mm). Following 

recovery from surgery, the probes were gradually lowered over a week to the CA1 pyramidal layer, 

which was identified by sharp wave-ripple polarity reversals and frequent neuronal firing. After ensuring 

recording stability, the animals were exposed to novel linear tracks during one (three rats) or two (one 

rat) behavioral sessions (in total five sessions from the four rats). During each session, the implanted 

animal was first placed in the home box (PRE, ~ 3 hours) with ad libitum sleep (during the dark cycle). 

Then, the animal was transferred to a novel linear track with two water wells that were mounted on 

platforms at either end of the track (MAZE, ~ 1 hour). After running on the linear track for multiple laps 

for water rewards, the animal was returned to the home box (aligned with the start of the light cycle) 

for another ~10 hours of ad libitum sleep (POST). In four of these sessions, following POST the rats were 

re-exposed to the same linear track for another ~ 1h of running for reward (reMAZE).  

Wideband extracellular signals were recorded at 30 kHz using an OpenEphys board 49 or an Intan RHD 

recording controller during each session. The wideband activity was high-pass filtered with a cut-off 

frequency of 500 Hz and thresholded at five standard deviations above the mean to extract putative 

spikes. The extracted spikes were first sorted automatically using SpykingCircus 50, followed by a manual 

passthrough using Phy 51 (https://github.com/cortex-lab/phy/). Only units with less than 1% of total 

number of spikes in their refractory period (based on the units’ autocorrelograms) were included in 

further analysis. Putative neurons were classified into pyramidal and interneurons based on peak 

waveform shape, firing rate, and interspike intervals 52,53. For analysis of local field potentials (LFP, 0.5-

600 Hz), signals were filtered and downsampled to 1250 Hz.  

The animal’s position was tracked using an Optitrack infrared camera system (NaturalPoint Inc, Corvalis, 

OR) with infrared-reflective markers mounted on a plastic rigid body that was secured to the recording 

headstage. 3D position data was extracted online using Motive software (Optitrack), sampled at either 

60 Hz or 120 Hz, and later interpolated for aligning with the ephys data. Although, we attempted to 

track the animal’s position during each entire session, including in the home cage, the cage limited visual 

access from our fixed cameras. Additionally, in one session the position data for reMAZE was lost during 

the recording.  

These data comprised the Giri dataset used in our study. We also took advantage of previously 

published data described in detail in a previous report 12. This data consisted of recordings of unit and 

local field potential from the rat hippocampus CA1 region, with PRE rest and sleep, exposure to a novel 

MAZE, and POST rest and sleep: the Miyawaki dataset (3 rats, 5 sessions; PRE, MAZE, POST, each ~ 3 

hours)12,21 and the Grosmark dataset (4 rats, 5 sessions; PRE, and POST, each ~ 4 hours and MAZE, ~ 45 

minutes)27. See Supplementary Table 1 for further details of each session. These data are available upon 

request from the corresponding author. Custom-written MATLAB code supporting this study is available 

at https://github.com/diba-lab/Maboudi_et_al_2022. All animal procedures followed protocols 

approved by the Institutional Animal Care and Use Committees (IACUC) at the University of Wisconsin-

https://github.com/cortex-lab/phy/
https://github.com/diba-lab/Maboudi_et_al_2022


Milwaukee and the University of Michigan, and conformed to guidelines established by the United 

States National Institutes of Health. 

Place field calculations. To calculate place fields, we first linearized the position by projecting each two-

dimensional track position onto a line that best fit the average trajectories taken by the animal over all 

traversals within each session. The entire span of the linearized position was divided into 2 cm position 

bins and the spatial tuning curve of each unit was calculated as occupancy-normalized spike counts 

across the linearized position bins. With the exception of Extended Data Fig. 1, only units with place 

fields that had a peak firing rate > 1 Hz were included.  

Local field potential analysis and brain state detection. We estimated a broadband slow wave metric 

using the irregular-resampling auto-spectral analysis (IRASA) approach 54, following code generously 

shared by Dan Levenstein and the Buzsaki lab (https://github.com/buzsakilab/buzcode). This procedure 

allows estimation of the slope of the power spectrum which is used to estimate slow-wave activity. The 

slow-wave metric for each session followed a bimodal distribution with a dip that provided a threshold 

to distinguish NREM (non “rapid eye movement” sleep) from other periods. A time-frequency map of 

the local field potential (LFP) was also calculated in sliding 1s windows, step size of 0.25 s, using the 

Chronux toolbox 55. To identify high theta periods, such as during active waking or REM sleep 21,56, the 

theta/non-theta ratio was estimated at each time point as the ratio of power in theta (4-9 Hz in home 

cage and 6-11 Hz on the linear track) to a summation of power in delta frequency band (1-4 Hz) and the 

frequency gap between the first and second harmonics of theta (10-12 Hz during home cage awake and 

REM epochs and 11–15 Hz during MAZE). To calculate the ripple power, multichannel LFP signals were 

filtered in the range of 150-250 Hz. The envelope of the ripple LFP was calculated using the Hilbert 

transform, z-scored and averaged across the channels. Only channels with the highest ripple power from 

each electrode shank were used in the averaging.  

Detection of ripple events. For each recording session, multi-unit firing rates (MUA) were calculated by 

binning the spikes across all recorded single units and multi-units in 1 ms time bins. Smoothed MUA was 

obtained by convolving the MUA with a Gaussian kernel with 𝜎𝜎 = 10 𝑚𝑚𝑠𝑠 and z-scoring against the 

distribution of firing rates over the entire session. Ripple events were first marked by increased MUA 

firing, periods when the smoothed MUA crossed 2z and the boundaries were extended to the nearest 

zero-crossing time points. The ripple events that satisfied the following criteria were considered for 

further analysis: a) duration between 40 and 600 milliseconds, b) occurrence during NREM or quiet 

waking period, c) concurrent speed of the animal below 10 cm/sec (when available), and d) concurrent 

ripple power in the LFP higher than 1 s.d. above the mean. To detect the ripple events during the quiet 

waking periods, we required either a theta-delta ratio < 1 or ripple power > 3 s.d. of the mean at the 

time of candidate event. All ripple events were subsequently divided into 20 millisecond time bins. The 

onsets and offsets of the events were adjusted to first time bins with at least two pyramidal units firing. 

We split ripples with silent periods > 40 ms into two or more events.  

Bayesian learned tunings. Bayesian learning of spatial tunings or learned tunings (LTs) can be 

conceptualized as using offline spiking activity to update our estimate of each unit 𝑠𝑠’s spatial tuning 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑥𝑥), which is the probability of spiking conditioned on the network’s internal estimate of position, x. 

Outside of the maze, the best initial estimate available for a cell’s place preferences is its place field on 

the maze. Then, Bayesian learning 15 is used to update this tuning curve based on information available 

in the spike trains from the epoch of interest. Note that this approach still relies on the place-fields of 



neurons as measured on the maze. However, it provides a degree of separation in that a given neuron’s 

Bayesian LT does not depend directly on its own maze place-field, but rather on the coherent firing of 

that neuron with the other neurons in the ensemble.  

Effectively, the unit 𝑠𝑠’s LT is learned from the posterior probability distributions 𝑝𝑝�𝑥𝑥�𝑠𝑠∀𝑗𝑗≠𝑖𝑖� determined 

from the other units’ spikes for the time windows in which unit 𝑠𝑠 spikes. The posterior probability 

distribution, 𝑝𝑝(𝑥𝑥|𝑠𝑠∀𝑗𝑗≠𝑖𝑖) within individual time bins is calculated based on other units, excluding the 

spikes and track tuning of unit 𝑠𝑠 itself, under the assumption of conditional independence among 

hippocampal neurons conditioned on maze position and running direction.  

Since majority of the sessions (16 out of 17) consisted of two running directions on the track, we first 

calculated the posterior joint probability of position and travel direction and then marginalized the joint 

probability distribution over travel direction 57: 𝑝𝑝�𝑥𝑥,𝑑𝑑�𝑠𝑠∀𝑗𝑗≠𝑖𝑖� ∝  𝑝𝑝(𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑖𝑖−1, 𝑠𝑠𝑖𝑖+1, … , 𝑠𝑠𝑛𝑛 |𝑥𝑥,𝑑𝑑)    (1) 

in which 𝑛𝑛 is the total number of units and 𝑑𝑑 signifies the travel direction. With the assumption of 

independent Poisson-distributed firings of individual units conditioned on maze position and direction, 

equation (1) is equal to: 𝑝𝑝�𝑥𝑥,𝑑𝑑�𝑠𝑠∀𝑗𝑗≠𝑖𝑖�  ∝  ∏ (𝑓𝑓𝑗𝑗(𝑥𝑥,𝑑𝑑) 𝜏𝜏)𝑠𝑠𝑗𝑗  𝑠𝑠−𝑓𝑓𝑗𝑗(𝑥𝑥,𝑑𝑑) 𝜏𝜏𝑗𝑗≠𝑖𝑖     (2) 

In equation (2), 𝑓𝑓𝑗𝑗(𝑥𝑥,𝑑𝑑) characterizes the mean firing rate of unit 𝑗𝑗 at position bin 𝑥𝑥 and direction 𝑑𝑑 and 𝜏𝜏 is the bin duration used for decoding, which was chosen = 20 ms in our analyses. By marginalizing the 

left hand side of equation (2) over direction 𝑑𝑑: 𝑝𝑝�𝑥𝑥�𝑠𝑠∀𝑗𝑗≠𝑖𝑖�  ∝  ∑ 𝑝𝑝�𝑥𝑥,𝑑𝑑�𝑠𝑠∀𝑗𝑗≠𝑖𝑖�𝑑𝑑  (3) 

Then, the Bayesian learned tuning for unit 𝑠𝑠 was calculated as: 𝑝𝑝′(𝑠𝑠𝑖𝑖|𝑥𝑥)  = ∑ 𝑠𝑠 ∗ 𝑝𝑝(𝑠𝑠𝑖𝑖 =  𝑠𝑠|𝑥𝑥)𝑘𝑘  (4) 

in which  𝑝𝑝(𝑠𝑠𝑖𝑖 =  𝑠𝑠|𝑥𝑥) = 𝑝𝑝�𝑥𝑥|𝑠𝑠∀𝑗𝑗≠𝑖𝑖  & 𝑠𝑠𝑖𝑖 = 𝑠𝑠� ∗ 𝑝𝑝(𝑠𝑠𝑖𝑖 = 𝑠𝑠)/𝑝𝑝(𝑥𝑥)   (5) 

Where 𝑝𝑝�𝑥𝑥|𝑠𝑠∀𝑗𝑗≠𝑖𝑖  & 𝑠𝑠𝑖𝑖 = 𝑠𝑠� is the average posterior probability of track position, 𝑥𝑥, over time bins in 

which the unit 𝑠𝑠 fired 𝑠𝑠 spikes, calculated using only units ≠ 𝑠𝑠. 𝑝𝑝(𝑠𝑠𝑖𝑖 = 𝑠𝑠) is the overall proportion of time 

bins where unit 𝑠𝑠 fired 𝑠𝑠 spikes, and 𝑝𝑝(𝑥𝑥) is average posterior over all time bins.  

The equation (4) for calculating the LTs was simplified to the unit 𝑠𝑠’s spike-triggered average of the 

posterior probability distributions: 

 

 

in which 𝑡𝑡 is the time bin and 𝑠𝑠𝑡𝑡 is the number of spikes that unit 𝑠𝑠 fired at 𝑡𝑡. 
Additional restrictions to avoid potential confounds from unit waveform clustering: To avoid potential 

confounds from spike misclassification of units detected on the same shank 58, we placed additional 

𝑝𝑝′(𝑠𝑠𝑖𝑖|𝑥𝑥) =
∑ 𝑠𝑠𝑡𝑡 ∗ 𝑝𝑝𝑡𝑡�𝑥𝑥�𝑠𝑠∀𝑗𝑗≠𝑖𝑖� 𝑡𝑡∑ 𝑝𝑝𝑡𝑡�𝑥𝑥�𝑠𝑠∀𝑗𝑗≠𝑖𝑖� 𝑡𝑡  

 

    (6) 

 

 



inclusion requirements for LT calculations. We determined the L-ratios 59 between unit 𝑠𝑠 and each other 

unit recorded on the same shank, yielding the cumulative probability of the other units’ spikes belonging 

to unit 𝑠𝑠. Since the range of L-ratio depends on the number of included channels, to provide a consistent 

threshold for all datasets, the L-ratio for each pair was calculated using the four channels that featured 

the highest spike amplitude difference between each pair of units. Only units with L-ratio > 10-3 (see 

Extended Data Fig. 3) were used to calculate LTs for each cell.  

Fidelity of the learned tunings across epochs. To quantify the degree to which tuning curves, 𝑝𝑝(𝑥𝑥|𝑠𝑠), in 

LTs or PFs relate across epochs, we used a simple Pearson correlation coefficient of the tuning curves 

across position bins between the LTs/PFs. We obtained consistent results with a measure based on the 

Kullback-Leibler divergence (not shown). The median for each epoch were compared against a surrogate 

distribution of such median values obtained by shuffling the unit identities of the PFs separately (10000 

times) within each session. In other words, we tested against the null hypothesis that learned tunings in 

each session may have trivial correlations with PFs. For each epoch we obtained p-values based on the 

number of such surrogate median values that were ≥ those in the original data. With the exception of 

Fig.2 only units that participated in > 100 ripple events in PRE or POST were included in the analysis. 

Learned tuning’s dynamics. We further evaluated the dynamics of LTs across time in non-overlapping 15 

min windows (for illustration purposes only in Fig. 3, we used overlapping 15 min windows with a 5 min 

step size). A unit’s LT stability was defined as the median Pearson correlation coefficient between that 

unit’s LTs in all different pairs of time windows within a given epoch. Thus, units that had stable and 

consistent LTs across an epoch yield higher correlations in these comparisons than those with unstable 

LTs. These unit LT stability values were z-scored against a null distribution of median correlation 

coefficients based on randomizing the LTs’ unit identities within each 15 min time window (1000 unit ID 

shuffles). Normalized stability correlation matrices in Fig. 4c were calculated by z-scoring each 

correlation coefficient against a surrogate distribution based on shuffling the LTs’ unit identities. To 

investigate the changes in POST LT stability over time in Fig. 4c, we calculated LT stability within 

overlapping 2-hour blocks with a step size of one hour.   

Ripple event replay scores. The posterior probability matrix (𝑃𝑃) for each ripple event was calculated 

based on previously published methods. Replays were scored using the absolute weighted correlation 

between decoded position (𝑥𝑥) and time bin (𝑡𝑡) 31: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡, 𝑥𝑥; 𝑝𝑝) =  
𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡, 𝑥𝑥;𝑃𝑃)�𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡, 𝑡𝑡;𝑃𝑃)𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑥𝑥;𝑃𝑃)

 (7) 

𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡, 𝑥𝑥;𝑃𝑃) =  
∑ ∑ 𝑃𝑃𝑖𝑖𝑗𝑗(𝑥𝑥𝑗𝑗 −𝑚𝑚(𝑥𝑥;𝑃𝑃))(𝑡𝑡𝑖𝑖 −𝑚𝑚(𝑡𝑡;𝑃𝑃))𝑗𝑗𝑖𝑖 ∑ ∑ 𝑃𝑃𝑖𝑖𝑗𝑗𝑗𝑗𝑖𝑖  

(8) 

 𝑚𝑚(𝑥𝑥;𝑃𝑃) =  
∑ ∑ 𝑃𝑃𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗𝑖𝑖∑ ∑ 𝑃𝑃𝑖𝑖𝑗𝑗𝑗𝑗𝑖𝑖       𝑚𝑚(𝑡𝑡; 𝑝𝑝) =  

∑ ∑ 𝑃𝑃𝑖𝑖𝑗𝑗𝑡𝑡𝑖𝑖𝑗𝑗𝑖𝑖∑ ∑ 𝑃𝑃𝑖𝑖𝑗𝑗𝑗𝑗𝑖𝑖  

 

(9) 

 

In which 𝑠𝑠 and 𝑗𝑗 index time bin and position bin, respectively.  



Each replay score was further quantified as a percentile relative to surrogate distributions obtained by 

shuffling the data according to the commonly used within-event time swap, in which time bins are 

randomized within each ripple event 57. We preferred this method over the circular spatial bin shuffle 

(or column cycle shuffle, also described by 57, as it preserves the distribution of peak locations across 

time bins within each event (see also related discussion in ref30). Each ripple event was assigned to one 

of four quartiles based on the percentile score of the corresponding replay relative to shuffles 

Place fields’ overlap with decoded posterior. A Pearson correlation coefficient was calculated between 

the PF of each unit firing (participating) in a time-bin and the posterior probability distribution for that 

bin based on the firings of all units. The mean posterior correlation of PFs was calculated over all 

participating units. Since this mean posterior correlation might be inflated when there is a low number 

of participating units, for each time bin with firing unit count 𝑛𝑛 we generated surrogate distribution of 

mean posterior correlation by randomly selecting 𝑛𝑛 units. Then, the mean posterior correlation in the 

original data was z-scored against the corresponding surrogate distribution for 𝑛𝑛 randomly participating 

units.  

Multiple regression analyses. To examine the extent to which a spatial tuning curve (LT or PF) within a 

given epoch was impacted by the tuning curves in other epochs, we performed multiple regression 

analyses. We modeled POST LTs and reMAZE PFs using the following equations: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐿𝐿𝑃𝑃𝑠𝑠 = 𝑐𝑐0 +  𝑐𝑐1 ∗ 𝑎𝑎𝑐𝑐𝑠𝑠𝑐𝑐𝑎𝑎𝑎𝑎𝑠𝑠 𝐿𝐿𝑃𝑃 +  𝛽𝛽1 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃 𝐿𝐿𝑃𝑃𝑠𝑠 +  𝛽𝛽2 ∗ 𝑀𝑀𝐴𝐴𝐴𝐴𝑃𝑃 𝑃𝑃𝑃𝑃𝑠𝑠 +  𝛽𝛽3 ∗ 𝑀𝑀𝐴𝐴𝐴𝐴𝑃𝑃 𝑡𝑡ℎ𝑠𝑠𝑡𝑡𝑎𝑎 𝐿𝐿𝑃𝑃𝑠𝑠 

+ 𝛽𝛽4 ∗ 𝑀𝑀𝐴𝐴𝐴𝐴𝑃𝑃 𝑐𝑐𝑠𝑠𝑝𝑝𝑝𝑝𝑟𝑟𝑠𝑠 𝐿𝐿𝑃𝑃𝑠𝑠   (9) 𝑐𝑐𝑠𝑠𝑀𝑀𝐴𝐴𝐴𝐴𝑃𝑃 𝑃𝑃𝑃𝑃𝑠𝑠 =  𝑐𝑐0 +  𝑐𝑐1 ∗ 𝑎𝑎𝑐𝑐𝑠𝑠𝑐𝑐𝑎𝑎𝑎𝑎𝑠𝑠 𝐿𝐿𝑃𝑃 +  𝛽𝛽1 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃 𝐿𝐿𝑃𝑃𝑠𝑠 +  𝛽𝛽2 ∗ 𝑀𝑀𝐴𝐴𝐴𝐴𝑃𝑃 𝑃𝑃𝑃𝑃𝑠𝑠 +  𝛽𝛽3 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐿𝐿𝑃𝑃𝑠𝑠   (10) 

The dependent variables and regressors were calculated over all position bins from all units. The 

average LT in the analyses were calculated by averaging all unit LTs over PRE and POST. 𝑐𝑐s and 𝛽𝛽s are 

the regression coefficients.  

In order to test the statistical significance of the regression 𝑃𝑃2 values and each regression 𝛽𝛽 coefficient, 

we compared these against distributions of surrogates (n = 10,000) which were calculated by 

randomizing the unit identities of the dependent variable’s tuning curves. For each coefficient and 𝑃𝑃2 

values, we obtained a p-value based on the number of surrogates that were ≥ those in the original data. 

  



Supplementary Information 

Representations during high score preplays do not align with maze place fields. 

The sequential firing patterns observed during ripples in sleep show a diversity of faithfulness to 

trajectories through the maze, as captured in the distribution of replay (and preplay) scores (Extended 

Data Fig. 3a) in the datasets we analyzed using a commonly used weighted-correlation measure, 

advocated by several studies 27,30,31. Here, each event was scored as a percentile compared to its own 

surrogate distributions generated using a within-ripple-event time-bin shuffle 57 (see Methods). These 

distributions varied from a uniform distribution expected from chance in all datasets (expected median 

replay score = 50), not only for MAZE, and POST epochs, but also for PRE, consistent with previous 

reports 27,30,60. Replay scores during MAZE showed the greatest deviation from chance. While we 

expected more replay than preplay based on previous reports 27,30,31, POST and PRE replay scores were 

only marginally different in one out of the three datasets we examined (Grosmark dataset: PRE: median 

= 53.8, POST: median = 57.2, PRE vs POST p = 3.45×10-12, Mann Whitney U Test (MWUT); Miyawaki 

dataset: PRE: median = 50.8 , POST: median = 51.2, PRE vs POST p = 0.47, MWUT; Giri dataset: PRE: 

median = 56.6 , POST: median = 55.6, PRE vs POST p = 0.42, MWUT).  

Since replays are considered to simulate trajectories through the maze, we asked whether tunings 

learned from higher score ripple events in either PRE or POST might show greater fidelity to the maze 

PFs. We therefore calculated LTs from four subsets of ripples events with replay scores of different 

percentiles (Extended Data Fig. 2b,c). We called the tunings learned from the lowest and highest 

quartiles “low score” and “high score” LTs, respectively. Remarkably, both the low score and high score 

LTs from MAZE and POST showed strong fidelity to maze PFs, despite the absence of sequential 

trajectories in low score events. In contrast, neither high nor low score LTs in PRE showed LTs consistent 

with the maze PFs (Extended Data Fig. 2b). LTs from all quartiles of replay scores showed significant PF 

fidelity in MAZE and POST but not in PRE (Extended Data Fig. 2c), with somewhat stronger PF fidelity in 

higher score quartiles (PRE: 𝜒𝜒2 = 7.2, p = 0.07; MAZE: 𝜒𝜒2 = 143, p <10-30; POST: 𝜒𝜒2 = 150.7, p < 10-31, 

Friedman test). Likewise, the spatial population vector correlations of low and high score LTs showed a 

strong correlation with maze PFs for both MAZE and POST epochs, but not for PRE. Overall, these results 

delineate that even during ripple events in POST with low replay scores, which are typically discarded as 

non-replays by most measures, the representational structures of neuronal spike trains remain 

congruent with the place fields on the maze. The firing patterns underlying these events could be 

detected as “reactivation” using pairwise or ensemble measures 12,38,61, but rather than providing a 

sequential sweep through space that would be necessary to score high for replay, such ripple events 

may provide non-continuous, low momentum, or random trajectories through the maze 39,40. In 

contrast, however, even during ripple events in PRE that appear to show sequential structure, the 

neurons cannot be said to represent the same locations as they do on the maze.  

To better understand the dichotomy between PRE and POST ripples, we examined the decoded 

posterior positions and unit rasters of individual ripple events with high replay scores. In high score 

ripple events in PRE (e.g. examples shown in Extended Data Fig. 2d), even though these events 

appeared to show sequential trajectories leading to high scores, we could not distinguish this sequential 

structure in the spike trains of units sorted according to their preferred maze locations (such structure 



was evident in some high score events in POST, e.g. the second two panels). Inspection of individual bins 

revealed that units which were co-active in time-bins during PRE ripple events possessed highly 

divergent place fields with relatively low mean correlations with the collective posterior probability 

distributions, contrary to expectations from a unified population code. In contrast, the place fields of 

units in POST high and low score events showed a greater resemblance (and stronger mean correlation) 

with the posteriors in their respective bins, indicative of a coherent population representation. Mean 

posterior correlations of active PFs in bins during all ripple events in PRE and POST similarly showed no 

significant difference in between low and high score events in PRE, but they were significantly higher in 

POST relative to PRE (similar results were observed even when we restricted analysis to the subset of 

events that featured low jump distances (i.e. more continuous trajectories) between time bins (not 

shown)30,31). The shuffling methods employed to score replays in our and other studies invariably involve 

assumptions that are violated in real data 28-30. These results highlight the importance of verification, as 

we propose via Bayesian learned tunings, to ensure that decoded positions are in fact consistent with 

representations of place fields on the maze.   

 

Supplementary Table 1: summary of recording datasets  

Dataset Animal ID  Sex Maze type Number of pyramidal units 

Giri Rat N F L-shape 84 

 Rat S F L-shape 78 

 Rat U M Semicircular (reMAZE) 174 

 Rat V M Linear  (reMAZE) 47 

   Semicircular  (reMAZE) 78 

    Total 461 

     

Miyawaki Rat R M Linear 84 

 Rat T M Linear 58 

   L-shape 41 

   U-shape 78 

 Rat K M Linear 62 

    Total 323 

     

Grosmark Rat A M Linear  148 

   Circular 101 

 Rat B M Linear  57 

 Rat C M Linear 53 

 Rat G M Circular 52 

    Total 411 

 

  



Extended Data Figure Legends 

Extended Data Figure 1. Additional examples that demonstrate the degree of LT stability within and 

between different behavioral epochs. Heat maps of ripple LTs in sliding 15 min windows from PRE 

through MAZE to POST (maze PFs in gray on right) for sample units from 5 additional sessions. The 

matrix of correlation coefficients between LTs from different time windows are displayed next to the 

corresponding heat maps.  

Extended Data Fig. 2. Place field fidelities do not strictly correlate with replay score. (a) Distribution of 

replay scores in the different datasets calculating as percentile against time shuffled bins. Median scores 

for different epochs are shown with dashed lines (chance median score = 50; see Methods). (b) Ripple 

events were divided into quartiles according to replay score. Top panels show the place fields and sets 

of LTs calculated based on low and high quartile replay score events within PRE, MAZE, and POST. 

Bottom panels show population vector (PV) correlations between position bins in the PFs versus 

different sets of LTs. (c) Distribution of PF fidelity for each ripple subset. Median PF fidelities were 

significant against surrogate distributions (from unit identity shuffles) in all subsets during MAZE and 

POST but not during PRE. (d) Place fields of participating units in replays show differing amounts of 

overlap with the decoded posteriors. Example events with high replay scores in PRE and POST, and low 

replay scores in POST showing posterior probability matrices and corresponding spike rasters of units 

sorted by place field order. The middle row depicts the mean correlation of the participating units’ place 

fields with the decoding posterior in each time bin. The bottom panels show the place fields and 

decoded positions of participating units for example time bins. (e) Mean posterior correlation of PFs and 

decoded positions show increased place-field overlap in both low and high score replays in POST 

compared to PRE. Low and high replay score events in PRE did not differ significantly. ***p < 0.001.   

Extended Data Figure 3. A L-ratio measure to quantify the degree of overlap in the spike feature space 

between pairs of units. (a) Each scatterplot on the top shows the spikes of the example unit #20 (black 

dots) and another unit (colored dots) recorded on the same shank in an example recording session from 

the Giri dataset. The axes in each scatterplot correspond to the spike amplitude on two channels with 

maximal distinction between the pairs. There is a range of overlap with unit #20; for example, unit #30 

on the leftmost inset showed almost no overlap, while unit 19 on the rightmost inset significantly 

overlapped. The overlap was quantified as an L-ratio on the top of each inset. The L-ratio between unit 

#20 and any other unit was obtained by calculating the probability of spikes from the second unit 

belonging to unit 20. The insets on the second row show the comparison between the mean spike 

amplitudes for each unit pair as plotted in the scatterplots. (b), The cumulative distribution of L-ratio for 

the example session and pooled data across all sessions (left), and for each individual session (right).  
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Figures

Figure 1

Bayesian learning of hippocampal spatial tunings during o�ine states.



Figure 2

Bayesian learned tunings during MAZE and o�ine states.



Figure 3

Stability of learned tunings during ripples in PRE and POST.



Figure 4

Spatial representations are randomized over the course of sleep.



Figure 5

POST ripple tunings predict future place �elds on maze re-exposure.



Figure 6

Ensemble patterns during awake theta and ripples and a diversity of pre-existing representations impact
the tunings in POST sleep.
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