Background: A previous screening of Arabidopsis thaliana for mutants exhibiting dysfunctional chloroplast protein transport identified the chloroplast import apparatus ( cia ) gene. The cia2 mutant has a pale green phenotype and reduced rate of protein import into chloroplasts, but leaf shape and size are similar to wild-type plants of the same developmental stage. Microarray analysis showed that nuclear CIA2 protein enhances expression of the Toc75 , Toc33 , CPN10 and cpRPs genes, thereby up-regulating protein import and synthesis efficiency in chloroplasts. CIA2-like (CIL) shares 65% sequence identity to CIA2, suggesting that CIL and CIA2 are homologous proteins in Arabidopsis. Here, we further assess the protein interactions and sequence features of CIA2 and CIL.
Results: Subcellular localizations of truncated CIA2 protein fragments in our onion transient assay demonstrate that CIA2 contains two nuclear localization signals (NLS) located at amino acids (aa) 62-65 and 291-308, whereas CIL has only one NLS at aa 47-50. We screened a yeast two-hybrid (Y2H) Arabidopsis cDNA library to search for putative CIA2-interacting proteins and identified 12 nuclear proteins, including itself, CIL, and flowering-control proteins (such as CO, NF-YB1, NF-YC1, NF-YC9 and ABI3). Additional Y2H experiments demonstrate that CIA2 and CIL mainly interact with flowering-control proteins via their N-termini, but preferentially form homo- or hetero-dimers through their C-termini. Moreover, sequence alignment showed that the N-terminal sequences of CIA2, CIL and NF-YA are highly conserved. Therefore, NF-YA in the NF-Y complex could be substituted by CIA2 or CIL.
Conclusions: We show that Arabidopsis CIA2 and CIL can interact with CO and NF-Y complex, so not only may they contribute to regulating chloroplast function but also to modulating flower development.