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Ed summary: A new velocity model improves cell-fate mapping with 1 

lineage-traced scRNA-seq data. 2 
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Abstract 28 

Single-cell RNA-sequencing (scRNA-seq) is a powerful approach for studying cellular 29 

differentiation, but accurately tracking cell-fate transitions can be challenging, especially in 30 

disease conditions. Here, we introduce PhyloVelo, a computational framework that 31 

estimates the velocity of transcriptomic dynamics by using monotonically expressed genes 32 

(MEGs), or genes with expression patterns that either increase or decrease, but don’t cycle, 33 

through phylogenetic time. Through integration of scRNA-seq data with lineage information, 34 

PhyloVelo identifies MEGs and reconstructs a transcriptomic velocity field. We validate 35 

PhyloVelo using simulated data and C. elegans ground-truth data, successfully recovering 36 

linear, bifurcated, and convergent differentiations. Applying PhyloVelo to seven lineage-37 

traced scRNA-seq datasets, generated via CRISPR/Cas9 editing, lentiviral barcoding or 38 

immune repertoire profiling, demonstrates its high accuracy and robustness in inferring 39 

complex lineage trajectories, while outperforming RNA velocity. Additionally, we discover 40 

that MEGs across tissues and organisms share similar functions in translation and ribosome 41 

biogenesis.  42 

Main 43 

Organism development and disease progression both involve serial cell-fate transitions 44 

upon repeated cell divisions. Essentially, all cells in an organism are related by a 45 

phylogenetic tree where the root represents the zygote, the branches represent cell 46 

divisions, and the leaves represent the terminal cells at various phenotypic states (e.g. cell 47 

types)1-4. To understand how cell fate is determined, it is important to identify the order of 48 
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cell-state transitions acting in the lineage tree and the underlying gene regulatory 49 

mechanisms that precipitate these transitions5.  50 

 51 

Single-cell RNA sequencing (scRNA-seq) has been a powerful approach to study cellular 52 

differentiations6-10. However, the transcriptomic trajectories may or may not be equivalent to 53 

the true lineage paths of a progenitor population11-14. One example is convergent 54 

differentiation where distinct progenitors can converge on the same terminal state15-19. In 55 

this case, similar cellular states do not reflect a closer lineage relationship13. Moreover, 56 

predicting the fate directions often requires prior knowledge of the initial/terminal cell types9 57 

or relies on the information of gene expression diversity during development10, thus limiting 58 

their applications to normally differentiating systems20. Abnormal development or disease 59 

progression often involves noncanonical cell-fate transitions such as dedifferentiation and 60 

transdifferentiation21, while tackling these processes is still challenging with current 61 

approaches. RNA velocity22, 23 provides a powerful framework to predict cellular state 62 

transitions by leveraging the internal kinetics of spliced/unspliced RNAs, and can be readily 63 

applied to diseased or perturbated conditions. However, the intrinsic high dynamics of RNA 64 

kinetics including transcription, splicing and degradation often violates the constant rate 65 

assumptions in the model, which can lead to uncertain estimates23-25. Taken together, cell-66 

state transitions are challenging to distinguish using transcriptomic data alone11-14. 67 

 68 

The recent use of CRISPR/Cas9 editing to record cell lineages offers an opportunity to 69 

reconstruct the cell lineage tree at whole-organism or whole-organ level26-29. Importantly, 70 

simultaneous analysis of single-cell transcriptomes and lineage tree makes it possible to 71 

uncover complex developmental dynamics, as well as the molecular mechanisms, of cell 72 

fate commitment13, 30-35. For instance, CRISPR lineage tracing has enabled the identification 73 

of transcriptional convergence of endodermal cells from both extra-embryonic and 74 

embryonic origins during mouse embryogenesis32. Although the significance of CRISPR 75 
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lineage tracing coupled with single-cell transcriptomics has been widely acknowledged in 76 

developmental biology and somatic evolution13, 29, 33, computationally integrating dual 77 

information for reconstructing cellular trajectories is challenging, partially due to the distinct 78 

data modalities. Previous effort such as the CoSpar algorithm36 has been made to use the 79 

paired scRNA-seq and lineage information to infer transition maps and predict fate bias of 80 

progenitor cells, which is better fit for static barcoding information (e.g. LARRY system37). 81 

Another algorithm lineageOT has taken advantage of lineage tree for trajectory inference38,  82 

however, this relies on time-course scRNA-seq data and an invariant cell lineage tree. This 83 

type of data is currently only available in C. elegans14, thus preventing its application to 84 

more common datasets such as CRISPR-based lineage tracing data. 85 

 86 

In this study, we described a method to systematically map cell-fate transitions by using 87 

both single-cell transcriptomic and lineage information. Our method, called PhyloVelo, 88 

leverages monotonically expressed genes (MEGs) along cell divisions to quantify the 89 

transcriptomic velocity fields from lineage-resolved single-cell RNA-seq data (Fig. 1). We 90 

verified the capacity and robustness of PhyloVelo to resolve complex lineage structures in 91 

comprehensive simulations and real lineage tracing data in embryo development (C. 92 

elegans and mouse embryos), tumor evolution (both initiation and metastasis), in vitro 93 

hematopoiesis and intratumoral T cell dynamics. We further demonstrated that the velocities 94 

estimated from one scRNA-seq dataset were sufficiently robust to infer the lineage 95 

trajectory with independent datasets in similar biological conditions, even in the absence of 96 

lineage information. Finally, we found MEGs were strongly enriched in ribosome-mediated 97 

processes across tissues and organisms, thus exposing an internal clock-like gene 98 

expression program during cell proliferation and differentiation. 99 

Results 100 

A transcriptomic velocity field reconstructed by MEGs 101 
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RNA velocity22, 23 exploits the kinetics of spliced/unspliced RNAs to estimate the time 102 

derivative (or velocity) of single-cell gene expression states (d𝒔/d𝑡 with 𝒔 representing the 103 

high-dimensional expression state and 𝑡 representing time). This enables the prediction of 104 

future gene expression states and reconstruction of a velocity vector field of cellular state 105 

transitions on low-dimensional embedding. We anticipated that other measurements of 106 d𝒔/d𝑡 can be similarly employed to establish the velocity field. In particular, lineage tracing 107 

by endogenous mutations or evolving barcodes (e.g. CRISPR/Cas9 editing) reconstructs a 108 

cell phylogenetic tree that records the cell division history from a common progenitor (Fig. 109 

1a). Because more cell divisions usually indicate more advanced differentiation stages in a 110 

stem cell hierarchy, the phylogenetic time potentially associates with the differentiation time 111 

of individual cells. To bridge differentiation and phylogenetic time, we focused on a group of 112 

genes (namely MEGs) whose expressions increase or decrease monotonically over 113 

phylogenetic time (Fig. 1a-b). The monotonic feature of MEGs enables them to serve a 114 

“clock” of cell differentiations (Fig. 1a). 115 

 116 

To identify MEGs and estimate their expression velocity d𝒔/d𝑡, we first sought to estimate 117 

the latent gene expression of each gene at a phylogenetic time, which was akin to the latent 118 

variables in single-cell RNA-seq denoising39. Inspired by the classic models of trait evolution 119 

in phylogenetics40, we modeled the continuously varying gene expressions by a diffusion 120 

process (also called stochastic differential equation) (Methods). Each gene has a specific 121 

rate of expression dynamics, namely the drift coefficient 𝑣(𝑡, 𝑧𝑡) per unit of time, where 𝑡 is 122 

the time started from the root of tree and 𝑧𝑡 is the latent expression for a gene at time 𝑡. 123 

MEGs were identified by their significant association (Pearson’s correlation, q<0.05) 124 

between the latent expressions, 𝒁 = (𝑧̂1, 𝑧̂2, … , 𝑧̂𝑛), and the time from terminal cells to the 125 

root, 𝑩 = (𝑏1, 𝑏2, … , 𝑏𝑛), where 𝑛 was the cell number (Methods). It’s worth noting that 126 

MEGs are defined with respect to the observed phylogenetic time range 𝑩, which means 127 

the monotonic expression might not retain out of 𝑩. Moreover, although we focused on 128 
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linear MEGs with phylogenetic time, non-linear MEGs can be also identified if the linear 129 

regression is statistically significant. We will show later by simulations that linear 130 

approximation is technically sound way to accurately map cell trajectories. The drift 131 

coefficients of all 𝐺 MEGs in a dataset, 𝒗 = (𝑣1, 𝑣2, ⋯ , 𝑣𝐺), were thus referred to as 132 

phylogenetic velocity (or PhyloVelo). As shown in Fig. 1b-c, phylogenetic velocity can be 133 

used to predict the past expression state of each cell before a unit of time 𝛥𝑡 (one cell 134 

division or mutation), 𝒔∗ = 𝒔 − 𝒗𝛥𝑡. Similar to RNA velocity22, 23, phylogenetic velocity 𝒗 can 135 

also be projected into low dimensional embedding such as t-distributed Stochastic Neighbor 136 

Embedding (tSNE) or Uniform Manifold Approximation and Projection (UMAP), which 137 

reconstructs the velocity vector fields (Fig. 1d). Unlike RNA velocity where the velocity fields 138 

point to future extrapolated states, phylogenetic velocity fields point to the instantaneously 139 

past states, thus reconstructing fate-transition map in backward directions (Fig. 1d).  140 

PhyloVelo recovers complex lineages in simulations and C. elegans 141 

We next sought to test PhyloVelo with simulation data where various lineage structures 142 

were considered, including linear, bifurcated and convergent differentiations (Fig. 2a-c). A 143 

lineage-imbedded scRNA-seq simulator PROSSTT41 was modified to record individual cell 144 

divisions and generate single-cell UMI counts simultaneously (Methods). To model cell 145 

differentiations, different cell types each showing a characteristic gene expression program 146 

were simulated in the three lineage structures, respectively (Fig 2a-c, Supplementary Fig. 147 

1). We also simulated random mutations that occur during cell divisions, which allows to 148 

build mutation-based cell lineage tree (Methods). Of note, simulations showed that different 149 

cell types were highly intermixed on the lineage tree (Fig. 2a-c), a phenomenon that 150 

appears to be common for organ development across diverse species, such as flies42, 151 

zebrafish43 and mice44. Nevertheless, the dimensionality reduction embedding (tSNE) of 152 

simulated scRNA-seq data recapitulated the actual lineage structures (Fig. 2a-c). 153 

 154 
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By applying PhyloVelo to the simulation data, we first found that MEGs following either 155 

increasing or decreasing dynamics can be robustly detected with our algorithm (Extended 156 

Data Fig. 1). With the estimated phylogenetic velocities of MEGs, PhyloVelo mapped the 157 

state transitions in backward directions which point to the extrapolated past states of 158 

individual cells on low dimensional embedding (Fig. 2d-f). We used two quantitative metrics 159 

to systematically evaluate the performance of PhyloVelo with simulation datasets generated 160 

under a variety of parameters and conditions: (1) precision rate of MEG identification, 𝑀1; 161 

(2) Pearson’s correlation of estimated velocity directions using the identified MEGs vs using 162 

the genuine MEGs, 𝑀2. As shown in Extended Data Fig. 1 and Supplementary Fig. 2-5, 163 

we found PhyloVelo inferences were highly robust to the cell number (mean 𝑀1>80% and 164 

mean 𝑀2>90% even at low cell number of 100 cells), non-linear dynamics of MEGs (mean 165 𝑀1>75%, 𝑀2 was not available here), the methods of dimensionality reduction embedding 166 

(mean 𝑀2>90% for both tSNE and UMAP), and the sparsity level of single-cell data (mean 167 𝑀1>90% and 𝑀2>90% even for ~0.2 UMIs per cell per gene). Interestingly, both 𝑀1 and 𝑀2 168 

remained high when the number of genuine MEGs exceeded 50 (𝑀1>85% and 𝑀2>90%, 169 

Extended Data Fig. 1, Supplementary Fig. 6). Mathematical analysis verified a small 170 

angle (upper bound<37°) between the estimated and true velocity vectors at 50 MEGs and 171 

a precision rate of 𝑀1=80% (Supplementary Note). Using a stringent threshold (𝑀2=95%) 172 

for good performance, our simulations revealed at least 35, 82 and 43 MEGs were required 173 

for linear, bifurcated and convergent differentiation model, respectively. In summary, our 174 

comprehensive benchmarking and mathematical analysis demonstrated the high accuracy 175 

and robustness of PhyloVelo to systematically map cell-state trajectories. 176 

In addition, we found the estimated phylogenetic velocities based on the mutation-based 177 

phylogenies and the ground-truth division history were highly concordant, although 178 

inaccurate velocity estimations in local lineages were noted when the mutation rate was 179 

rather low (mean mutation rate u=0.1 per cell division) (Supplementary Fig. 7-8). 180 
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Importantly, phylogenetic velocity estimates were robust to different phylogenetic methods 181 

(e.g. maximum likelihood, neighbor joining or maximum parsimony), which was because 182 

these methods gave highly consistent inferences on the phylogenetic distances 183 

(Supplementary Fig. 9). Finally, while classic trajectory inference algorithms such as 184 

monocle37, slingshot45, and PAGA46 can accurately identify the backbones of linear and 185 

bifurcated lineage structures, only PAGA was able to identify the circular structure in 186 

convergent differentiation (Supplementary Fig. 10). In fact, additional information on initial 187 

or terminal cell types is needed to define the directions using the aforementioned three 188 

algorithms. This is expected because most trajectory inference methods are inadequate for 189 

single-cell datasets containing a convergent trajectory, and also rely on prior information of 190 

initial/terminal cell types9.  191 

We next applied PhyloVelo to C. elegans given that the embryonic lineage tree of this 192 

organism is entirely known2. The scRNA-seq data from temporal C. elegans embryos are 193 

also available and have been mapped to the invariant lineage tree, as described by Packer 194 

et al.14. Thus, C. elegans is an ideal system to benchmark our method. We focused on the 195 

AB lineage with mostly ectoderm accounting for ~70% of the terminal cells in the embryo 196 

(Fig. 3a), which also had the densest single-cell annotations in Packer et al. dataset14 197 

spanning from generation 5 (32-cell stage) to 12 (threefold stage of development). Since 198 

many nodes on the lineage tree have been sampled multiple times through pooled 199 

sequencing of multiple embryos, one cell was randomly chosen to represent the 200 

corresponding lineage node. This resulted in 298 non-repetitive cells for the AB lineage, 201 

denoted as a single pseudo-embryo. By analyzing the correlation between latent gene 202 

expressions and cell generation times, we identified 326 significant (q<0.05) MEGs with 22 203 

and 304 increasing and decreasing in expressions, respectively (Fig. 3b, Supplementary 204 

Table 1). This was consistent with the observed global decline in gene expressions during 205 

C. elegans embryogenesis14.  206 
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To generate a ground-truth velocity field, each cell was assigned a vector on the UMAP plot 207 

that points to its immediate parental cell in the ground-truth lineage tree (Fig. 3c). The 208 

vector fields together tracked the cell lineages back to the earliest cells in development. 209 

Therefore, by comparing the quantitative directions of PhyloVelo velocity fields with the 210 

ground-truth and also RNA velocity fields, we were able to evaluate the accuracy of our 211 

method. The UMAP embedding clearly reflected the differentiation trajectories along cell 212 

divisions (Fig. 3c-e) or embryo time (Fig. 3f). Surprisingly, we found that RNA velocity 213 

(scVelo - dynamical mode, Fig. 3d) failed to recover the expected trajectories, where the 214 

directions were even reversed from the ground truth (Supplementary Fig. 11a). In fact, the 215 

scVelo latent time (Fig. 3g) was negatively correlated with the real embryo time in early 216 

development before ~300 minutes (Fig. 3d, Supplementary Fig. 11b). In contrast, the 217 

directions of phylogenetic velocities recapitulated the actual development orders (Fig. 3e, 218 

Supplementary Fig. 11c-d). Other single pseudo-embryo data also showed similar results 219 

(Supplementary Fig. 12).  220 

The RNA velocity fields estimated by pooling all 29,600 AB lineage cells from multiple 221 

embryos were improved (Fig. 3i-j), suggesting that RNA velocity estimates had been 222 

hindered by a small cell number. Remarkably, the phylogenetic velocities of 326 MEGs 223 

estimated from single pseudo-embryo data (~300 cells) can be used to accurately infer the 224 

velocity fields for all 29,600 AB lineage cells, even though their lineage trees were not 225 

utilized (Fig. 3k-l). In fact, these MEGs were even applicable to non-AB lineage cells such 226 

as hypodermis, body wall muscle (BWM) and pharynx (Extended Data Fig. 2). 227 

Interestingly, a convergent trajectory for the first row of head body wall muscle (BWM) and 228 

all other BWMs (including C, D and MS lineages) can be identified (Extended Data Fig. 229 

2e). These results demonstrated a general transcriptomic clock during C. elegans 230 

embryogenesis, and also suggest that compiling a reference panel of MEGs will greatly 231 

facilitate the applications of PhyloVelo to conventional scRNA-seq data where lineage data 232 
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is unavailable. In summary, the benchmarking on comprehensive simulations and C. 233 

elegans embryo lineages demonstrated the high robustness of PhyloVelo to recover 234 

complex developmental trajectories with phylogeny-resolved scRNA-seq data even with 235 

relatively limited cell numbers.  236 

PhyloVelo resolves multiple-rate kinetics in mouse embryos 237 

We next applied PhyloVelo to a CRISPR/Cas9-based lineage tracing dataset from mouse 238 

early embryos (E8.0 or E8.5), described by Chan et al.32. This study provided both cell 239 

lineage tree and scRNA-seq data via CRISPR lineage tracing of mouse fertilization through 240 

gastrulation. By analyzing four embryos (embryo 1, 2, 3 and 6, each with 6,328 to 19,071 241 

cells and more than 500 unique barcode alleles), we have identified 426, 460, 420 and 418 242 

MEGs (q<10-5), respectively at whole embryo level (Extended Data Fig. 3, Supplementary 243 

Table 1). Notably, about 50% (n=212) of MEGs were overlapped by all four embryos and 244 

the phylogenetic velocities of these overlapped MEGs were strongly correlated (Pearson’s 245 𝒓=0.65-0.95, Extended Data Fig. 3). Given the generally low barcode diversity in CRISPR 246 

lineage tracing47 and also high noise in scRNA-seq data, these data actually indicated the 247 

high robustness of PhyloVelo for identifying MEGs. Because of the rapid cell replication in 248 

early embryogenesis, the MEGs identified from one snapshot sample from Chan et al. 249 

dataset32 might only represent a short-term monotonic effect. Nevertheless, we found about 250 

a half (104 out of 212) of overlapped MEGs identified from Chan et al. dataset32 also 251 

showed significant correlation (p<0.05) with the capture time (E6.5-8.5) of temporal mouse 252 

embryos from Pijuan-Sala et al.19 (Supplementary Fig. 13). We thus called these 104 253 

genes long-term MEGs, or LT-MEGs. As expected, these 104 LT-MEGs identified from 254 

Chan et al. dataset32 enabled accurate prediction of the entire differentiation trajectories of 255 

mouse embryogenesis with the temporal scRNA-seq data (Extended Data Fig. 4a-c). 256 

Remarkably, these LT-MEGs were also highly robust to infer the velocity fields when 257 
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transferred to mouse brain tissues across broader developmental stages (E7-18) and over 258 

18 cell types48 (Extended Data Fig. 4d-f). 259 

To directly compare PhyloVelo with RNA velocity, and also quantify the state-transition 260 

probabilities between cell types, we next focused on the erythroid lineage given its well-261 

defined differentiation trajectory during mouse gastrulation49. Embryo 3 (E8.5) had the 262 

largest cell number and more diverse cell types in erythroid developmental lineages 263 

(n=2,419 cells), thus being selected for a representative case while other embryos (1, 2 and 264 

6) were also analyzed (Fig. 4a, Extended Data Fig. 5). RNA velocity failed to identify 265 

hematopoietic/endothelial progenitors as the earliest cell types (Fig. 4b-c). In addition, the 266 

fractions of varying cell types only changed slightly along the scVelo latent time (Fig. 4d). In 267 

contrast, PhyloVelo correctly predicted the expected trajectory from 268 

hematopoietic/endothelial/primitive blood progenitors to primitive blood early/late based on 269 

the velocity fields and pseudotime (Fig. 4e-g). Transferring the MEGs identified from 270 

erythroid cells of embryo 3 to other three embryos also robustly recovered their erythroid 271 

differentiation orders (Extended Data Fig. 5b-d). Dynamo50 was further used to incorporate 272 

PhyloVelo velocity fields, which can quantify the transition probabilities between any two cell 273 

types (Extended Data Fig. 5e-h). Dynamo successfully placed hematopoietic endothelial 274 

progenitors and primitive blood late as the starting and ending states, respectively 275 

(Extended Data Fig. 5i-l). Importantly, the possible ancestral states of a particular cell type 276 

(non-zero transition probabilities) recapitulated well where the cell type was differentiated. 277 

Finally, by applying CellRank20 with the input of the PhyloVelo pseudotime, we were also 278 

able to identify the known driver genes underlying erythroid maturation (e.g. Alas2, Bpgm, 279 

Car2, Slc4a1, Hemgn, Supplementary Fig. 14). 280 

Studies have shown that multiple-rate kinetics (MURK) of RNA violates the constant 281 

assumptions in RNA velocity model, which might lead to erroneous estimates of velocities24, 282 

25. Erythroid development is a salient example, where due to MURK, the directions of RNA 283 
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velocity were even reversed from the expected trajectory19, 24 (Fig. 4h). Remarkably, using 284 

the phylogenetic velocities of MEGs in erythroid development from a single embryo (embryo 285 

3) of Chan et al. dataset32 (Supplementary Fig. 15), PhyloVelo accurately predicted the 286 

expected erythroid trajectory with the scRNA-seq data of temporal mouse embryos (E6.5-287 

8.5) from Pijuan-Sala et al.19, despite the lineage tree was not being available (Fig. 4i). The 288 

PhyloVelo pseudotime was also strongly correlated with mouse embryo time (Fig. 4j-k). 289 

Together, these data demonstrated that PhyloVelo can circumvent the MURK issue of RNA 290 

velocity and the MEGs identified from one dataset can be also applied to independent 291 

datasets, even when phylogenetic information is not available.  292 

PhyloVelo identifies lung tumor dedifferentiation  293 

We next applied PhyloVelo to a CRISPR/Cas9-based lineage tracing dataset in a 294 

genetically-engineered mouse model (GEMM) of lung adenocarcinoma (KrasLSL-G12D/+; 295 

Trp53fl/fl, or KP model), described by Yang et al.51.  Cancer GEMMs allow one to study 296 

tumor evolutionary trajectory in its native microenvironment. Two primary tumors from KP 297 

mice (3726_NT_T1 and 3435_NT_T1) were selected because of their relatively high 298 

resolution of the lineage trees and composition of diverse cell types (including AT2-like, 299 

AT1-like, Gastric-like, High plasticity, Lung-mixed, Endoderm-like, Early EMT (epithelial–300 

mesenchymal transition)-1, etc.) (Fig. 5a, Extended Data Fig. 6a). In total, 337 and 344 301 

MEGs (q<0.05) were identified from these two tumors, respectively (Supplementary Fig. 302 

16, Supplementary Table 1). RNA velocity by scVelo performed reasonably well in 303 

3435_NT_T1 to recapitulate the expected trajectory from AT2-like to High plasticity, and to 304 

Lung-mixed cells (Extended Data Fig. 6b), whereas no clear trajectory was inferred in 305 

3726_NT_T1 by scVelo (Fig. 5b). In contrast, in both tumors PhyloVelo identified AT2-like 306 

cells as the cell-of-origin of KP lung adenocarcinoma and also recovered the trajectory from 307 

AT2-like to lung-mixed or Early EMT (Fig. 5c, Extended Data Fig. 6c). In 3726_NT_T1, two 308 

trajectories appeared to coexist, namely 1) AT2-like > lung-mixed > Early EMT and 2) AT2-309 
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like > Endoderm-like > Early EMT (Fig. 5c), thus recapitulating the findings in the original 310 

study51. As previous reports52, 53, lung tumor development was accompanied by the loss of 311 

AT2 identidy and gain of highly plastistic phenotypes such as lung-mixed and EMT. 312 

Yang et al.51 defined a single-cell fitness signature (Fig. 5d, Extended Data Fig. 6d) where 313 

the expression of a specific gene module is associated with the cell proliferating fitness 314 

estimated from the phylogenetic tree. While no overt association between scVelo latent time 315 

and the fitness signatures was found (Fig. 5d, Extended Data Fig. 6e), the PhyloVelo 316 

pseudotime showed a strong correlation with the fitness signature in both tumors 317 

(3726_NT_T1, Spearman’s 𝝆=0.86, P=1.2x10-218; 3435_NT_T1, Spearman’s 𝝆=0.83, 318 

P=4.0x10-280, Fig. 5d, Extended Data Fig. 6f). This indicates an intrinsic link between our 319 

measure of phylogenetic velocity and the cell fitness. Interestingly, CytoTRACE10, a 320 

computational algorithm to predict the cellular differentiation states with scRNA-seq data, 321 

revealed a drastic increase of the expressed gene number during the tumor evolution (Fig. 322 

5e-f, Extended Data Fig. 6g-i), which was in line with a dedifferentiation model. Reanalysis 323 

of a scRNA-seq dataset from human non-small cell lung cancers54 verified that CytoTRACE 324 

scores increased as tumor evolved from normal lung tissue, early-stage cancer, advanced-325 

stage cancer to pleural fluids and lymph node metastasis (Fig. 5g). This suggested that 326 

dedifferentiation might be a general phenomenon during tumor evolution. Also, this 327 

indicated that although gene expression diversity is a key feature of the developmental 328 

potential10, the directions of cell-state transitions are highly context-dependent and the 329 

cellular trajectories in normal differentiation and disease progression can be completely 330 

reversed.  331 

Again, we showed that the phylogenetic velocity of MEGs identified from only one pilot 332 

tumor 3726_NT_T1 (754 cells, Supplementary Fig. 16) enabled the robust inference of 333 

velocity fields for other independent KP tumors even the lineage trees were not utilized 334 

(n=58,022 cell, Fig. 5h-i). In fact, the inferred and expected trajectories were highly 335 
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consistent for the cell types that existed in 3726_NT_T1 but not for the cell types such as 336 

Mesenchymal 1 and 2 (Fig. 5h-i). Interestingly, the phenomenon that two trajectories 337 

coexist as in 3726_NT_T1 (Fig. 5c) was more evident on the pooled PhyloVelo velocity 338 

fields (Fig. 5h) and the quantitative state-transition map computed by Dynamo based on the 339 

PhyloVelo velocity fields (Fig. 5j-k). These results demonstrated the generality of 340 

transcriptomic clock across the KP tumors, but also implied that a large single-cell lineage 341 

tree spanning numerous cell types must be reconstructed in order to identify more 342 

ubiquitously clock-like MEGs. 343 

PhyloVelo for clonal lineage tracing data using static barcodes 344 

Clonal lineage tracing by static barcoding has been paired with single-cell transcriptomics, 345 

such as LARRY37, CellTagging55 and immune repertoire profiling56 (e.g. scVDJ-seq), which 346 

provides both clonality and gene expression profiles of individual cells. Clonal lineage 347 

tracing identifies cells of common ancestry but can’t resolve phylogenetic relationship within 348 

each clonal subpopulation. Nevertheless, similar to mutation number, the clone sizes 349 

(number of cells sharing a unique static barcode) also indicate the relative proliferative 350 

activity of the cells in the past division history. Hence, we considered using clone size as a 351 

surrogate of phylogenetic time in PhyloVelo (Fig. 6a). According to a simple exponential 352 

growth model (𝑐𝑡 = 𝑐0𝑒𝑟𝑡), the logarithm of clone size (log (𝑐)) has a linear relationship with 353 

cell proliferation rate (r). Therefore, here “MEGs” can be identified by the significant 354 

association of latent expressions 𝒁 = (𝑧̂1, 𝑧̂2, … , 𝑧̂𝑛) with the logarithm of clone size 𝑩 =355 (log(𝑐1) , log(𝑐2) , … , log (𝑐𝑛)) (Fig. 6b). The velocities were estimated the same way as 356 

using phylogeny-resolved scRNA-seq data (e.g. CRISPR lineage tracing) (Methods).  357 

 358 

We first applied this extended model of PhyloVelo to a lentiviral barcoding dataset from in 359 

vitro hematopoiesis37. This dataset sampled hematopoietic differentiation over the culture of 360 

2, 4, and 6 days and contained 29,242 cells where each could be traced by one unique 361 
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barcode (Fig. 6c). In total, 419 MEGs (q<0.05) were identified, with 297 positively and 122 362 

negatively associated with the logarithm of clone sizes at day 6 (Supplementary Fig. 17a, 363 

Supplementary Table 1). PhyloVelo velocity fields accurately traced differentiated cells 364 

(erythrocytes, megakaryocytes, mast cells, neutrophils, monocytes, etc) backward to 365 

undifferentiated progenitor cells (Fig. 6d-e). In fact, PhyloVelo pseudotime was strongly 366 

correlated with the clonal fate potency inferred by the Cospar algorithm36 (Supplementary 367 

Fig. 18), indicating clone size-based PhyloVelo has successfully recovered the 368 

hematopoietic differentiation trajectories.  369 

 370 

We also showcased the application of PhyloVelo to immune repertoire profiling data, where 371 

simultaneous lineage receptor sequences and gene expression profiles of individual T cells 372 

are available. With a lineage tracing dataset of intratumoral CD8+ T cells in basal cell 373 

carcinoma57 (Supplementary Fig. 17b), PhyloVelo combined with Dynamo50 quantified the 374 

T cell state-transition rates pre and post PD-1 blockade treatment (Fig. 6f-k). The 375 

quantitative transition map revealed that the enriched CD8+ activated T cells post treatment 376 

had few origin (2.4%) from the infiltrated naïve or memory CD8+ T cells (Fig. 6j), in line with 377 

the clonal replacement model of T lymphocytes after PD-1 treatment57. Interestingly, the 378 

hybrid activated/exhausted CD8+ T cells appeared to be mainly (81%) derived from 379 

exhausted CD8+ T cells before PD-1 treatment (Fig. 6h-i), while they were instead almost 380 

all (99%) from activated T cells after treatment (Fig. 6j-k). Therefore, our quantitative 381 

analyses revealed the drastic fate plasticity of intratumoral CD8+ T cells during checkpoint 382 

blockade immunotherapy.  383 

Comparison of PhyloVelo with different RNA velocity methods 384 

We noticed several methods for estimating RNA velocity have been developed, which 385 

model cell-specific and/or gene-specific RNA kinetics with deep learning framework such as 386 

VeloVAE58, DeepVelo59 and cellDancer60, or by the radial basis function such as 387 
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UniTVelo61. These methods highlighted their improved performance as comparied to 388 

scVelo. We therefore sought to compare PhyloVelo with these RNA velocity estimators 389 

using the scRNA-seq datasets of C. elegans, mouse erythroid cells and KP mouse lung 390 

tumor in this study. For C. elegans, only cellDancer seemed to improve the RNA velocity 391 

estimates relative to scVelo, where all others still gave reversed directions against the C. 392 

elegans embryo time (Supplementary Fig. 19). For mouse erythroid development (E8.5), 393 

UniTVelo showed the best performance amongst the five RNA velocity methods with 394 

competitively accurate estimations as PhyloVelo (Extended Data Fig. 7). Finally, for KP 395 

mouse lung tumor (3726_NT_T1), DeepVelo and UnitVelo performed reasonably well to 396 

recapitulate the expected trajectory from AT2-like to Lung-mixed cells. PhyloVelo 397 

pseudotime still showed the best correlation with cell fitness signatures (Supplementary 398 

Fig. 20). Overall, these preliminary comparison analyses highlighted the superior 399 

performance of PhyloVelo relative to RNA velocity methods. 400 

MEGs are enriched in ribosome-mediated processes 401 

To systematically investigate the potential functions of MEGs across tissues and organisms, 402 

we analyzed three additional CRISPR-based lineage tracing datasets that were derived 403 

from mouse or human cell lines, including pancreatic cancer KPCY62, lung cancer A54963 404 

and normal epithelial cells HEK293T64. The KPCY and A549 cells were sampled from in 405 

vivo mouse xenograft model, while the HEK293T cells were from a single-cell derived clone 406 

of in vitro culture. Interestingly, although these cell lines are known to be non-differentiating, 407 

continuous cell-state transitions were evident according to the PhyloVelo velocity fields 408 

(Extended Data Fig. 8, Supplementary Figs. 21-22). For instance, PhyloVelo recovered a 409 

dynamic EMT trajectory during the metastatic progression of KPCY and A549 cells in 410 

mouse xenografts (Extended Data Fig. 8, Supplementary Figs. 21). Even for in vitro 411 

culture of HEK293T cells, PhyloVelo and scVelo consistently showed continuous state 412 

transitions (Supplementary Fig. 22), and this phenomenon was not caused by cell-cycle 413 
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heterogeneity (Extended Data Fig. 9). Interestingly, the CytoTRACE “stemness” scores 414 

were strongly associated with PhyloVelo pseudotime in A549 mouse xenografts 415 

(Supplementary Fig. 23), also in line with a dedifferentiation process during the in vivo 416 

tumor progression. 417 

We found the MEGs identified across organisms (mouse and human) and tissue or cell 418 

types (embryo, tumor tissues, cell lines and intratumoral T cells) were significantly 419 

overlapped (Extended Data Fig. 10a-b). Interestingly, the ribosome machinery was 420 

strongly enriched across the tissues and organisms, including translation, ribonucleoprotein 421 

complex biogenesis, ribosome biogenesis and assembly (Fig. 6l). For instance, the gene 422 

scores of ribosomal protein (RP) genes were significantly associated with the phylogenetic 423 

time based on tree distance in KP lung tumors or based on clone size in in vitro 424 

hematopoiesis and Intratumoral CD8+ T cells (Supplementary Fig. 24). To rule out the 425 

possibility that ribosomal genes were identified because of their high expression 426 

heterogeneity amongst the cells, we further performed permutation analysis where the 427 

phylogenetic distances were randomly shuffled and assigned to the cells. Here, although 428 

some “pseudo-MEGs” can still be identified (Extended Data Fig. 10c), they only showed 429 

weak associations (most q values were around 0.05) with the phylogenetic distances. 430 

Importantly, no significant enrichment in ribosome-mediated processes was found 431 

(Extended Data Fig. 10d). These results strongly suggest that many ribosomal genes 432 

genuinely follow the clock-like expression dynamics during cell proliferation and 433 

differentiation.  434 

Discussion 435 

Defining the correct directions of cell-fate transitions is crucial for unraveling the (epi)genetic 436 

regulators that drivers of lineage specification in diverse biological contexts20. Although RNA 437 

velocity and its improvements22, 23, 50, 61 are powerful approaches for quantifying cellular 438 
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transitions from single-cell transcriptomic data, an accurate estimation of the velocity fields 439 

is still challenging because of the highly dynamic RNA kinetics (transcription, splicing and 440 

degradation)23-25 and the biased capture of intron regions by droplet-based scRNA-seq65. 441 

The fundamental objective of our PhyloVelo algorithm is the same as RNA velocity – to 442 

extrapolate the gene expression of single cells to their near future or past states. However, 443 

unlike RNA velocity, PhyloVelo quantifies the transcriptomic velocity by measuring the rate 444 

of expression changes along a cell division history. Using various single-cell datasets where 445 

the coupled lineage information was available, PhyloVelo not only recovered the expected 446 

trajectories more accurately, but also gave more consistent estimates of the velocities 447 

relative to RNA velocity, across diverse biological contexts.  448 

 449 

Analysis of lineage-resolved scRNA-seq datasets with PhyloVelo across mouse embryo 450 

development, hematopoietic differentiation, tumor evolution and immune cell dynamics 451 

yields insights into cell state dynamics. First, in each of the lineage tracing datasets, we 452 

have identified 100-500 MEGs, suggesting a considerable number of genes follow 453 

directional expression trajectories along cell divisions, at least within the phylogenetic time 454 

range of sampled cells. Interestingly, the MEGs across tissues and organisms had highly 455 

similar functions in translation and ribosome biogenesis, in line with their crucial role in 456 

regulating cell proliferation. Previous studies have also shown that ribosomal protein (RP) 457 

genes are commonly downregulated during differentiation66, 67, which represent robust 458 

markers of differentiation potency68, 69. Our study provides an explanation on why they serve 459 

as markers of differentiation potency - that is probably through regulating cell cycle and 460 

proliferation. In other words, the downregulation of some RP genes might suppress cell 461 

proliferation and thus promote differentiation. Second, we showcased that the phylogenetic 462 

velocities of MEGs estimated from one lineage-resolved scRNA-seq dataset can be reused 463 

in independent scRNA-seq datasets in similar biological conditions, in the absence of 464 

lineage information. Because obtaining a coupled lineage tree for every scRNA-seq dataset 465 
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is rather laborious, the transferability of MEGs facilitates the application of PhyloVelo to 466 

conventional scRNA-seq datasets. It is important to note that the transfer of MEGs is limited 467 

to similar biological conditions. However, it is not recommended to transfer MEGs between 468 

different conditions, such as normal and disease as the MEGs can differ significantly. To 469 

study normal development, it would be beneficial for future efforts to compile a 470 

comprehensive set of MEGs encompassing whole-organism development by employing 471 

whole-organism lineage tracing. These MEGs can then be used to assess their 472 

phylogenetic velocities in various organs or tissues. On the other hand, in the context of 473 

diseased conditions, it is essential to identify specific MEGs for each dataset, utilizing the 474 

corresponding lineage tracing data. Third, by combining PhyloVelo and Dynamo50, we were 475 

able to estimate the transition probability between any two cell states. For instance, in 476 

mouse lung tumors, we found two competing trajectories of cell-state evolution through 477 

dedifferentiation. In another case of intratumor CD8+ T cells, we found distinct origin of 478 

activated T cells pre and post anti-PD-1 treatment. These quantitative analyses revealed 479 

high cell plasticity for both tumor cells and immune microenvironment during tumor 480 

progression and treatment. Importantly, as RNA velocity, PhyloVelo velocities fields are 481 

useful for identifying cell-fate drivers20 or core gene regulatory networks70.  482 

 483 

Despite the rapid development of CRISPR lineage tracing methods4, 29, 71, building high-484 

precision lineage trees with single-cell resolution is still challenging because of the small 485 

number of Cas9 target sites (typically<50), rapid saturation, frequent inter-site deletions, 486 

and other factors47, 72, 73. This requires a more reliable lineage tracing method that has a 487 

larger lineage-labeling space and more stable mutagenesis strategy. We recently developed 488 

a base editor-based lineage tracing method, called SMALT42, which leverages a genetically-489 

evolved activation-induced cytidine deaminase (AID) to specifically target a 3k synthetic 490 

DNA barcode and induce C to T mutations on it with high efficacy. The lineage tree 491 

reconstructed by SMALT achieved nearly single-cell resolution and over 80% statistically 492 
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bootstrapping support42. We envision the combination of SMALT lineage tracing and single-493 

cell transcriptomics will greatly empower PhyloVelo to resolve complex lineage dynamics in 494 

more diverse biological contexts, such as genetic perturbation or disease progression.  495 

 496 

In summary, we provide a theoretical framework to quantify cell-fate transitions by 497 

leveraging both single-cell lineage and transcriptomic information. With the rapid 498 

development of single-cell lineage tracing technologies and emergence of lineage-traced 499 

multi-omic data74, we envision our method will facilitate the lineage analysis for complex 500 

cellular processes and the discovery of the cell-fate determinants in diverse organisms, 501 

tissues, and diseases. 502 
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Figure Legends 522 

Fig. 1. Schematic of the PhyloVelo framework. (a) Schematic of monotonically expressed 523 

genes (MEGs) over phylogenetic time on a cell phylogenetic tree. (b) Two examples of 524 

MEGs whose latent expressions are associated with the phylogenetic time (cell divisions or 525 

mutation number). A diffusion process of gene expressions was used to model the changes 526 

of latent expressions over phylogenetic time. This enables the estimation of the 527 

phylogenetic velocity, 𝑣 = (𝑣1, 𝑣2, ⋯ , 𝑣𝐺), which corresponds to the drift coefficients of 𝐺 528 

MEGs in the diffusion process (approximate to the slope of linear regression between latent 529 

expression and phylogenetic time). Whiskers: minimum and maximum. (c) Phylogenetic 530 

velocity predicts the past transcriptional state of a cell before a unit of phylogenetic time 531 

(one cell division or mutation). (d) Projection of the phylogenetic velocity into low 532 

dimensional embedding enables the mapping of cell-state trajectory in backward directions. 533 

 534 

Fig. 2. PhyloVelo recovers complex cell lineages in simulations. Simulation of single-535 

cell RNA-seq data and paired cell-division history under linear (a), bifurcated (b), and 536 

convergent (c) differentiation models, respectively. Colors are labeled by cell types. Each 537 

simulation consists of 1,000 cells randomly sampled from a growing cell population at 538 

10,000 cells. Each cell has 2,000 expressed genes, including 200-300 MEGs. (d-f) 539 

Phylogenetic velocity fields reconstructed by PhyloVelo for the corresponding differentiation 540 

scenarios. The left panel shows the single-cell level of velocity fields, while the right panel 541 
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shows the same velocity fields visualized as streamlines in scVelo. PhyloVelo velocity fields 542 

are at backward directions. 543 

 544 

Fig. 3. PhyloVelo reconstructs the embryonic differentiation trajectories of C. 545 

elegans. (a) Phylogenetic tree of the C. elegans AB lineage. (b) Heatmap showing the 546 

expressions (z-score normalized) of MEGs along C. elegans embryo time. (c) The ground-547 

truth velocity fields represent vectors superimposed on the cells that point to their immediate 548 

parental cells on the Uniform Manifold Approximation and Projection (UMAP) plot. (d-e) The 549 

velocity fields estimated by scVelo (dynamical mode) (d) or PhyloVelo (e). Dash square 550 

indicates the early embryonic lineages where RNA velocity gave erroneous estimations on 551 

the fate directions. (f) C. elegans embryo time as Packer et al.14. (g) scVelo latent time. (h) 552 

PhyloVelo pseudotime. (i) RNA velocity fields for all 29,600 AB lineage cells. Colors are 553 

labeled by scVelo latent time. (j) The correlation between scVelo latent time and embryo 554 

time for all AB lineage cells. (k) PhyloVelo velocity fields for all 29,600 AB lineage cells, 555 

estimated by the phylogenetic velocity of MEGs in a single embryo (n=298 cells). Cell colors 556 

are labelled by PhyloVelo pseudotime. (l) The correlation between PhyloVelo pseudotime 557 

and embryo time for all AB lineage cells. The Spearman correlation coefficients and P 558 

values are shown. 559 

 560 

Fig. 4. PhyloVelo reconstructs the cellular trajectory of mouse erythroid maturation. 561 

(a) Phylogenetic tree of the 2,419 erythroid lineage cells (embryo 3, E8.5) in Chan et al. 562 

dataset32. (b-c) RNA velocity fields (scVelo - dynamical mode) and the latent time of mouse 563 

erythroid development. (d) Muller plot showing the fractions of four cell types that change 564 

over scVelo latent time. (e-f) PhyloVelo velocity fields and the pseudotime of mouse 565 

erythroid development. (g) Muller plot showing the fractions of four cell types that change 566 

over PhyloVelo pseudotime. (h) Erroneous estimations of RNA velocity fields on erythroid 567 

maturation because of multiple rate kinetics (MURK). Data were from Pijuan-Sala et al.19. (i) 568 
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PhyloVelo velocity fields of erythroid maturation for Pijuan-Sala et al. dataset while using the 569 

MEGs identified from Chan et al. dataset. (j) PhyloVelo pseudotime of erythroid maturation 570 

in Pijuan-Sala et al. dataset. (k) The correlation between PhyloVelo pseudotime and mouse 571 

embryo time (n=12,324 cells). The Spearman correlation coefficient and P value are shown 572 

here. Whiskers: minimum and maximum; center lines: median. 573 

 574 

Fig. 5. PhyloVelo identifies a dedifferentiation trajectory in lung tumor evolution. (a) 575 

Phylogenetic tree of 754 cells from a KP-mouse primary lung tumor, 3726_NT_T1, in Yang 576 

et al. dataset51. The scRNA-seq data, cell type annotations, and lineage trees were 577 

obtained from the original study. (b) RNA velocity fields (scVelo - dynamical mode). (c) 578 

PhyloVelo velocity fields. (d) Fitness signatures of individual cells, as defined by Yang et al. 579 

(e) CytoTRACE score of individual cells. (f) The correlation between PhyloVelo pseudotime 580 

and CytoTRACE scores. The Spearman correlation coefficient and P value are shown here. 581 

(g) CytoTRACE score of single tumor cells from human lung primary sites (tLung and tL/B), 582 

pleural fluids (PE), lymph node metastases (mLN), and brain metastases (mBrain), as well 583 

as normal tissues from lungs (nLung), as described in Kim et al.54. Bar, median; box, 25th to 584 

75th percentile (IQR); vertical line, data within 1.5 times the IQR. (h) PhyloVelo velocity 585 

fields for all 58,022 single cells from pooled KP primary lung tumors, estimated by the 586 

MEGs identified from 3726_NT_T1. (i) PhyloVelo velocity fields for the cell types that 587 

existed in 3726_NT_T1. (j) Cell-type transition graph (backward) based on the transition 588 

rate matrix between any two cell types (k), estimated by Dynamo using PhyloVelo velocity 589 

fields as input. The arrows point from the current states to the past states. 590 

 591 

Fig. 6. PhyloVelo inference with clonal lineage tracing data and MEGs are enriched in 592 

ribosome-mediated processes. (a) Schematic of clonal lineage tracing data where static 593 

barcodes identify cells of common ancestry. Clone size, denoted by 𝑐𝑘 for 𝑘 clones, 594 

represents the number of cells carrying the same unique barcode. (b) Two examples of 595 
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clonal size-based MEGs whose latent expressions are positively or negatively associated 596 

with the logarithm of clone sizes, respectively. Whiskers: minimum and maximum. (c) 597 

scRNA-seq data of in vitro hematopoietic differentiation from Weinreb et al.37, where each 598 

cell over the course of 2, 4, and 6 days culture could be traced by one unique barcode. (d) 599 

The velocity fields estimated by PhyloVelo. (e) Cell type transition graph (backward) of in 600 

vitro hematopoietic differentiation. (f) UMAP of tumor-infiltrating CD8+ T cells in BCC 601 

samples pre- and post-PD-1 blockade, colored by anti-PD-1 treatment status. Data were 602 

from Yost et al.57 (g) The velocity fields estimated by PhyloVelo. (h-i) Cell-type transition 603 

graph and transition matrix (backward) at pre-treatment. (j-k) Cell-type transition graph and 604 

transition matrix (backward) at post-treatment. CD8_act: CD8+ activated T cells; CD8_ex: 605 

CD8+ exhausted T cells; CD8_ex_act: CD8+ exhausted/activated T cells; CD8_eff: CD8+ 606 

effector T cells; CD8_mem: CD8+ memory T cells. (l) Gene ontology (GO) enrichment of 607 

MEGs identified across tissues and organisms. The top and most commonly shared 20 608 

biological processes are shown. Ribosome-mediated processed are highlighted. 609 

 610 

Extended Data Fig. 1. Quantitative metrics for evaluating PhyloVelo’s performance on 611 

simulation data. Two quantitative metrics with varied cell numbers (a), non-linear MEGs 612 

(b), different dimensionality reduction methods (c), varied data sparsity (d) and varied 613 

numbers of MEGs (e). All benchmarks are simulated 50 times independently. Bar, median; 614 

box, 25th to 75th percentile (IQR); vertical line, data within 1.5 times the IQR. 615 

 616 

Extended Data Fig. 2. PhyloVelo velocity fields in three additional lineages of C. 617 

elegans. (a-c) Hypodermis, body wall muscle (BWM) and Pharynx lineage cells, 618 

respectively. Colors are labeled by the estimated embryo time (minutes). (d-f) PhyloVelo 619 

velocity fields of the three lineages respectively each consisting of 2,000 randomly sampled 620 

cells from multiple embryos, which were reconstructed using the MEGs identified from 298 621 

AB lineage cells. Colors are labeled by the PhyloVelo pseudotime. (g-i) The correlation 622 
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between PhyloVelo pseudotime and embryo time for the cells in the three lineages. The 623 

Spearman correlation coefficients and P values are shown. 624 

 625 

Extended Data Fig. 3. High concordance of MEGs identified from 4 mouse embryos 626 

(E8.0/8.5) in Chan et al.32 (a) Venn diagram showing the overlap of MEGs identified from 627 

four mouse embryos in the dataset of Chan et al. P value, one-sided SuperExactTest multi-628 

set intersection test. (b-g) The correlation of phylogenetic velocities 𝒗 for the overlapped 629 

MEGs between any two embryos. The Pearson correlation coefficients and P values are 630 

shown. 631 

 632 

Extended Data Fig. 4. The global differentiation trajectories of whole mouse embryos 633 

and brain tissues predicted by LT-MEGs. (a) PhyloVelo velocity fields of mouse embryos 634 

(E6.5-8.5) mapped by 104 LT-MEGs with the temporal scRNA-seq dataset from Pijuan-Sala 635 

et al.19 (b-c) UMAP plot colored by PhyloVelo pseudotime (b) or sample capture time (c). 636 

(d) PhyloVelo velocity fields of mouse brain (E7-18) mapped by LT-MEGs with the temporal 637 

scRNA-seq dataset from La Manno et al.48 (e-f) tSNE plot colored by PhyloVelo pseudotime 638 

(e) or sample capture time (f). UMAP or tSNE coordinates were as the original studies. 639 

 640 

Extended Data Fig. 5. PhyloVelo velocity fields and quantitative state transitions of 641 

mouse erythroid development for four embryos from Chan et al.32 (a-d) PhyloVelo 642 

velocity fields. (e-h) The transition rate (backward) between any two cell types. (i-l) cell-type 643 

transition graph (backward) visualized based on the cell-type transition rates. PhyloVelo 644 

velocity fields were used as the input of Dynamo. 645 

 646 

Extended Data Fig. 6. PhyloVelo reconstructs the cellular trajectory of lung cancer 647 

evolution in 3435_NT_T1. (a) Single-cell phylogenetic tree of primary lung tumor 648 

3435_NT_T1 (n=1,109 cells) from KP (KrasLSL-G12D/+;Trp53fl/fl) mouse model. The single-cell 649 
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RNA data, cell type annotations and lineage tree were obtained from Yang et al.51 (b) RNA 650 

velocity fields (scVelo - dynamical mode). (c) PhyloVelo velocity fields. (d) The fitness 651 

signatures of single cells as defined by Yang et al. (e) The correlation between scVelo latent 652 

time and fitness signatures. (f) The correlation between PhyloVelo pseudotime and fitness 653 

signatures. (g) CytoTRACE score of individual cells. (h) The correlation between scVelo 654 

latent time and CytoTRACE scores. (i) The correlation between PhyloVelo pseudotime and 655 

CytoTRACE scores. (j) The correlation of phylogenetic velocities for the overlapped MEGs 656 

between KP primary tumor 3435_NT_T1 and 3726_NT_T1. The Pearson correlation 657 

coefficients and P values are shown here. 658 

 659 

Extended Data Fig. 7. Comparison of PhyloVelo with scVelo, VeloVAE, DeepVelo, 660 

CellDancer and UniTVelo respectively on mouse erythroid data. scVelo - RNA velocity 661 

fields (a), latent time (b) and the fractions of different cell types along latent time (c). 662 

VeloVAE - RNA velocity fields (d), latent time (e) and the fractions of different cell types 663 

along latent time (f). DeepVelo - RNA velocity fields (g), latent time (h) and the fractions of 664 

different cell types along latent time (i). cellDancer - RNA velocity fields (j), pseudotime (k) 665 

and the fractions of different cell types along pseudotime (l). UniTVelo - RNA velocity fields 666 

(m), latent time (n) and the fractions of different cell types along latent time (o). PhyloVelo - 667 

velocity fields (p), pseudotime (q) and the fractions of different cell types along pseudotime 668 

(r). PhyloVelo velocity fields are in backward directions. 669 

 670 

Extended Data Fig. 8. The dynamic EMT trajectory in metastatic progression of 671 

pancreatic cancer KPCY cells. (a) Phylogenetic tree of 601 non-repetitive terminal cells in 672 

tumor subclone M1.1 from Simeonov et al.62 Cell colors are labeled by EMT pseudotime as 673 

defined in the original study. (b) The total UMI count (normalized) of MEGs changing with 674 

the phylogenetic distance from the root. (c) Heatmap of MEG expressions (z-score 675 

normalized) with EMT pseudotime. (d) RNA velocity fields (scVelo - dynamical mode). Cell 676 
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colors are labeled by EMT pseudotime. (e) scVelo latent time. (f) The correlation between 677 

scVelo latent time and EMT pseudotime. (g) PhyloVelo velocity fields. Cell colors are 678 

labeled by EMT pseudotime. (h) PhyloVelo pseudotime. (i) The correlation between 679 

PhyloVelo pseudotime and EMT pseudotime. The Spearman correlation coefficients and P 680 

values are shown here. 681 

 682 

Extended Data Fig. 9. Continuous state transitions inferred by PhyloVelo after 683 

regressing out cell-cycle effect. (a-d) PhyloVelo velocity fields after regressing out cell-684 

cycle dynamics in KPCY, A549 lg1, A549 lg2 and HEK293T, respectively. (e-h) The 685 

correlation of PhyloVelo pseudotime between original analysis and post regressing out of 686 

cell-cycle effect in KPCY, A549 lg1, A549 lg2 and HEK293T, respectively. The Pearson 687 

correlation coefficients and P values are shown here. 688 

 689 

Extended Data Fig. 10. Overlap of MEGs across organisms and tissue/cell types and 690 

the permutation analysis of MEG identification. (a) The overlap of MEGs identified in 691 

different datasets as stratified by mouse vs human. (b) The overlap of MEGs identified in 692 

different datasets as stratified by normal vs tumor cells. P values are by one-sided 693 

hypergeometric test. (c) The q values of MEGs in standard and permutation analysis. 694 

Permutation analysis was done by randomly shuffling the phylogenetic distances of the 695 

cells, followed by the PhyloVelo inference procedure. The number of detected MEGs in 696 

standard and permutation analysis respectively are: n=1,724 and n=941 genes in Embryo 697 

E8/E8.5; n=681 and n=445 genes in KP lung tumor; n=424 and n=141 genes in KPCY; 698 

n=629 and n=50 genes in A549; n=243 and n=90 genes in HEK293T; n=419 and n=112 699 

genes in in vitro hematopoiesis; n=368 and n=270 genes in CD8+T cells. Bar, median; box, 700 

25th to 75th percentile (IQR); vertical line, data within 1.5 times the IQR. (d) The GO 701 

enrichment of pseudo-MEGs across the seven lineage tracing datasets. 702 

 703 
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 878 

Methods 879 

The mathematical framework of PhyloVelo 880 

The dynamics of the latent expression 𝑧 for each gene on a phylogeny 𝒯 was assumed to 881 

follow a diffusion process (also known as the stochastic differential equation, SDE), which 882 

varies along cell divisions: 883 d𝑧𝑡 = 𝑣(𝑡, 𝑧𝑡)d𝑡 + 𝜎(𝑡, 𝑧𝑡)d𝑊𝑡 (1) 884 

Here, 𝑊𝑡 is a standard Brownian motion. In our model, we hypothesized that there is a 885 

group of genes 𝐺𝑚 whose drift coefficient 𝑣(𝑡, 𝑧𝑡) and diffusion coefficient 𝜎(𝑡, 𝑧𝑡) are 886 

independent of both 𝑡 and 𝑧𝑡, thus 𝑣(𝑡, 𝑧𝑡) = 𝑣 and 𝜎(𝑡, 𝑧𝑡) = 𝜎. We called them 887 

monotonically expressed genes (MEGs). For this type of genes, the dynamics of its latent 888 

expression 𝑧 is thus formulated as: 889 d𝑧𝑡 = 𝑣d𝑡 + 𝜎d𝑊𝑡 (2) 890 

and its expectation is given by: 891 𝔼(𝑧𝑡) = 𝔼(𝑧𝑡0)𝑣(𝑡 − 𝑡0) (3) 892 

For the observed scRNA-seq measurement 𝑥 (read or UMI count), we assumed that it is 893 

sampled from the negative binomial (NB) distribution or the zero-inflated negative binomial 894 

(ZINB) distribution: 895 

ℙ(𝑥|𝑧′, 𝛼, 𝜓) = {  
  (1 − 𝜓) + 𝜓 ( 𝛼𝛼 + 𝑧′)𝛼 , 𝑥 = 0𝜓 Γ(𝑥 + 𝛼)𝑥! Γ(𝛼) ( 𝛼𝑧′ + 𝛼)𝛼 ( 𝑧′𝑧′ + 𝛼)𝑥 ,  𝑥 ≥ 1 (4𝑎) 896 
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where 𝑧′ is the exponential function of latent expression 𝑧, 𝛼 is the scale parameter, and 𝜓 897 

is the zero-inflation parameter. The expectation of the distribution is 𝑧′𝜓. For the negative 898 

binomial distribution, 𝜓 = 1. We used the likelihood ratio test to verify zero inflation for each 899 

gene (Supplementary Note). 900 

 901 

For the scRNA-seq data after normalization (e.g. using scanpy.pp.normalize_per_cell and 902 

scanpy.pp.log1p), we also provided a Gaussian model of latent expression for normalized 903 

data: 904 

 905 

ℙ(𝑥|𝑧, 𝛼, 𝜓) = {(1 − 𝜓),   𝑥 = 0𝜓 1√2𝜋𝛼 exp (− (𝑥 − 𝑧)22𝛼 ) , otherwise (4𝑏) 906 

 907 

To estimate the latent expression 𝑧, we used the maximum a posteriori probability (MAP) 908 

estimate. For the ZINB model using raw UMI count data, we estimated 𝑧′ and then took 909 

logarithm to get the estimated latent expression 𝑧: 910 

𝑧̂MAP(𝑥) = log (argmax𝑧′ (ℙ(𝑥|, 𝛼, 𝜓)ℙ(𝑧′))) (5𝑎) 911 

For the Gaussian model using normalized UMI count data, we directly performed the MAP 912 

estimate of the latent expression 𝑧: 913 𝑧̂MAP(𝑥) = argmax𝑧 (ℙ(𝑥|𝑧, 𝛼, 𝜓)ℙ(𝑧)). (5𝑏) 914 

For a MEG g, its drift coefficient can be estimated as: 915 

𝑣𝑔 = 𝒁T𝑩 − 𝑛𝒁̅𝑩̅𝑩T𝑩 − 𝑛𝑩̅2 (6) 916 

Here 𝒛 = (𝑧̂1, 𝑧̂2, … 𝑧̂𝑛) represents the estimated latent expressions and 𝑩 = (𝑏1, 𝑏2, … , 𝑏𝑛) 917 

the phylogenetic distances from terminal cells to the root (𝑛 is the cell number in a dataset). 918 

The drift coefficients of all 𝐺 MEGs in a dataset 𝒗 = (𝑣1, 𝑣2, ⋯ , 𝑣𝐺) were thus referred to be 919 

as phylogenetic velocity. 920 
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 921 

For clonal lineage-resolved scRNA-seq data by lentiviral barcoding or immune cell receptor 922 

sequences, 𝑩 represent the logarithm of clonal sizes of individual cells at the time of 923 

sampling, namely 𝑩 = (log(𝑐1) , log(𝑐2) , … , log (𝑐𝑛)), where 𝑐 is the size of corresponding 924 

clone that a cell belongs to and 𝑛 the cell number. The estimation of 𝒗 is the same as using 925 

phylogeny-resolved scRNA-seq data.  926 

Simulation of phylogeny-resolved scRNA-seq data  927 

To generate simultaneous single-cell phylogenetic and transcriptomic data in silico, a 928 

lineage-embedded scRNA-seq data simulator, PROSSTT41, was modified to account for 929 

dividing cell populations, so that the whole cell division history initiated from a single cell can 930 

be recorded. The simulation consisted of three parts:  931 

1) Simulate a cell division and differentiation process using the Gillespie algorithm to obtain 932 

the cell division history; 933 

2) Given a cell differentiation model (linear, bifurcated or convergent), use the diffusion 934 

process to generate gene expression programs;  935 

3) Assign the gene expression programs onto the cell division history in order to obtain the 936 

read/UMI count data for each gene in each cell. 937 

Simulating cell division history and mutation-based phylogeny. We used a continuous-938 

time Markov process to simulate cell division and differentiation. In particular, each cell type 939 𝑖 has a specific division rate 𝑝𝑖(𝑡) and differentiation rate 𝑞𝑖𝑗(𝑡), given as follows: 940 

𝑝𝑖(𝑡) = 𝑟𝑖 (1 − 11 + e−𝑘𝑖(𝑡−𝑡0𝑖))𝑞𝑖𝑗(𝑡) = 𝑝𝑖𝑗𝑟𝑖 ( 11 + e−𝑘𝑖(𝑡−𝑡0𝑖)) (7) 941 

where 𝑟𝑖, 𝑘𝑖 and 𝑡0𝑖 are the cell-type specific parameters and 𝑝𝑖𝑗 is the probability of cell type 942 𝑖 differentiating into cell type 𝑗, ∑ 𝑝𝑖𝑗𝑖≠𝑗 = 1, 𝑝𝑖𝑖 = 0. 943 
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 944 

Now, we can simulate the cell growth process using the Gillespie algorithm75. Each 945 

simulation ended when the population size reached 10,000 cells. Then, 1,000 cells were 946 

randomly sampled to obtain their division history.  947 

 948 

To simulate the mutation-based cell phylogeny, we assumed that mutations randomly occur 949 

during each cell division following a Poisson distribution: 950 

𝑃(𝑚 = 𝑖) = 𝑢𝑖𝑒−𝑢𝑖! (8) 951 

where 𝑢 is the mean mutation rate per cell division. Different mutation rates (𝑢 =0.1, 0.3, or 952 

1) were used. After obtaining the cell mutational information, we used three different 953 

algorithms to reconstruct the phylogenetic tree, respectively, namely Maximum Likelihood 954 

(using IQ-TREE 276), Neighbor-Joining (using R package ape 5.6-277) and Maximum 955 

Parsimony (using R package phangorn 2.11.1). 956 

 957 

Simulating scRNA-seq data. We first simulated the latent expression process of genes. 958 

For each gene, we randomly generated its initial expression 𝜇0, drift coefficient 𝑣, and 959 

variance 𝜎2, and then simulated gene-specific diffusion process as follows:  960 𝑧𝑡+𝑑𝑡 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑙𝑜𝑐 = 𝑧𝑡 + 𝑣𝑑𝑡, 𝑠𝑐𝑎𝑙𝑒 = 𝜎2) (9) 961 

When cells differentiated at time 𝑡𝑑, for MEGs, their gene expressions remained unchanged 962 

as the same with the values in the previous process. For a non-MEG, its drift coefficient and 963 

variance were regenerated randomly and the value of expression was reset to 𝑧𝑡𝑑. We 964 

called the diffusion process 𝑧𝑡 as the gene expression program. For each gene, the initial 965 

value of the expression program 𝑧0 was randomly drawn from a gamma distribution 𝑧0 ∼966 Γ(0.5, 20), the drift coefficient 𝑣 was drawn from a normal distribution 𝑣 ∼ Normal(0, 1), and 967 

the diffusion coefficient 𝜎 was drawn from a truncated normal distribution 𝜎 ∼968 TruncatedNormal (𝑘𝑧0, |𝑘𝑧0|3 , min = 0.00001). In all simulations, we set the drift coefficient of 969 
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each gene expression program to change with probability 0.4 when cell differentiation 970 

happens, ultimately resulting in 10-15% of genes with unchanged expression programs 971 

upon cell differentiations, thus behaving as MEGs. The other 85-90% of genes will change 972 

dynamically with cell differentiations and thus behave as non-MEGs. Each cell was 973 

assumed to have 2,000 expressed genes, thus including 200-300 MEGs in total in each 974 

simulated dataset.  975 

 976 

After generating the latent expression process of all genes, in order to simulate the 977 

variations introduced in real scRNA-seq experiments, the NB78 or ZINB distribution79 was 978 

used to obtain read/UMI count 𝑥: 979 𝑥 ∼ ZINB(𝜓, 𝑧, 𝛼), (10) 980 

where 𝜓 is the zero-inflation parameter (𝜓 = 1 for negative binomial model), 𝛼 is the scale 981 

parameter and the expectation of the distribution is 𝜓𝑧.  982 

 983 

Assigning the gene expression programs to the cell division history. Having each 984 

gene expression program (𝑧1, 𝑧2, ⋯ , 𝑧𝐺) and phylogeny 𝒯, we traversed all nodes 𝑉 ∈ 𝒯 and 985 

assigned the latent expression programs 𝑧1(𝑑),⋯ 𝑧𝐺(𝑑) to the nodes with branch length of 986 𝑑. For each gene g, a random number obeying the distribution 𝑧𝑔(𝑑) was drawn as the 987 

latent expression of that gene. By traversing all the genes and cells, the latent expression 988 

matrix can be obtained and denoted as 𝑍. We also simulated a Gaussian noise  𝜀  to be 989 

imposed on 𝑍, thus the latent expression matrix would be updated as 𝑍 + 𝜀. Finally, given 990 

the zero-inflation factor 𝜓 and the scale parameter 𝛼, the expression matrix 𝑋 of the 991 

simulated data can be obtained by random sampling according to Equation (10). 992 

Inference of PhyloVelo pseudotime 993 

To infer the PhyloVelo pseudotime (forward) of each cell, we first constructed a minimum 994 

spanning tree based on the distance of cellular states on tSNE/UMAP embedding using 995 
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Prim's algorithm80. Thus, we can obtain a subset of the edges ℰ connecting all cells together 996 

with a minimum possible total distance. We then chose any cell 𝑐0 as the starting point and 997 

set its pseudotime 𝑝𝑡𝑐0 = 0. For any other cells 𝑐 ∈ ⋃{𝑒 ∈ ℰ: 𝑐0 ∈ 𝑒}, we calculated its 998 

pseudotime using the following equation: 999 

𝑝𝑡𝑐 = 𝑝𝑡𝑐0 +∫ 1𝒗𝑒𝑚𝑏(𝑥)𝒙𝑐𝒙𝑐0 d𝑥 (11) 1000 

where 𝒙𝑐 is the coordinate of cell 𝑐 in the embedding space and 𝒗𝑒𝑚𝑏(𝑥) is the phylogenetic 1001 

velocity in the embedding space and varies with its coordinates.  1002 

 1003 

To simplify the calculation, we replaced the velocity in this path with the average velocity of 1004 𝒗(𝑐) and 𝒗(𝑐0), denoted by 𝒗𝑎, and used the line segments 𝒍𝑐,𝑐0 to approximate the path. 1005 

Hence, we have:  1006 

𝑝𝑡𝑐 = 𝑝𝑡𝑐0 + ‖𝒍𝑐,𝑐0‖22𝒗𝑎T𝒍𝑐,𝑐0 (12) 1007 

Following the path generated from the minimum spanning tree, we can estimate the 1008 

pseudotime of all cells and finally normalize to [0,1]. It should be noted that although 1009 

PhyloVelo velocity fields are in backward directions, PhyloVelo pseudotime is still set to be 1010 

forward as scVelo latent time. 1011 

Analysis of phylogeny-resolved scRNA-seq datasets 1012 

Datasets and pre-processing. We have applied PhyloVelo to six real phylogeny-resolved 1013 

scRNA-seq datasets that are publicly available through online sources (see Data 1014 

availability). These included C. elegans14, mouse embryos32, GEMM of lung 1015 

adenocarcinoma51, mouse xenograft models using pancreatic cancer cell line KPCY62 and 1016 

lung cancer cell line A54963, and in intro culture of human kidney cell line HEK293T64. The 1017 

embryonic lineage tree of C. elegans is entirely known and was obtained from 1018 

http://dulab.genetics.ac.cn/TF-atlas/Cell.html, while the CRISPR-based lineage trees in 1019 

http://dulab.genetics.ac.cn/TF-atlas/Cell.html
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other five datasets were obtained from the original studies which were reconstructed by the 1020 

mutational scars on CRISPR lineage barcodes. In the C. elegans dataset, because multiple 1021 

synchronous embryos were pooled for the scRNA-seq experiment, many nodes in the 1022 

lineage tree have been sampled multiple times. Thus, only one random cell was chosen to 1023 

represent the corresponding node, while these non-repetitive cells (~300 cells) from one 1024 

lineage tree constituted a “pseudo-embryo”. For the mouse embryos (E8.0/8.5)32, four 1025 

(embryos 1,2,3 and 6) out of seven embryos were analyzed for their higher barcode 1026 

diversity where the number of unique barcode alleles was > 500 in each embryo. For the 1027 

scRNA-seq data of C. elegans14 and mouse lung adenocarcinoma51, the coordinates of 1028 

tSNE or UMAP from the original studies were used. All phylogenetic trees were read and 1029 

branch lengths were calculated using biopython81 and visualized using iTOL82. For the 1030 

scRNA-seq data of mouse embryos32, cell lines KPCY62, A54963 and HEK293T64, the 1031 

dimensionality reduction and tSNE or UMAP visualization were performed using Scanpy83 1032 

following the recommended data processing procedures and parameters as https://scanpy-1033 

tutorials.readthedocs.io/en/latest/. In each dataset, the genes with total count < 20 were 1034 

filtered out.  1035 

 1036 

Applying PhyloVelo. For C. elegans, whose embryonic cell division history is entirely 1037 

known, the cell generation time was used to denote the phylogenetic distance. For the other 1038 

five CRISPR/Cas9 lineage tracing datasets32, 51, 62-64, the phylogenetic distance on a lineage 1039 

tree corresponds to the number of Cas9 cutting scars on the evolving barcodes. To estimate 1040 

the latent gene expressions, for C. elegans, the ZINB model was used to analyze the raw 1041 

UMI count data because of the high-quality lineage tree. For the CRISPR/Cas9-based 1042 

lineage tracing datasets, the Gaussian model was used on the post-normalized data where 1043 

normalize_per_cell() and log1p() by Scanpy83 were applied to the raw UMI counts. To 1044 

prioritize the high-confident candidates of MEGs and speed up the computation, rather than 1045 

estimating the latent expression for all genes, we firstly searched for candidate MEGs by 1046 

https://scanpy-tutorials.readthedocs.io/en/latest/
https://scanpy-tutorials.readthedocs.io/en/latest/
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directly analyzing the correlation between each gene’s normalized UMI counts and the 1047 

phylogenetic distances to root of single cells. The top 5% of genes with the highest 1048 

Spearman’s correlations were first selected and then proceeded for follow-up latent 1049 

expression estimations. Final MEGs were identified by the significant association (Pearson’s 1050 

correlation, q<0.05 after Benjamini-Hochberg correction; a stringent threshold q<10-5 was 1051 

used for Chan et al. dataset32 given the large number of cells in individual embryos each 1052 

with 6,328-19,071 cells) between the latent expressions and the phylogenetic distances 1053 

from terminal nodes to the root of tree. The phylogenetic velocity was computed 1054 

independently for each MEG. To project the phylogenetic velocity into the dimensionality 1055 

reduction embedding, we built a k-nearest neighbor (kNN) graph (k=15 for C. elegans 1056 

dataset while it was chosen by approximate to one third of total number of cells for the 1057 

CRISPR lineage tracing datasets). The kNN graph was based on the Euclidean distance as 1058 

the base vector and was used to estimate the coordinates of velocity embedding, as the 1059 

projection of RNA velocity22, 23.  1060 

 1061 

Applying scVelo. The spliced and unspliced read counts were obtained by running 1062 

velocyto (v0.6)22 on the bam files from the output of CellRanger (6.0.2) using the raw 1063 

sequence reads. To estimate RNA velocity, scVelo (version 0.2.4)23 and the dynamical 1064 

mode were used following the recommended data processing procedures as 1065 

https://scvelo.readthedocs.io/VelocityBasics/. Spliced/unspliced read counts were pre-1066 

processed using the following default setting: 1067 

scv.pp.filter_and_normalize(adata, min_shared_counts=20, n_top_genes=2000) 1068 

scv.pp.moments(adata, n_neighbors=30, n_pcs=30) 1069 

 1070 

Applying VeloVAE. VeloVAE58 applies the same data preprocessing steps as scVelo. 1071 

There are three data training models including Basic Model (assuming fixed transcription 1072 

rates), Full Model (assuming variable transcription rates) and Full VB Model (treating the 1073 

https://scvelo.readthedocs.io/VelocityBasics/
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rate parameters as random variables). Full Model was used as recommended in the paper. 1074 

The model training parameters were used following the example in its GitHub repository 1075 

(https://github.com/welch-lab/VeloVAE/blob/master/notebooks/velovae_example.ipynb).  1076 

vae = vv.VAE(adata, tmax=20, dim_z=5) 1077 

vae.train(adata, gene_plot=gene_plot, plot=True, figure_path=figure_path) 1078 

 1079 

Applying DeepVelo. DeepVelo59 also applies the same data preprocessing steps as 1080 

scVelo. Model configurations were the same as the default setting 1081 

(https://github.com/bowang-lab/DeepVelo/blob/main/examples/figure2.ipynb) except some 1082 

updates as following: 1083 

configs = dict( 1084 

    "name": "DeepVelo", # name of the experiment 1085 

    "loss": dict("args": dict("coeff_s": autoset_coeff_s(adata))), 1086 

    "trainer": dict("verbosity": 0), # increase verbosity to show training progress 1087 

    "n_gpu":0 1088 

) 1089 

configs = update_dict(Constants.default_configs, configs) 1090 

 1091 

Applying cellDancer. cellDancer60 applies the same data preprocessing steps as scVelo. 1092 

The format conversion of the data is according to its tutorial 1093 

(https://guangyuwanglab2021.github.io/cellDancer_website/index.html), and the velocity 1094 

inference uses all genes and proceeds according to the default parameters. The velocity 1095 

field is visualized using the Dynamo50. 1096 

 1097 

Applying UniTVelo. UniTVelo61 also applies the same data preprocessing steps as scVelo. 1098 

Model configurations were the same as the default setting 1099 

(https://unitvelo.readthedocs.io/en/latest/Figure2_ErythroidMouse.html): 1100 

https://github.com/welch-lab/VeloVAE/blob/master/notebooks/velovae_example.ipynb
https://github.com/bowang-lab/DeepVelo/blob/main/examples/figure2.ipynb
https://guangyuwanglab2021.github.io/cellDancer_website/index.html
https://unitvelo.readthedocs.io/en/latest/Figure2_ErythroidMouse.html
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velo_config = utv.config.Configuration() 1101 

velo_config.R2_ADJUST = True 1102 

velo_config.IROOT = None 1103 

velo_config.FIT_OPTION = '1' 1104 

velo_config.AGENES_R2 = 1 1105 

 1106 

Applying Dynamo. Dynamo50 was used to infer the quantitative cell-state transition matrix 1107 

and visualize cell state transition graph. We use the velocity field inferred by PhyloVelo as 1108 

input and calculate the transition matrix as follows: 1109 

dyn.vf.VectorField(adata, basis='umap', M=1000, pot_curl_div=True) 1110 

dyn.vf.topography(adata, basis='umap') 1111 

dyn.ext.ddhodge(adata, basis='umap') 1112 

dyn.pd.state_graph(adata, group='cell_states', basis='umap', method='vf', approx=False) 1113 

Analysis of static barcoding-based lineage tracing datasets 1114 

Datasets and pre-processing. We have applied the extended model of PhyloVelo to two 1115 

static barcoding datasets including LARRY hematopoietic differentiation37 and intratumoral 1116 

CD8+ T cells in BCC57 that are publicly available through online sources (see Data 1117 

availability). For the LARRY dataset, lentiviral barcoding data at day 6 was used to obtain 1118 

the clone size information for each cell. For the CD8+ T cells data, the TCR specificity 1119 

clones were identified by GLIPH84 which defines clones based on the following two criteria: 1120 

1) global similarity, TCR sequences within the same T cell clone have at most one amino 1121 

acid difference; 2) local similarity, two TCRs in same clone contain an identical CDR3 motif, 1122 

which is 2-4 k-mer amino acids in length and is significantly enriched from random sub-1123 

sampling of unselected repertoires. To avoid batch effect, patient 9 with the largest cell 1124 

number (4,659 cells) was selected for identification of MEGs and inference of phylogenetic 1125 

velocities. The phylogenetic velocities were then transferred to all CD8+ T cells (12,788 1126 
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cells) from all 12 BCC patients. Cells whose clonal barcodes were not determined were 1127 

filtered out. The coordinates of dimensionality reduction embedding, SPRING (LARRY 1128 

dataset) or UMAP (T cell dataset), from the original studies were used for visualization. In 1129 

each dataset, the genes with total count < 20 were filtered out. 1130 

 1131 

Applying PhyloVelo. For both datasets, the phylogenetic time of a cell corresponded to the 1132 

logarithm of the clone size. To estimate the latent gene expressions, Gaussian process 1133 

model was used on the post-normalized data. Same as the scRNA-seq data analysis 1134 

above, normalize_per_cell() and log1p() by Scanpy83 were applied to the raw UMI counts. 1135 

The top 5% genes with the highest Spearman’s correlation between normalized gene 1136 

expression and phylogenetic time were first selected, then proceeded for follow-up latent 1137 

expression estimations. Final MEGs were identified by the significant association (Pearson’s 1138 

correlation, q<0.05) between the latent expressions and the logarithm of clone size. 1139 

Projecting phylogenetic velocities into the embedding followed the same procedure as 1140 

CRISPR lineage tracing data analysis. 1141 

Transferring the phylogenetic velocities of MEGs to independent datasets 1142 

To evaluate whether the phylogenetic velocities of MEGs estimated from one phylogeny-1143 

resolved scRNA-seq dataset are sufficiently robust to infer the velocity fields in independent 1144 

datasets in the absence of phylogenetic information, three datasets were analyzed including 1145 

C. elegans14, mouse erythroid development19, 32, and the GEMM of lung adenocarcinoma51. 1146 

Here, the MEGs and corresponding phylogenetic velocity estimates were directly applied to 1147 

another scRNA-seq datasets in similar biological conditions. For C. elegans, we applied the 1148 

phylogenetic velocities from AB lineage in a single pseudo-embryo (n=298 cells) to all AB 1149 

lineage cells (n=29,600) in multiple embryos. We also applied them to non-AB lineages that 1150 

differentiate to hypodermis, body wall muscles (BWM) and pharynx, respectively. For 1151 

mouse erythroid differentiation, we applied the phylogenetic velocity estimates in the 1152 
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erythroid lineage cells from a single embryo (E8.5, n=2,419 cells) of the Chan et al. 1153 

dataset32 to the other three embryo and the temporally-sequenced mouse embryos (E6.5-1154 

E8.5, n=12,324 cells) of the Pijuan-Sala et al. dataset19. We also applied the phylogenetic 1155 

velocities of LT-MEGs identified from the Chan et al. dataset32 to predict the entire embryo 1156 

development with the Pijuan-Sala et al. dataset19 (E6.5-E8.5, n=10,000 out of 116,312 cells 1157 

were randomly sampled), and predict mouse brain development with Manno et al. dataset48 1158 

(E7-18, n=10,000 out of 292,495 cells were randomly sampled). For lung 1159 

adenocarcinoma51, the phylogenetic velocity estimates in one KP primary lung tumor 1160 

(3726_NT_T1, n=754 cells) were applied to all 58,022 single cells from all pooled KP 1161 

primary lung tumors. Finally, for intratumoral CD8+ T cells, in order to avoid the batch effect, 1162 

the phylogenetic velocity estimates in 4,659 cells from patient 9 were applied to all 12,788 1163 

CD8+ T cells from 12 BCC patients. 1164 

Gene ontology (GO) enrichment analysis 1165 

GO enrichment analysis was performed using clusterProfiler v4.4.485. The cutoff for p value 1166 

and q value were set to 0.05 and 0.25, respectively. After excluding Cellular Components 1167 

(CC) terms, all significant terms were retained for downstream analyses. Subsequently, top 1168 

20 GO terms of each sample were merged and these terms were sorted by their total 1169 

occurrence and mean q value across samples. Finally, the top 20 GO terms enriched were 1170 

visualized using ggplot2 v3.4.0. 1171 

Data availability 1172 

All data analyzed in this article are publicly available through online sources. The annotated 1173 

data, lineage trees, results and Python implementation are available at 1174 

https://phylovelo.readthedocs.io/. The raw data for the C. elegans dataset14 can be 1175 

accessed with GSE126954 and the lineage tree can be accessed from 1176 

http://dulab.genetics.ac.cn/TF-atlas/Cell.html. The CRISPR lineage tracing datasets from 1177 

https://phylovelo.readthedocs.io/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126954
http://dulab.genetics.ac.cn/TF-atlas/Cell.html
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the mouse embryos32, 86 can be accessed with GSE117542. The single cell RNA-seq data 1178 

of mouse brain development 48 can be accessed with PRJNA637987. The time-course 1179 

single-cell RNA-seq data of whole mouse embryos (E6.5-8.5)19 can be accessed with E-1180 

MTAB-6967. The dataset of mouse primary lung tumors51 can be accessed with 1181 

PRJNA803321 and from Zenodo (https://zenodo.org/record/5847462#.Yt4-PewRXUI). The 1182 

dataset of mouse pancreatic cancer cell line KPCY62 can be accessed with GSE173958 and 1183 

from Mendeley (https://doi.org/10.17632/t98pjcd7t6.1). The dataset of human lung cancer 1184 

cell line A54963 can be accessed with GSE161363. The dataset of human kidney cell line 1185 

HEK293T64 can be accessed with PRJNA757179. The LARRY lentiviral barcoding dataset 1186 

of hematopoiesis37 can be accessed with GSE140802. The single-cell TCR and RNA 1187 

sequencing data of T cells in BCC57 can be accessed with GSE123813.  1188 

Code availability 1189 

PhyloVelo87 is freely available as Python package at 1190 

https://github.com/kunwang34/PhyloVelo. Detailed workflows to reproduce figures and 1191 

results in this paper are written as Jupyter notebook in the repository. The annotated data, 1192 

lineage trees, results and Python implementation are available at 1193 

https://phylovelo.readthedocs.io/. 1194 
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Figures

Figure 1

Schematic of the PhyloVelo framework. (a) Schematic of monotonically expressed genes (MEGs) over
phylogenetic time on a cell phylogenetic tree. (b) Two examples of MEGs whose latent expressions are
associated with the phylogenetic time (cell divisions or mutation number). A diffusion process of gene
expressions was used to model the changes of latent expressions over phylogenetic time. This enables
the estimation of the phylogenetic velocity, ฀ = (฀1, ฀ 2,....,฀G) , which corresponds to the drift coe�cients of
G MEGs in the diffusion process (approximate to the slope of linear regression between latent expression
and phylogenetic time). Whiskers: minimum and maximum. (c) Phylogenetic velocity predicts the past
transcriptional state of a cell before a unit of phylogenetic time (one cell division or mutation). (d)



Projection of the phylogenetic velocity into low dimensional embedding enables the mapping of cell-state
trajectory in backward directions.

Figure 2

PhyloVelo recovers complex cell lineages in simulations. Simulation of single-cell RNA-seq data and
paired cell-division history under linear (a), bifurcated (b), and convergent (c) differentiation models,
respectively. Colors are labeled by cell types. Each simulation consists of 1,000 cells randomly sampled
from a growing cell population at 10,000 cells. Each cell has 2,000 expressed genes, including 200-300
MEGs. (d-f) Phylogenetic velocity �elds reconstructed by PhyloVelo for the corresponding differentiation
scenarios. The left panel shows the single-cell level of velocity �elds, while the right panel shows the
same velocity �elds visualized as streamlines in scVelo. PhyloVelo velocity �elds are at backward
directions.



Figure 3

PhyloVelo reconstructs the embryonic differentiation trajectories of C. elegans. (a) Phylogenetic tree of
the C. elegans AB lineage. (b) Heatmap showing the expressions (z-score normalized) of MEGs along C.
elegans embryo time. (c) The ground-truth velocity �elds represent vectors superimposed on the cells that
point to their immediate parental cells on the Uniform Manifold Approximation and Projection (UMAP)
plot. (d-e) The velocity �elds estimated by scVelo (dynamical mode) (d) or PhyloVelo (e). Dash square
indicates the early embryonic lineages where RNA velocity gave erroneous estimations on the fate
directions. (f) C. elegans embryo time as Packer et al.14. (g) scVelo latent time. (h) PhyloVelo pseudotime.
(i) RNA velocity �elds for all 29,600 AB lineage cells. Colors are labeled by scVelo latent time. (j) The
correlation between scVelo latent time and embryo time for all AB lineage cells. (k) PhyloVelo velocity
�elds for all 29,600 AB lineage cells, estimated by the phylogenetic velocity of MEGs in a single embryo
(n=298 cells). Cell colors are labelled by PhyloVelo pseudotime. (l) The correlation between PhyloVelo
pseudotime and embryo time for all AB lineage cells. The Spearman correlation coe�cients and P values
are shown.



Figure 4

PhyloVelo reconstructs the cellular trajectory of mouse erythroid maturation. (a) Phylogenetic tree of the
2,419 erythroid lineage cells (embryo 3, E8.5) in Chan et al. dataset32. (b-c) RNA velocity �elds (scVelo -
dynamical mode) and the latent time of mouse erythroid development. (d) Muller plot showing the
fractions of four cell types that change over scVelo latent time. (e-f) PhyloVelo velocity �elds and the
pseudotime of mouse erythroid development. (g) Muller plot showing the fractions of four cell types that
change over PhyloVelo pseudotime. (h) Erroneous estimations of RNA velocity �elds on erythroid
maturation because of multiple rate kinetics (MURK). Data were from Pijuan-Sala et al.19. (i) PhyloVelo
velocity �elds of erythroid maturation for Pijuan-Sala et al. dataset while using the MEGs identi�ed from
Chan et al. dataset. (j) PhyloVelo pseudotime of erythroid maturation in Pijuan-Sala et al. dataset. (k) The
correlation between PhyloVelo pseudotime and mouse embryo time (n=12,324 cells). The Spearman
correlation coe�cient and P value are shown here. Whiskers: minimum and maximum; center lines:
median.



Figure 5

PhyloVelo identi�es a dedifferentiation trajectory in lung tumor evolution. (a) Phylogenetic tree of 754
cells from a KP-mouse primary lung tumor, 3726_NT_T1, in Yang et al. dataset51. The scRNA-seq data,
cell type annotations, and lineage trees were obtained from the original study. (b) RNA velocity �elds
(scVelo - dynamical mode). (c) PhyloVelo velocity �elds. (d) Fitness signatures of individual cells, as
de�ned by Yang et al. (e) CytoTRACE score of individual cells. (f) The correlation between PhyloVelo
pseudotime and CytoTRACE scores. The Spearman correlation coe�cient and P value are shown here.
(g) CytoTRACE score of single tumor cells from human lung primary sites (tLung and tL/B), pleural �uids
(PE), lymph node metastases (mLN), and brain metastases (mBrain), as well as normal tissues from
lungs (nLung), as described in Kim et al.54. Bar, median; box, 25th to 75th percentile (IQR); vertical line,
data within 1.5 times the IQR. (h) PhyloVelo velocity �elds for all 58,022 single cells from pooled KP
primary lung tumors, estimated by the MEGs identi�ed from 3726_NT_T1. (i) PhyloVelo velocity �elds for
the cell types that existed in 3726_NT_T1. (j) Cell-type transition graph (backward) based on the transition



rate matrix between any two cell types (k), estimated by Dynamo using PhyloVelo velocity �elds as input.
The arrows point from the current states to the past states.

Figure 6

PhyloVelo inference with clonal lineage tracing data and MEGs are enriched in ribosome-mediated
processes. (a) Schematic of clonal lineage tracing data where static barcodes identify cells of common
ancestry. Clone size, denoted by ck for k clones, represents the number of cells carrying the same unique
barcode. (b) Two examples of clonal size-based MEGs whose latent expressions are positively or
negatively associated with the logarithm of clone sizes, respectively. Whiskers: minimum and maximum.
(c) scRNA-seq data of in vitro hematopoietic differentiation from Weinreb et al.37, where each cell over the
course of 2, 4, and 6 days culture could be traced by one unique barcode. (d) The velocity �elds estimated
by PhyloVelo. (e) Cell type transition graph (backward) of in vitro hematopoietic differentiation. (f) UMAP
of tumor-in�ltrating CD8+ T cells in BCC samples pre- and post-PD-1 blockade, colored by anti-PD-1



treatment status. Data were from Yost et al.57 (g) The velocity �elds estimated by PhyloVelo. (h-i) Cell-
type transition graph and transition matrix (backward) at pre-treatment. (j-k) Cell-type transition graph
and transition matrix (backward) at post-treatment. CD8_act: CD8+ activated T cells; CD8_ex: CD8+
exhausted T cells; CD8_ex_act: CD8+ exhausted/activated T cells; CD8_eff: CD8+ effector T cells;
CD8_mem: CD8+ memory T cells. (l) Gene ontology (GO) enrichment of MEGs identi�ed across tissues
and organisms. The top and most commonly shared 20 biological processes are shown. Ribosome-
mediated processed are highlighted.
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