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GLOSSARY 12 

▪ RSCU: Relative synonymous codon usage  13 

▪ Wij: Relative adaptiveness (weight) 14 

▪ CAI: Codon adaptation index 15 

▪ ENC: Effective number of codons 16 

▪ CUB: Codon usage bias 17 

▪ TAI: tRNA adaptation index 18 

▪ sTAI: Species-specific tRNA adaptation index 19 

▪ nTE: Normalized translational efficiency 20 

▪ RFM: Ribosome flow model 21 

▪ CFP: Cyan fluorescent protein 22 

▪ YFP: Yellow fluorescent protein 23 

▪ TxTL: in vitro transcription-translation 24 

▪ UTR: Untranslated region 25 

▪ AUC: Area under the curve 26 

▪ Fitness: Performance of induced culture ÷ Performance of uninduced culture 27 

▪ Growth Fitness: AUC of growth curve (induced) ÷ AUC of growth curve (uninduced) 28 

▪ Co-Expression Fitness: AUC of YFP fluorescence (with induced CFP or mCherry) ÷ AUC of YFP fluorescence 29 

(with uninduced CFP or mCherry) 30 

▪ Expression Level: AUC of fluorescence from induced over-expressed protein (CFP or mCherry) 31 

▪ CHI (χ): Codon harmony index 32 

▪ MFE: Mean free energy 33 

  34 



ABSTRACT: 35 

 36 

There is a degeneracy in codons – but they are not equivalent. While there is an understanding that codon use is 37 

unequal in native genes, there is less knowledge of how this usage bias modulates the supply and demand of 38 

protein translation resources. Here we investigate how the partitioning of microbial translational resources, 39 

specifically through allocation of tRNA by incorporating dissimilar codon usage bias, can drastically alter expression 40 

of proteins and reduce the burden on the host resources. By isolating individual codons experimentally, we find 41 

heterologous gene expression can trans-regulate fitness of the host and other heterologous genes. Interestingly, 42 

specific codons drive profitable or catastrophic phenotypic outcomes. We correlate codon usage patterns with 43 

genetic fitness and empirically derive a novel coding scheme for multi-gene expression called Codon Harmony 44 

Index (CHI, χ). CHI enables the design of harmonious multi-gene expression systems while avoiding catastrophic 45 

cellular burden. 46 

  47 



INTRODUCTION: 48 

 49 

The genetic code is degenerate with 61 codons and only 20 amino acids, creating an astronomically high level of 50 

mRNA sequence space for most protein coding genes. However, it is well accepted that synonymous codons are 51 

not equivalent1,2, as numerous reports of cis and trans effects have been documented3–11 – from mRNA structure 52 

and co-translational protein folding12–14 to tRNA and ribosome competition15–17. Re-coding proteins typically 53 

proceeds through use of a codon adaptation index (CAI), which enables a gene to assume the codon usage bias 54 

(CUB) of a reference set, often a set of highly expressed genes18. This strategy may generally correlate CUB with 55 

protein expression, but it ignores the role CUB can play in partitioning translational resources such as tRNA and 56 

ribosomes. Several recent studies have demonstrated the ability of heterologous genetic CUB to trans-regulate 57 

host gene expression through translational resource completion19,20, but there is little understanding of how 58 

specific CUB alters host fitness given that cellular resources are invariably limited. Re-coding strategies such as the 59 

tRNA adaptation index (tAI)7,21 and normalized translational efficiency (nTE)6 are attempts to address tRNA related 60 

translational supply-demand constraints, but they are limited by how predictive natural CUB and/or tRNA levels 61 

are for recombinant protein expression.   62 

It is particularly important to consider translational resource competition in the context of multi-gene expression 63 

(e.g., in the case of metabolic engineering and synthetic biology), where the objective is often for global organism 64 

fitness in addition to high protein expression, and tradeoffs in protein expression can be highly consequential for 65 

pathway or genetic circuit function and robustness22. This area is currently underexplored, as most studies to date 66 

focus on feedback control mechanisms23,24, resource partitioning25,26, or attempt to draw inferences about 67 

elongation in larger genes from libraries limited to the 5’ sequence of a reporter27,28, and experiments that do not 68 

isolate translation elongation from initiation effects10. As cellular engineering becomes increasingly complex, 69 

genetic resource competition can unravel designs and lead to unpredictable and undesirable phenotypes. While a 70 

role for CUB in the partitioning of cellular resources has been reported29, identification of specific codons that 71 

present excess translational capacity could provide a novel avenue for harnessing underutilized resources that are 72 

insofar ignored.  73 

In this study, we systematically isolate the role of codon choices during translational elongation and identify 74 

supply-demand constraints imposed on tRNA and ribosomal resources in E. coli. We demonstrate that tRNA 75 

limitations lead to competition between overexpressed genes as well as with the host’s demands. Select codons 76 

over-represented in native highly expressed genes are found to cause severe fitness costs when present in 77 

overexpressed protein sequences. While the traditional method of codon-optimization through maximizing CAI 78 

may promote use of these codons, our data reveal their demand and supply are delicately balanced. We define a 79 

new metric called "Codon Harmony Index” (CHI, χ) that quantitatively ranks codons by their capacity to remain 80 

orthogonal to host demands. We also posit using this metric as a new codon optimization scheme to mitigate 81 

competition with host demands and avoid growth defects. Genes characterized by high scores on this metric 82 

scheme demonstrate relatively high expression while minimizing the burden on the host cells, allowing effective 83 

multigene expression and cellular growth. 84 

 85 
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RESULTS: 87 

 88 

Fitness costs are incurred due to translation elongation limitation. 89 

 90 

Genetic burden is frequently observed in microbial systems as a growth defect upon the overexpression of 91 

recombinant proteins24. While the cause of this effect varies, it is often attributed to resource competition at the 92 

level of mRNA translation30. In a fast-growing culture of E. coli, the availability of free ribosomes can limit mRNA 93 

translation, especially in a system with overexpressed protein31 (Figure 1a). Elongation speed determines the rate 94 

at which free ribosomes are made available, hence sub-optimal mRNA transcripts that are poorly translated have 95 

higher ribosome occupancy. Such elongation limited mRNA sequences will sequester more ribosomes and return 96 

them to the free pool at a slower rate, thus reducing ribosome availability. Translational resource competition has 97 

been modeled in several ways32, including the ribosome flow model (RFM)33, which can be useful in examining 98 

translation rate as a function of elongation time that varies depending on the supply and demand of tRNAs in the 99 

cell. Applying a previously developed RFM34 to the model gene cyan and yellow fluorescent proteins (CFP and YFP 100 

respectively) with high or low CAI values (where CAI is in reference to highly expressed E. coli genes) illustrates the 101 

increase in mRNA ribosome occupancy that occurs when codons with longer elongation times35 are used, and 102 

indicates that elongation-limited sequences are less sensitive to changes in the rate of translation initiation (Figure 103 

S1). 104 

We first sought to investigate the impact of translation elongation resource competition using an in vitro 105 

transcription-translation (TxTL) model. A significant challenge to investigating translational resource competition is 106 

the difficulty in isolating any single sequence parameter experimentally, as any synonymous mutation can have a 107 

multitude of effects on initiation, elongation, and mRNA structure2. A TxTL system allows for better physical 108 

control over the genetic expression environment by holding available resources (e.g., ribosomes, tRNAs, aminoacyl 109 

tRNA synthetases, RNA polymerase etc.) constant, and allowing precise titration of genes of interest in the 110 

reaction. We developed an assay for elongation limitation by leveraging the unique amino acid sequence similarity 111 

between CFP and YFP derived from a super-folder green fluorescent protein36, which only differ by 2 amino acids37, 112 

thus eliminating variability in protein structure and amino acid demand. The CFP-YFP pair permits the interrogation 113 

of competition between various sequence designs using effectively identical proteins, which should also be less 114 

susceptible to variation in co-translational protein folding due to their high stability. We also include mCherry in 115 

the study, which is <30% identical to CFP-YFP and serves as a comparison point to find trends independent of 116 

amino acid sequence (see supplementary data for sequences). The TxTL kit is based off the E. coli MRE600 strain, 117 

which has a nearly identical CUB as K12 MG1655 and is therefore assumed to be a good proxy for the tRNA profile 118 

in a K12 strain used subsequently (Figure S2). Reactions were driven by a T7 promoter using a bicistronic domain 119 

(BCD) in place of a traditional ribosome binding site to minimize interactions between the 5’ untranslated region 120 

and gene of interest that could lead to differential expression38. To further isolate translation elongation as the 121 

primary variable in sequence design, we chose to keep the 5’ and 3’ untranslated regions (UTRs) as well as the first 122 

51 base pairs (17 codons) constant to mitigate any effect sequence changes may have on translation initiation 123 

(Figure 1b). 124 

Utilizing the idealized TxTL competition assay, we evaluated baseline expression rates from CFP, YFP, and mCherry 125 

re-codes with extreme CAI values (0.96, 0.25, or 0.16) (Figure 1c). We find that identical sequence pairs for CFP-126 

YFP behave very similarly in terms of relative expression, and that protein expression rates for CFP, YFP, and 127 

mCherry correspond well with CAI value. This supports that TxTL recapitulates translation elongation limitation – 128 

i.e., genes with lower CAI that use lower abundance tRNAs show lower protein synthesis rates. Next, we examined 129 

competition between different pairs of genes. As in the RFM, we expected elongation-limited sequences with 130 

lower CAI to disrupt expression of other genes through the sequestration of free ribosomes. We titrated CFP 131 

template DNA against constant YFP or mCherry DNA using re-codes with either very high or very low CAI (Figure 132 

1d−g). For instances of two identically re-coded sequences with any CAI tested, YFP and mCherry synthesis rates 133 

are inversely correlated with CFP DNA concentration (Figure 1d−e), irrespective of their baseline expression, 134 

indicating strong competition for limiting resources (i.e., tRNA). This indicates that while an excess protein 135 

synthesis capacity exists in the TxTL system, sequences with lower CAI are still resource-limited, likely due to lower 136 

availability of tRNA.  137 

 138 



 139 

 140 

Figure 1: Elongation-limited TxTL system exhibits direct competition for tRNAs and/or ribosomes. a. Schematic of 141 

two actively translated genes competing for ribosomes. Overexpressed genes with low adaptation to tRNA use are 142 

expected to exhibit higher ribosomal occupancy and sequester excessive translational resources. b. Gene design 143 

for expression in TxTL assay. A T7 promoter followed by a strong RBS (BCD7) drives expression of re-coded genes, 144 

where the 1st 51 nucleotides are constant, as well as the 5’ and 3’ UTR. c. CFP, YFP, mCherry raw quantified 145 

expression rates in vitro in isolation with a TxTL assay with individual data points displayed over means (n=2). 146 

Individual expression cassettes (DNA) were each added to 20 ng/µL. Lower CAI values generally reduce protein 147 

synthesis rate across all genes. d–g. Competitive in vitro TxTL results between pairs of CFP and YFP or mCherry. The 148 

gene and corresponding CAI value are indicated in the figure legend. Protein synthesis rates are normalized to 149 

those in isolation. YFP and mCherry expression cassettes (DNA) were each added to 10 ng/µL whereas the CFP 150 

cassette (DNA) was titrated from 1.25 – 20 ng/µL (n=2). Panels d–e exhibit competition between sequences with 151 

identical codon usage, while panels f–g are between dissimilar sequences. Elongation-limited low CAI sequences 152 

are less affected by high CAI sequences but can cause catastrophic reductions in system-wide gene expression. 153 

Negative slopes for YFP and mCherry indicate competition for protein expression resources. 154 

 155 

More interesting observations are seen when dissimilar CAI re-codes are under competition upon co-expression 156 

(Figure 1e−f). Low CAI YFP and mCherry synthesis rates are not very sensitive to increasing resource demand by 157 

high CAI CFP synthesis. Conversely, the relative CFP expression is much lower than we observed either in isolation 158 

or when competing with a high CAI sequence. The observed results appear to be consistent across different 159 

sequence pairs, indicating that this phenomenon is independent of protein sequence. When examined in the 160 

context of an RFM, we deduce that the rare codon enriched YFP and mCherry sequences sequester ribosomes to 161 

such a degree that even excess CFP template DNA does not yield high synthesis rates. On the other hand, YFP and 162 

mCherry are not affected due to severe elongation limitation. This model is further supported by our observation 163 

that YFP and mCherry rates are reduced when competing with similarly re-coded low CAI CFP sequences, which is a 164 

likely consequence of competition for scarce tRNAs. Overall, our data indicates that proteins coded with similar CAI 165 

(high or low) are strongly competitive due to demand for the same tRNA pool. Conversely, genes coded under 166 

distinct CAI regimes are constrained by the availability free ribosomes, which are in turn limited due to 167 

slow/stalled translation from scarce tRNA resources. Our TxTL data strongly support the argument that translation 168 



elongation limitation could play an important role in cellular resource competition and highlights the impact to 169 

global translational resources (e.g., free ribosomes, tRNA) in multigene expression environments.  170 

 171 

 172 
Figure 2: Optimization of in vivo fitness assay. a. Schematic of in vivo system, with constitutive YFP integrated into 173 

E. coli chromosome (CAI = 0.96), and inducible CFP (varying CAI) expressed from plasmid. b. Example OD600 data 174 

with a growth fitness cost due to CFP induced burden (n=3). c. Example YFP fluorescence data with a Co-expression 175 

Fitness cost due to induced CFP protein burden (n=3). d. Example CFP fluorescence data used to determine 176 

Expression Level (n=3). e. Analysis of fitness and Expression Level for control CFP sequences reveals burden 177 

created by gene expression is dependent on translation (n=12, 3 replicates per conditions across 4 independent 178 

experiments). CFP is expressed from a 10-copy vector with indicated varying CAI, whereas YFP (CAI = 0.96) is 179 

constitutive and chromosomally integrated. f. Fitness and expression data for re-coded CFP-YFP pairs with co-180 

varying CAI, where CFP is expressed from different copy number plasmids (n=3). Matching CFP and YFP CAI as 181 

indicated in figure. Higher copy plasmids and/or lower CAI re-codes impose a higher burden. 1 copy = f1 origin, 5 182 

copy = pSC101 origin, 10 copy = p15A origin, 20 copy = pBR322 origin; CTL = control. 183 

 184 



 185 

We next set out to optimize an in vivo system for E. coli expression to efficiently interrogate the effect alternative 186 

recoding designs have on gene expression and host fitness. Our system generally consists of a strong constitutively 187 

expressed YFP reporter gene (CAI = 0.96) integrated into the E. coli chromosome paired with an inducible CFP on a 188 

plasmid driven by the inducible promoter Ptrc with a strong RBS (Figure 2a). As before, we held the 1st 51 bases and 189 

the 5’ and 3’ UTRs constant for all recodes. Cells grown in rich medium with a common pre-culture were passaged 190 

under inducing or non-inducing conditions. The area under the curve (AUC) is used to measure each of the 3 191 

signals (growth and 2 fluorescent proteins), which captures the aggregate effects of different lag phases and 192 

expression rates (Figure S3). We define fitness as the ratio of AUC induced vs. uninduced, which ranges from 0 to 1 193 

for low and high fitness, respectively (or conversely, high and low burden). Fitness can be in terms of Growth 194 

Fitness based on OD600, or Co-expression Fitness based on YFP fluorescence (chromosomal reporter), while 195 

Expression Level is based on CFP or mCherry fluorescence (i.e., the overexpressed protein) (Figure 2b-d). We 196 

generally observed a reduction in both growth and YFP fluorescence upon CFP induction. Examining several 197 

controls expressed from a p15A origin in Figure 2e, a “codon-optimized” high CAI CFP gene expresses well but 198 

elicits a significant fitness cost in terms of Growth Fitness and Co-expression Fitness. For a CFP recoded with rare 199 

codons, the result is catastrophic, and cultures are unable to grow at all. The effect also seems mediated by 200 

translation (not transcription) since the codon-optimized CFP with a very weak RBS, but intact promoter neither 201 

synthesizes protein nor demonstrates much fitness cost. Upon varying plasmid copy number with several pairs of 202 

CFP and YFP with different CAI levels, we found that fitness costs (Co-expression and Growth) were strongly 203 

dependent on copy number that is further exacerbated by low CAI (Figure 2f). Interestingly, the CFP Expression 204 

Level was not very correlated with CAI nor copy number. Based on these results, we picked the 10-copy vector 205 

(p15A origin) with the YFP CAI = 0.96 reporter as the platform for further studies to investigate re-coding schemes 206 

that may reduce fitness costs. 207 

 208 

Systematic analysis of codon use reveals supply and demand constraints in tRNA resources. 209 

 210 

Prior to designing novel re-coded genes that moderate translation elongation resources, we first investigated CUB 211 

in the E. coli transcriptome. CAI calculations are typically based on the natural CUB in highly expressed genes. CUB 212 

can be represented as a 64-dimensional space (total number of codons) using RSCU values (observed vs. expected 213 

frequency) for each protein coding gene. Initial analysis revealed that groups of genes within the E coli 214 

transcriptome cluster according to distinct CUB schemes (Figure S4). We focused on a consolidated set of this 215 

sequence space by analyzing all operons with at least 2 protein coding genes, given that functionally related genes 216 

that naturally cluster have similar CUB (Figure S5). The resulting 64 dimensions of codon usage across 773 operons 217 

can be represented in 2 dimensions accounting for 41.2% of total variance (Figure S6) using principal component 218 

analysis (PCA) as shown in Figure 3a. The loading vectors mapped onto the plot represent the 10 codons that 219 

contribute most significantly to codon bias across the 773 operons. 220 

This analysis captures the CUB naturally observed in the E. coli transcriptome and highlights a positive correlation 221 

between CAI and expression. This is expected because here CAI is calculated by optimizing towards CUB in highly 222 

expressed genes18 (see methods) (Figure S7). Consistent with previous studies, we corroborate that genes in the 223 

most extremely biased CUB space are some of the most highly expressed genes in the E. coli proteome that often 224 

serve essential functions (Figure 3b). The natural bias leading to the CAI scale is very well explained by PC1 (Figure 225 

3c). Despite the apparent correlation between CAI and expression, studies have reported that CAI often does not 226 

predict higher gene expression10. Importantly, the CAI paradigm of re-coding proteins to match the CUB of highly 227 

expressed genes ignores potential resource competition that can occur at the tRNA level. For 18 of 20 amino acids, 228 

multiple codons exist, and 10 of 18 of those can be coded to use different tRNAs in E. coli K12 MG1655 (Figure S8). 229 

Upon examining the PCA loadings, there are clearly particular codons that are very overrepresented in highly 230 

expressed proteins (e.g., arg CGT, leu CTG, and pro CCG). For such high-demand codons, using alternative 231 

codon/tRNA pairs, or even codons that recruit tRNAs with weaker affinity, have the potential to reduce translation 232 

elongation-based resource competition between overexpressed proteins and native essential and/or highly 233 

expressed genes. 234 

 235 



 236 
Figure 3: Codon usage bias in highly expressed E. coli genes. a. PCA analysis of RSCU in 773 E. coli operons with 237 

loadings mapped for the 10 codons with the highest contribution to variance. CAI is mapped onto individual 238 

operons and indicated in the figure legend. b. Select genes from the most extremely biased operons and their 239 

expression percentile. †Expression data from Taniguchi et al.39 c. PC1 is largely explained by CAI with a very strong 240 

Pearson correlation.  241 

 242 

 243 

Using our optimized in vivo assay, we sought to experimentally determine the contribution of individual codons to 244 

gene Expression Level and Co-Expression Fitness. The synonymous codon sequence space that could be explored in 245 

even a small gene such as CFP is experimentally intractable. Holding the first 51 bp constant and co-varying all 246 

possible synonymous codons would produce a massive library size of 1.8 × 10104. While a more constrained codon 247 

library is possible, we chose a focused experimental approach by interrogating individual codon contribution to 248 

gene Expression Level and Co-Expression Fitness. Starting with a CFP or mCherry sequence having a high CAI (0.96 249 



− 1.0) and using a single codon for each amino acid where the effective number of codons (ENC) = 20 (for details 250 

on ENC, see methods), for each amino acid we re-coded every instance to another synonymous codon, resulting in 251 

a total of 41 possible re-coded sequences (64 possible codons – 20 high CAI codons already in use – 3 stop codons 252 

not changed) (Figure 4a). Results were normalized in terms of both Expression Level and Co-expression Fitness 253 

(defined in Figure 2b) relative to the high CAI parent control (Figure 4b) and indicate wide ranging benefits or 254 

costs. In several instances, alternative codons provide a significant improvement in Co-Expression Fitness across 255 

both mCherry and CFP. Variations in phenotypes could in part be due to different amino acid composition between 256 

mCherry and CFP, as the number of re-coded amino acids was not held constant between genes (Figure S9). We 257 

chose to re-code all instances of each amino acid so as not to limit the number of altered codons to the amino acid 258 

with the fewest instances. Most of the re-codes do not improve expression (Figure 4c), which is expected since 259 

they were derived from (and normalized to) high CAI sequences that emulate highly expressed genes. CFP and 260 

mCherry re-codes are also less consistent in Expression Level than Co-Expression Fitness, reflecting a higher degree 261 

of variability between genes in cis compared trans effects. Notably, there are several alternative codons for 262 

leucine, proline, and one for arginine, which robustly improve Co-expression Fitness, suggesting that dissimilar 263 

codon use could be a means to generally reducing heterologous gene burden. Expression Level and Co-expression 264 

Fitness do not correlate well for mCherry or CFP re-codes (Figure 4d−e), indicating that while there may be general 265 

tradeoffs between expression and fitness, there are many instances where specific codon/tRNA pairs possess 266 

excess translational capacity.  267 

 268 

 269 

Novel recoding scheme yields genes with robustly improved fitness. 270 

 271 

Next, we developed a new recoding index derived from Co-expression Fitness values for individual codons in 272 

Figure 4b. We chose to focus on fitness rather than expression since our primary aim was to investigate how re-273 

coding schemes can modulate resource competition during translation elongation. To convert the Co-expression 274 

Fitness data for CFP and mCherry re-codes into generalized codon weights, we took the Euclidean distance from 275 

the origin to the coordinates of each data point shown in Figure 4b as a raw score for each sequence, where each 276 

parent codon held a normalized coordinate value of (1,1). Similar to calculating CAI, relative adaptiveness (W i) 277 

scores were then determined by normalizing the raw weights from each amino acid codon set to the codon with 278 

the highest fitness (see methods and Data S1). We refer to this new metric as the Codon Harmony Index (CHI or χ).  279 

 280 

A comparative analysis between CUB in the overall E. coli genome, CAI (using highly expressed genes as a 281 

reference), and χ reveals that χ favors very different codon use than CAI and discourages use of codons enriched in 282 

highly expressed genes (Figure 5a), notably for Arg CGT, Leu CTG, and Pro CCG. There are instances where χ and 283 

CAI do correspond well (e.g., Gly GGA, GGC, GGG), but many codons show inverse trends between the two scales. 284 

Generally, amino acids with multiple available tRNAs (including Arg, Leu, and Pro) correspond with larger 285 

differences between expected RSCU values calculated for CAI and χ (and shown in Figure 5a), suggesting that 286 

recruitment of different tRNAs is playing a role in determining Co-Expression Fitness (Figure S10). Interestingly, χ 287 

favored codons do not always correspond to amino acids with multiple available tRNAs, indicating tRNA 288 

abundance may not alone account for the observed effect, which could also be in part due to different translation 289 

efficiencies created by favorable interactions of tRNA codon-anticodon pairs. 290 

 291 



 292 
Figure 4: Systematic codon sensitivity analysis. a. Schematic of how genes are recoded for every amino acid. 293 

Starting with the highest CAI weighted codon for every instance of each amino acid, they are recoded to 294 

alternative synonymous codons. Example shown is for Proline. b. Mean fold change in (YFP) Co-expression Fitness 295 

upon CFP or mCherry co-expression, normalized to the parental (high CAI) control. c. Mean fold change in CFP or 296 

mCherry Expression Level relative to parental control. d−e. Poor correlations (Pearson’s r) between fold change in 297 

Expression Level of CFP or mCherry recodes with Co-expression Fitness. 298 

 299 



Utilizing the new χ weights, we next created several CFP and mCherry sequences that were optimized to varying 300 

degrees on the new χ scale (Figure 5b). Specifically, we created a χ = 1, ENC = 20 sequence, along with 4 sets of 3 301 

different sequences each holding χ constant at 0.95, 0.85, 0.75, and 0.65 for both CFP and mCherry by using a 302 

greedy algorithm (Figure S11). The lower end of the χ scale for the CFP/mCherry genes was approximately 0.6, 303 

which is dictated by the protein sequence, and lowest Wij values for each set of codons (see methods). When the χ 304 

recoded sequences were assayed for fitness and expression (Figure 5c–e), there was a very strong positive 305 

correlation between CFP and mCherry analogous re-codes for fitness and expression, indicating that these 306 

synonymous coding schemes are a primary determinant for how a gene performs regardless of amino acid 307 

sequence. Remarkably, we also observe a strong positive correlation between χ and, both, Growth Fitness and Co-308 

Expression Fitness—indicating that the weights derived from the individual codon assay are additive to improve 309 

the fitness of various globally-recoded sequences (Figure S12). High χ sequences clearly provide reduced 310 

competition for host resources and improved fitness. The χ scale is less predictive of expression, which is expected 311 

as it was not part of the criteria used to create the codon weights. Despite this, there is a good correlation 312 

between CFP and mCherry re-coded sequences in terms of Expression Level, indicating that codon usage bias does 313 

generally predict expression. Importantly, there are several sequences with reduced burden that retain relatively 314 

high expression, which represents an excess translational capacity for sequences re-coded using high χ values. 315 

 316 

To investigate which codon usage bias patterns have the greatest contribution to Co-expression Fitness, we 317 

analyzed RSCU across all variable 59 codon dimensions (excluding stop, Trp, and Met codons) for each of the CFP 318 

and mCherry re-coded sequences (as seen in Figure 5b) using PCA (Figure 6). We were able to represent 46.7% of 319 

the total sequence variation in the first 3 dimensions (Figure S13) when analyzing the CFP and mCherry recodes’ 320 

RSCU along with 773 E. coli operons. Here again PC1 and PC2 primarily explain variation across E. coli sequences, 321 

but intriguingly we see a new highly orthogonal dimension in PC3 that explains variation in the χ sequences, and 322 

PC1 vs. PC3 best differentiate the χ re-coded sequences from natural E. coli operons. The χ sequences generally 323 

have intermediate to low values on the CAI scale with low overall CAI variation, meaning they would not have been 324 

predicted to express well using CAI (Figure 6a). This is somewhat surprising given that many of the re-codes with 325 

moderate to high χ (0.8−0.95) still exhibit relatively high expression compared with the high CAI control as 326 

demonstrated in Figure 5e. When mapping χ values to the data, we see that χ describes variation along PC3 very 327 

well (Figure 6b, Figure S14). E. coli operon sequences do not vary significantly on the χ scale, implying that the re-328 

coded sequences explore novel coding schemes orthogonal to natural sequence space. Examining the loadings for 329 

the 3 most biased natural codons, we find that the high χ sequences are using synonymous variations for Arg, Leu, 330 

and Pro that differ as expected from highly expressed genes. We conclude that competition for tRNA isoacceptors 331 

in high demand by highly expressed essential genes primarily drives competition for translation elongation 332 

resources and avoiding specific codons that are over-represented in such native genes provides a novel strategy to 333 

improve the Co-Expression Fitness of heterologous genes. 334 

 335 

Given the breadth of existing knowledge regarding codon optimization, we also evaluated how χ compares with 336 

other reported CUB strategies such as the tRNA adaptation index (tAI)7 and normalized translation efficiency 337 

(nTE)6. These approaches weight codons based on their co-adaptation to the tRNA pool or the tRNA supply vs. 338 

codon demand respectively. We calculated the expected RSCU of a perfectly adapted gene sequence using these 339 

various scales to assess their degree of similarity (Figure S15), and found that stAI (species specific TAI using E. coli 340 

specific weights)21 correlates the closest with χ (Pearson’s r = 0.393, p = 0.002), but does not provide as much 341 

differentiation between codons available for each amino acid. We suspect the primary differentiator of the χ re-342 

coding strategy relative to tAI or nTE is that it provides empirical insight into which specific codons have excess 343 

capacity for translation as opposed to an approach relying solely on genomic statistics and approximations. Further 344 

analysis of the χ re-coded sequences did not reveal any consistent correlation with secondary structure or GC 345 

content between CFP and mCherry re-codes, supporting the notion that specific codon use is likely driving 346 

sequence behavior (Figure S16). We also re-coded 10 random genes with 3 free commercial re-coding algorithms 347 

to analyze whether any of them exhibit exploration of χ related CUB strategies and found that they generally vary 348 

along classical E. coli CUB and seek to adapt to host codon use without optimizing in the χ sequence space (Figure 349 

S17).  350 



 351 
Figure 5: Codon Harmony Index (CHI, χ) used to design and test sequences for CFP and mCherry. a. Relative 352 

synonymous codon usage (RSCU) observed in the E. coli genome or calculated for weighted CAI and χ scales. b. 353 

Codon frequency of CFP or mCherry re-coded sequences using variable χ values illustrated on a clustered heat 354 

map. c−e. Growth Fitness, Co-expression Fitness, and Expression Level data for CFP and mCherry re-coded using χ. 355 

Results were normalized relative to the high CAI parent control. 356 

 357 

 358 

In theory, χ could also correlate with CUB in phages that infect E. coli and have co-adapted to maximize gene 359 

expression without overwhelming host resources. There have been reports of not only co-adaptation to tRNA 360 

pools40,41, but also translational selection for CUB dissimilarity between viruses and hosts to avoid excessive 361 



competition for tRNAs42. We examined codon usage in 12 common coliphages known to infect E. coli to examine 362 

whether CUB in such parasitic viruses may have evolved to harmonize with bacterial hosts as a means to allow 363 

better co-utilization of shared translational resources (Figure S18). Our analysis indicates that phage genes 364 

generally tend to avoid CUB at high values of CAI (>0.7) and exhibit a slightly higher mean χ than E. coli genes. This 365 

suggests that it may be more productive in the phage life cycle to avoid excessive similarity and competition with 366 

their host, but there is another unique aspect of the CUB in χ that was not strongly selected for in phages. It is 367 

possible that the translational resource demand from an overexpressed protein on a multi-copy vector is higher 368 

than natural genes have encountered and is thus under a higher level of translational selection resulting in novel 369 

types of advantageous CUB reflected by χ that cannot be inferred from natural sequence space.  370 

 371 

 372 
Figure 6: PCA analysis of χ and CAI metrics on E. coli and CFP/mCherry re-codes. a. PCA of 773 E. coli operons as 373 

well as 13 χ re-coded sequences with CAI value mapped to individual points showing PC1 vs. PC2. b. Same PCA with 374 

χ mapped to individual points instead of CAI showing PC1 vs. PC3. 375 

 376 

 377 

DISCUSSION: 378 

 379 

Protein translation is one of the most resource intensive cellular processes, which has yielded significant CUB 380 

observed in nature, especially in single cellular microorganisms often used as expression hosts43. Most 381 

conventional codon optimization strategies operate under the key assumption that translational selection in 382 

naturally evolved systems provides CUB that is relevant for the overexpression of heterologous genes. This may be 383 

partially true, but realistically, the overexpression of genes can push host resource demand beyond levels required 384 

for native gene expression44, resulting in translational selective pressures that organisms haven’t evolved with. 385 

Protein expression must also be considered in the context of increasingly complicated engineered systems, and 386 

often in synthetic biology and metabolic engineering efforts, overexpression is not nearly as important as reliable 387 

and predictable gene expression and host fitness45. Here we have revealed both in vitro and in an E. coli model 388 

that translation elongation can limit protein expression, and often has profitable or catastrophic consequences on 389 

system-wide resource availability. 390 

In our TxTL assay, we found that proteins coded with similar CAI compete for the same tRNA supply, and re-coded 391 

genes can reduce such competition. Consequently, high CAI sequences are ribosome-limited, demonstrating 392 

reduced synthesis rates that are also highly sensitive to competition. In certain cases, low CAI genes are 393 

monopolistic or anti-competitive with free ribosomes and are thus insensitive to increased demand from high CAI 394 

sequences, albeit at the expense of overall resources. Theoretical frameworks have been well established to 395 

explain how resource limited translation can lead to the sequestration of ribosomes, but these studies generally 396 

rely on ribosome footprinting data35 and tRNA copy number6,7 to infer codon elongation times, which are indirect 397 

measurements of ribosome flux on a given mRNA. 398 



Our novel experimental approach using an E. coli model demonstrates the sensitivity of system resources at 399 

individual codon resolution and reveals key differences between the optimal CUB for highly expressed native genes 400 

vs. overexpressed proteins. Several previous studies have investigated CUB using randomized libraries that fail to 401 

thoroughly explore the vast sequence space available when re-coding a gene46. Such randomized sequences will 402 

generally regress to intermediate RSCU values for each codon, and rarely sample the extremities of the sequence 403 

space available (Figure S19). By systematically re-coding individual amino acids to each alternate codon in multiple 404 

proteins, we have methodically investigated how individual codons contribute to gene Expression Level and Co-405 

Expression Fitness at further extremities of the theoretical design space than have been previously explored. The 406 

avoidance of codons with very high CUB in native essential genes (e.g., for Arg/Leu/Pro) is a novel driver of 407 

reduced genetic burden. 408 

We used individual codon sensitivity data to create a new re-coding strategy that optimizes for fitness (CHI or χ) 409 

and demonstrate how the new codon weighting method enables the creation of unique CUB strategies that are 410 

not represented naturally in E. coli. Using PCA for dimensional reduction, our methodology reveals how sequences 411 

with identical CAI scores can still exhibit distinct variations in CUB that result in different phenotypes, namely 412 

improvements in Co-Expression Fitness. Remarkably, globally re-coded sequences were found to have predictable 413 

phenotypes informed from the additive effects of individual codon use, allowing us to leverage a relatively small 414 

dataset to predict phenotypes in a vast sequence space. While global sequence characteristics including GC 415 

content, structure, and a variety of sequence motifs are all known to contribute to protein expression2, our results 416 

suggest that codon bias is a strong predictor of both protein expression and fitness and can be optimized 417 

independently of the UTRs or 5’ coding sequence. An analysis of E. coli phage CUB reveals that while parasitic 418 

organisms may avoid over-use of preferred host codons, a concept that has been recently suggested42, the 419 

demands of heterologous gene over-expression and resulting selective pressures are likely to have different 420 

resource demands than those of viruses, and thus may have overlapping yet still largely distinct CUB fitness 421 

landscapes. 422 

 423 

The data-informed strategy in this study represents an approach that could be extended to other microbes 424 

including eukaryotic systems, where ongoing controversy over the impact CUB has on host-gene fitness has been 425 

unresolved47–51. While our study included 2 proteins (CFP and mCherry) with very different amino acid sequences, 426 

measuring Expression Level and Co-Expression Fitness for additional proteins could further refine χ, and provide 427 

additional insight for maximizing expression and fitness together. The new χ metric is more predictive of trans 428 

effects (Co-expression Fitness) than cis effects (Expression Level), thus further optimization of translation initiation 429 

and CUB that maximizes both expression and fitness is an interesting future objective. The observation that there 430 

are several sequences with relatively high expression and high fitness illustrates there are solutions to co-optimize 431 

both genetic traits. In practice, re-coding genes with high CAI will often lead to higher expression with low overall 432 

fitness, but re-coding with high χ values (between 0.9−0.95) should provide reasonably high expression with more 433 

orthogonal resource demands. Similar data sets could also be collected for any organism where protein expression 434 

is feasible, which could also provide insights into how species differ in the role CUB plays regarding resource 435 

allocation. It is possible that with more inter-species data, organism specific χ weights could be predicted a priori 436 

based on the avoidance of codons overrepresented in host genes. Practically, this study should improve the 437 

predictability and robustness of genetic engineering by enabling the co-optimization of gene expression and 438 

fitness, especially for multi-gene expression systems. 439 

  440 



MATERIALS AND METHODS: 441 

 442 

Equations used to assess codon usage bias. 443 

We calculated codon adaptation following the classical method reported originally by Sharp and Li18. This method 444 

relies on first calculating relative synonymous codon usage (RSCU) in a genetic sequence, which is defined by 445 

Equation 1: 446 

 

 

 

 

(1) 

RSCU calculates the observed frequency of codon j belonging to amino acid i divided by expected frequency, 447 

where X is the number of occurrences for codon j in a given sequence. The expected frequency is simply the 448 

number of occurrences for any codon belonging to amino acid i, divided by the number of codons (n) available for 449 

that particular amino acid. RSCU is used instead of raw frequency values to normalize observed codon frequency 450 

based on the total codons available.  An RSCU value < 1 indicates bias against the codon, while an RSCU value > 1 451 

indicates a bias toward the codon, and RSCU = 1 indicates no bias.  The RSCU values for each codon can be used to 452 

calculate relative adaptiveness (W), which is defined by Equation 2: 453 

 

 

 

(2) 

Relative adaptiveness is the RSCU for a codon j belonging to amino acid i divided by the RSCU for the codon in the 454 

set for amino acid i with the highest RSCU value (imax). In other words, W gives a value of 1 for codons in a target 455 

sequence that match the frequency of the most common codon in a reference sequence. W values are used in 456 

calculating the codon adaptation index (CAI) defined by Equation 3: 457 

 
 

 

 

(3) 

 458 

CAI is the geometric mean of the W values for each codon in a given sequence containing L codons. Importantly, 459 

the reference sequence(s) and calculated RSCU values that W values are derived from can be from any source. 460 

Unless otherwise indicated, in this study, CAI refers to W values for a set of highly expressed set of E. coli genes. 461 

Alternatively, CAI can be computed based on W values for CUB across the entire genome, sTAI weights21, or χ 462 

weights (See Data S2 for W values used in various calculations). Normalized translational efficiency (nTE) was 463 

calculated as previously described6 by taking the ratio of species specific TAI weights for E. coli21 (supply) vs. the 464 

codon use across the E. coli transcriptome (demand) defined by Equation 4: 465 

 

 

 

(4) 

The nTEij values are analogous to Wij values for the calculation of nTE, which proceeds the same as for CAI by taking 466 

the geometric mean across a sequence (as in equation 3). In this study, nTE was calculated using genomic codon 467 

frequency as opposed to codon use (originally defined as codon occurrence multiplied by RNA transcript 468 

abundance), as the two were found to be highly correlated (Figure S20). Lastly, the effective number of codons 469 

(ENC) is often used as a measure of codon bias in a sequence, and is calculated using Equation 5: 470 

 
 

 

(5) 

 

 471 

𝑅𝑆𝐶𝑈𝑖𝑗 =  
𝑋𝑖𝑗1𝑛𝑖 ∑ 𝑋𝑖𝑗𝑛𝑖𝑗=1  

𝑊𝑖𝑗 =  
𝑅𝑆𝐶𝑈𝑖𝑗 𝑅𝑆𝐶𝑈𝑖𝑚𝑎𝑥⁄  

 

𝑛𝑇𝐸𝑖𝑗 =  
𝑠𝑇𝐴𝐼𝑖𝑗 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑖𝑗⁄  

 

𝐶𝐴𝐼 =  ( ∏𝑤𝑘 

𝐿
𝑘=1 )1 𝐿⁄

  

𝐸𝑁𝐶 = 2 +  
9𝐹2 +  

1𝐹3  +  
5𝐹4  +  

3𝐹6 



ENC can take a value from 20, in the case of extreme bias where one codon is exclusively used for each amino acid, 472 

to 61 when the use of alternative synonymous codons is equally likely. The value F is the average probability that 473 

two randomly selected codons for an amino acid with n number of synonymous codons will be identical52. 474 

 475 

Data sources used in analysis. 476 

Genomic codon usage for E. coli K12 MG1655 and E. coli MRE600 were assessed by analyzing codon bias from 477 

published annotated genomes obtained from NCBI under the accession numbers NC_000913.3 and CP014197.1 478 

respectively using MATLAB. Phage analysis was done with annotated phage genomes from NCBI, and accession 479 

numbers are listed in Figure S18. Exact codon frequencies and relative adaptiveness values (W) used in this study 480 

for calculating CAI in reference to highly expressed genes CUB, entire genome CUB, sTAI, or nTE, can be found in 481 

Data S2. The W values for χ and associated information from the study can be found in Data S1. W values for 482 

highly expressed genes were originally downloaded online from GenScript, and were cross referenced to published 483 

values53. The sTAI codon weights were downloaded online from a publically available database  (http://tau-484 

tai.azurewebsites.net/)21. The tRNA copy numbers referenced in this study (Figure S8) were downloaded from the 485 

Genomic tRNA Database (http://gtrnadb.ucsc.edu/)54. 486 

 487 

Ribosome flow model. 488 

The implemented ribosome flow model (RFM) (Figure S1) was adapted from Zur et al. using open source Matlab® 489 

code34. In this model, an mRNA is divided into n number of chunks, where each chunk is 9 codons (27 bases), 490 

approximately the footprint of an E. coli ribosome. Translation time of each chunk is based on local λ, which is a 491 

sum of the individual times it takes to translate each codon in a chunk. Codon times used are available in Data S3. 492 

Ribosome collisions are also accounted for in the model as a function of the ribosome density in adjacent 493 

positions.  In this model, the protein production rate is the rate of translation of the final position on the mRNA. 494 

For this application, steady state ribosome densities were computed for CFP and YFP re-coded to use preferred 495 

(high CAI) or rare (low CAI) codons.  To demonstrate the relationship between initiation rate and translation rate 496 

for different sequences, steady state protein production rates are calculated for different initiation rates.  497 

 498 

Gene design and re-coding. 499 

All genetic re-coding designs and analysis were executed in Matlab® using custom functions. Code is made 500 

available online at https://github.com/nair-lab. A full list of amino acid and DNA sequences used in this study can 501 

be found in Data S4. CFP and YFP were initially cloned through site directed mutagenesis of an existing super-502 

folder GFP protein based on previously reported sequences.37,55 For the systematic analysis of codon use design, 503 

CFP or mCherry were re-coded starting from highly biased sequences using the most preferred codon for each 504 

amino acid (CAI = 1 and ENC = 20), not taking into account the first 17 codons. The first 17 codons were held 505 

constant for all re-codes and were based on previously used sequences that functionally expressed well. A Matlab® 506 

script was then used to systematically design sequences where every instance of an amino acid was mutated to a 507 

single alternate synonymous codon. In the design of sequences with novel re-coding schemes, a greedy algorithm 508 

was used (Figure S11), that functions by randomly mutating a codon to a synonymous alternative, then evaluating 509 

whether the new sequence is closer to the target CAI (or in this specific instance χ value). To re-code CFP and 510 

mCherry to a desired χ value, a starting sequence was first randomized to ensure there was no initial bias, and then 511 

the algorithm was followed to the target χ value. We generated several unique output sequences with the same χ 512 

value but different coding sequences, then selected 3 sequences for each value of χ tested making sure they were 513 

substantially different from each other based on hierarchal clustering done in Matlab®.  514 

 515 

Plasmids and strain construction. 516 

All plasmids were cloned from existing vectors with restriction enzyme sites already present (figure S21, S23, Data 517 

S4), which also contained 5’ and 3’ UTRs. Genes were all custom ordered synthesized as full length double 518 

http://tau-tai.azurewebsites.net/
http://tau-tai.azurewebsites.net/
https://github.com/nair-lab


stranded DNA fragments with AarI restriction sites on the 5’ and 3’ termini. A type IIS restriction enzyme cloning 519 

approach with AarI was used to insert synthesized double stranded DNA gene fragments into the desired vector. 520 

All constructs were sequence verified from clonally pure DNA using Sanger sequencing across the gene and UTRs. 521 

The screening strain used to assess Co-Expression fitness was engineered from E. coli K12 MG1655 (CGSC#: 6300). 522 

The YFP reporter was integrated in an intergeneic region (~3,938,000 bp) between the rsmG-atpI genes using λ-523 

Red based homologous recombination of the YFP CAI = 0.96 sequence, which was under the control of a strong 524 

constitutive promoter (FAB46) and RBS (BCD7) based on a previous study,38 and a 5’ insulator and 3’ terminator 525 

(Figure S22, Data S4). The method of integration and marker excision method has been previously reported 526 

(Datsenko and Wanner).56 Briefly, a linear cassette consisting of the gene, UTRs, and an attached kanamycin 527 

resistance marker was amplified by PCR with ~500bp of homology to the desired locus on either end. 528 

Chromosomally integrated clones were identified by colony PCR and sequence verified via Sanger sequencing of 529 

the PCR product including several hundred bases of chromosomal DNA and the entire integrated heterologous 530 

expression cassette. Sequence verified clones had the integrated kanamycin marker removed through the 531 

previously described FLP-FRT site specific recombinase method and were again Sanger sequenced for final 532 

verification. 533 

 534 

in vitro transcription-translation (TxTL) assay. 535 

The TxTL assay was carried out using the NEB PURExpress® kit (E6800). This assay relies on T7 polymerase, and 536 

consists of purified reconstituted components. Accordingly, CFP, YFP, and mCherry expression cassettes were first 537 

cloned into a pBAC vector with a T7 promoter and strong RBS (BCD7) (Figure S23 a–b, Data S4). The genes were 538 

also flanked by an insulator and terminator sequence on the 5’ and 3’ UTR respectively. Once clonally pure and 539 

sequence verified, expression cassettes were amplified by PCR (from the beginning of the insulator to end of the 540 

terminator) and normalized in concentration using UV-vis spectroscopy at λ = 260nm. A master mix was first 541 

prepared according to the PURExpress® published protocol, which was kept on ice until use.  Reactions were scaled 542 

down to 5 µL final volume and carried out in Corning® low volume 384-well white flat bottom polystyrene TC-543 

treated microplates (part # 3826). Reactions were initiated by the addition of DNA using a multi-channel pipette 544 

(n=2 per condition), followed by immediate transfer to a Tecan Infinite® M1000 microplate reader. A DNA 545 

concentration of 20ng/µL each was found to generally maximize competition between two genetic cassettes 546 

(Figure S23 c-d). Assays were run for 6hr. at 37°C with fluorescent reads every 5 minutes of each protein being 547 

analyzed (CFP: Ex. 435nm, Em. 470nm, YFP: Ex. 510nm, Em. 530nm, mCherry: Ex. 585nm, Em. 612nm). Reported 548 

reaction rates reflect the maximum rate observed for each individual replicate. 549 

 550 

in vivo fitness and expression assay. 551 

To assess Co-Expression Fitness, Growth Fitness, and Expression Level, sequence verified plasmid constructs were 552 

transformed into E. coli K12 MG1655 with the chromosomally integrated YFP reporter. Unless noted otherwise, 553 

overexpressed proteins were under control of the Trc promoter with a strong RBS (BCD7) (Data S4). 3 individual 554 

transformants were isolated and grown overnight in 400µL LB broth (BD DifcoTM) with selective antibiotic at 37°C in 555 

96 deep well plates (Greiner Bio-One MASTERBLOCK®, 96 Well, 2 ML Item: 780270) for 24 hr. Cultures were then 556 

split and diluted 1:40 into LB broth with selective antibiotic and with or without 500µM inducer (IPTG) in black 96 557 

well clear bottom micro-titer plates (Thermo product: 165305). Plates were incubated for 8 hours with shaking at 558 

37°C in a Tecan Infinite® M1000 microplate reader with monitoring every 5 minutes for OD600, as well as 559 

fluorescence (CFP: Ex. 435nm, Em. 470nm, YFP: Ex. 510nm, Em. 530nm, mCherry: Ex. 585nm, Em. 612nm). Data 560 

were analyzed by comparing independent induced vs. uninduced cultures in terms of fluorescence and growth. To 561 

account for lag phase and differences in rates within a single term, the background subtracted area under the 562 

curve (AUC) was used for each respective signal using a Matlab® numerical integrator. The timespan evaluated was 563 

bounded by the time it took any sample to reach the upper limit of detection for fluorescence, which often took 564 

between 4-6 hours.  In most cases, the mean of 3 replicates was compared (fold change) relative to a control 565 

sequence (e.g. the high CAI starting sequence).  566 

 567 

 568 



Additional data analysis. 569 

Except in the case of measured reaction rates, all data were collected from distinct samples. Mean, standard 570 

deviation, linear regression, correlation analysis, dimensional reduction, and associated statistics were calculating 571 

using built in functions in Matlab® or Microsoft Excel. Error bars in all plots represent standard deviation. Principal 572 

component analysis and hierarchal clustering were always carried out on an m x n matrix of RSCU values with 573 

codons in 61 rows and n number of gene sequences in columns. For RNA folding calculations, the minimum free 574 

energy was calculated for sequences using the Vienna RNAfold Version 2.5.1 software.57 575 
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