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Abstract

Background
The m6A methylation-regulated histone acetylation modi�cation affects the proliferation and
differentiation of mouse embryonic neural stem cells, and recent studies have shown that the
deacetylase SIRT1 regulates RNA m6A methylation to promote hepatocellular carcinogenesis. However,
the interrelationship between the m6A methylation and histone acetylation, and the potential roles as well
as interactions of related regulators in TME cell in�ltration and drug sensitivity have not been explored at
a holistic level.

Methods
Unsupervised clustering method was used to identify lung adenocarcinoma m6A modi�cation patterns
based on 14 m6A regulators and histone acetylation modi�cation patterns based on 37 histone
acetylation regulators. Individual samples were then quanti�ed based on their differential gene
construction models. Finally, the models were analysed in relation to transcriptional background and TME
characteristics to predict potential target drugs and explore the association of m6A methylation with
histone acetylation.

Result
Three histone acetylation patterns as well as two m6A methylation patterns were identi�ed. Patients with
LUAD in the low-score group had poorer overall survival times and more active cancer-related malignant
pathways. m6A methylation was strongly associated with histone acetylation, and high levels of m6A
methylation and histone acetylation patients had signi�cantly superior survival and immunoreactivity.
VX-680 and GW843682X may be potential drugs available for the low level m6A group.

Conclusion
This work revealed that m6A modi�cations and histone acetylation modi�cations have a non-negligible
role in the development of TME diversity and complexity. We found that both m6A methylation and
histone acetylation are closely associated with tumor malignant pathways. Combined m6A methylation
and histone acetylation analysis will help to obtain the understanding of tumor internal regulation and
provide new therapeutic directions.

Introduction
Lung cancer is the main cause of cancer deaths in the world. Lung Adenocarcinoma (LUAD) is the main
type of Lung cancer, according for approximately 40% of lung cancer patients(1). Clinical indications are
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that LUAD is in urgent need of precise treatment. Most LUAD patients are diagnosed with advanced
disease due to effective diagnostic methods.Despite advances in treatment methods, the effectiveness of
these current treatments remains suboptimal(2).Thus,it is an urgent to explore new prognostic predictors
and therapeutic targets for LUAD(3).

There are over 100 known modi�cations to RNA, and internal modi�cations to mRNA are used to
maintain mRNA stability. mRNA's most common internal modi�cations include N6-adenylation (m6A), N1-
adenylation (m1A) etc.m6A modi�cation is a dynamic and reversible process which is regulated by m6A
methyltransferases (writers), m6A demethylases (erasers) and m6A- binding proteins (readers)
(4).Previous work has shown that m6A acts as a huge role in cancer proliferation, migration and
invasion(5).However, the therapeutic effects of m6A modulators and their impact on the prognosis of
LUAD need to be further explored. Histone acetylation is a dynamic and reversible post-translational
modi�cation whose N-terminal lysine residues can be catalyzed by histone acetyltransferases (HATS)
and regulated by proteins that can be divided into three kinds: "writers", "readers" and "erasers". The
"writers" are able to transfer acetyl groups to histones, while the "erasers" are able to remove acetyl
groups from histones. The "reader" is able to recognize the modi�ed histones(6). As acetyltransferases
and transcriptional attackers or substances, HATs have been shown to be related to malignant
transformation(7, 8), It regulates the expression of key genes and proteins. HDACs, one of the most
studied anticancer targets to date. Histone deacetylase inhibitors (HDACis) can Inhibit the growth of
cancer cells and induce differentiation and apoptosis by inhibiting HDAC activity and promoting histone
acetylation(9).

In this study, we retrospectively investigated genomic alterations in 2057 LUAD samples from the Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts. We comprehensively evaluate
histone acetylation modi�cation patterns on the basis of histone acetylation regulators and m6A
methylation modi�cation patterns of m6A methylation regulators. We found that the identi�ed
modi�cation patterns have different features in terms of activating pathways associated with
malignancy and in�ltrating multiple immune cells. We also builded model to quantify the histone
acetylation patterns and m6A methylation patterns in individual patients.

Materials And Methods
Collection of LUAD Datasets and Preprocessing

The study work�ow is shown in Supplement Fig. 1. Gene expression data and clinical features of Lung
cancer samples were retrospectively retrieved from publicly available datasets of the NCBI GEO database
(https://www.ncbi.nlm.nih.gov/geo/) and TCGA (https://portal.gdc.cancer.gov/).Moreover, we obtained
genomic mutation data (including somatic mutations and copy number variants) for TCGA-LUAD from
the UCSC Xena(https://xenabrowser.net/datapages/). In summary, we analysed 2057 LUAD patients from
8 cohorts: TCGA-LUAD, GSE14814, GSE19188, GSE31210, GSE37745, GSE50081, GSE68465 and
GSE72094.Sample names of speci�c patients can be viewed in Table S1.RNA-seq data were converted to
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transcripts per kilobase million (TPM) values(10). For microarray data from GEO. Download the original
probe expression matrix from GEO and perform RMA dimensionality reduction via “affy” package. Finally,
we used the 'Combat' method of the sva package(11) to adjust for batch effects caused by non-
biotechnological bias.

Consensus Clustering Expression Pattern

The literature related to histone acetylation, m6A methylation was searched, and 40 histone acetylation
genes(12), 22 m6A methylation genes(13) were collated and analysed to identify modi�cation patterns
(Table S2). Robust clustering of lung adenocarcinoma cancers determined by unsupervised consensus
clustering algorithm. We performed the above steps using the R package ConensusClusterplus and
performed 1000 replications to ensure classi�cation stability(14).

Gene Set Variation Analysis (GSVA) and Functional Annotation

GSVA enrichment analysis was realized by the "GSVA" R package.(15). The gene sets of
"c2.cp.kegg.v7.5.1.symbols" and "c5.go.v7.5.1.symbols" were downloaded from the MSigDB database for
GSVA analysis. Some tumor biological features gene signatures obtained from the supplementary table
of previous studies.(Table S3)(16).The clusterPro�ler R package is used for functional annotation of
genes, and FDR > 0.05 as the threshold(17).

Estimation of TME cell in�ltration

We make use of the single-sample gene-set enrichment analysis (ssGSEA) algorithm and ‘CIBERSORT’ to
quantify the relative abundance of each cell in�ltration in the LUAD TME. The gene sets de�ning each
immune cell type were obtained from Previous studies(Table S3)(18, 19).

Generation of gene signatures

We constructed a score system to quantify the level of m6A methylation and histone acetylation
modi�cations in individual patients, expressed as MAscore versus ACscore. Speci�cally, as follows,
differentially expressed genes were �rst identi�ed from different gene-clusters, and subsequent selection
of prognosis-related genes by univariate Cox regression. Patients were then divided into groups by using
an unsupervised clustering approach. Gene expression was then transformed into Z scores and a gene
signature was constructed by principal component analysis (PCA). Both principal components 1 and 2
(PC1 and PC2, respectively) were selected as signature scores. This approach focused on the scores of
sets with the largest blocks of related (or anti-correlated) genes, while reducing the contribution weights
of genes that were not related to other set members. Finally, we used a formula similar to that of previous
studies to de�ne the scores.(20, 21):

Score = Σ(PC1i + PC2i)

where i is the expression of modi�cation phenotype-related genes.
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Correlation between gene signature and other related biological processes

We evaluated the expression of immune checkpoints. The immunophenotype score (IPS) is a good
indicator of tumor immunogenicity, and we downloaded the immunophenotype core (IPS) �le from the
Cancer Immune Atlas database to assess the signi�cance of gene signatures for immunotherapy. The
Tumor Immune Dysfunction and Rejection (TIDE) algorithm. It can effectively reply immune checkpoint
blockade responses, with higher scores indicating that tumor cells are more likely to induce immune
escape and also indicate a lower response rate to ICI treatment. In our study, the mean of all samples
involved in the analysis was used as a normalized control and scores were calculated by applying the
Web application(http://tide.dfci.atherard.edu/) with the developer's instructions.

Correlation Analysis of Score and Drug Sensitivity

Based on the Cancer Genome Project (CGP) database, the IC50 of common chemotherapeutic agents
was calculated by the 'pRRophetic'(22) software package. Correlations between drug sensitivity and
Score were calculated by Spearman's method and considered |Rs|>0.3 and FDR < 0.05 as signi�cant
correlations.

Statistical Analysis
In this study R (version 4.1.2) was used to analyse the data. Differences between non-parametric and
parametric methods were compared using the Wilcoxon test, Kruskal-Wallis test, t-test or one-way ANOVA.
Survminer package to determine the best survival message cutoff for each queue. The score was
dichotomized using the surv-cutpoint function. Patients were then categorized into high and low groups,
and survival curves for prognostic analysis were assessed using the Kaplan-Meier method with a log-rank
test to assess between-group differences. we included the score and associated clinical parameters in a
multivariate Cox regression model analysis. Statistical signi�cance was set at P < 0.1, and signi�cance
was set at P < 0.05.

Results
Genetic and Transcriptional Alterations of Histone Acetylation Regulators and m6A Regulators in LUAD

Reviewing published articles, A total of 57 genes regulated by m6A methylation and histone acetylation
that were included in the analysis. Metascape analysis was performed on these genes. The biological
processes that signi�cantly enriched were mainly associated with histone modi�cation, epigenetics and
others, as summarized in Figs. 1A.Based on 57 regulators, LUAD samples were well separated from
normal samples. (Figs. 1B). We evaluated the somatic mutation rates of the two groups of regulators
separately to identify genetic changes of the regulators in cancer. In the LUAD cohort of TCGA, 121 of 527
samples (22.96%) experienced alterations in m6A methylation regulatory genes, while 195 (37%)
experienced alterations in histone acetylation regulatory genes. The highest mutation rates were found in
ZC3H13 (4%) and HDAC9 (6%) respectively (Figs. 1C, D). A survey of CNV variation frequencies showed



Page 6/27

that CNV variation was prevalent in 57 regulatory genes and mostly concentrated in copy number
ampli�cation, while CNV deletion frequencies were prevalent in genes such as ZX3H13, SIRT5 and BRDT
(Figs. 1E). The location of CNV alterations in regulatory factors on chromosomes is shown in Figs. 1F. We
also investigated the expression of regulatory factors in LUAD and normal lung tissues and found
differences in the expression of the vast majority of genes. The above analysis showed the genetic and
expression changes of 57 regulators were highly heterogeneous between LUAD and normal tissues (Figs.
2A, B), suggesting that the unbalanced expression of these regulators profoundly affects the
development of LUAD. Furthermore, genes do not function in isolation; therefore, we explored the
correlation between m6A regulators and histone acetylation regulators. We found that the mRNAs of both
are highly correlated in expression (Figs. 2C). These imply a tight crosstalk between and within histone
acetylation regulators and m6A methylation regulators. m6A methylation and histone acetylation
regulators have highly heterogeneous genetic and expression patterns between LUAD and normal
samples, also suggesting that regulators are critical for the development of LUAD.

Identi�cation of Two m6A Methylation Modi�cation Patterns and Three Histone Acetylation Modi�cation
Patterns

14 m6A methylation regulators and 37 histone acetylation regulators were used for further analysis of the
corresponding expression patterns based on mRNAs from 2057 lung adenocarcinoma patient samples
from TCGA-LUAD, GSE14814, GSE19188, GSE31210, GSE37745, GSE50081, GSE68465 and GSE72094.
To identify the expression patterns of regulatory factors, mRNA expression data from LUAD samples were
classi�ed using ConsensusClusterPlus. Using unsupervised clustering, we identi�ed two m6A methylation
patterns with different properties (Figs. 3A), including 1322 cases of cluster A, 735 cases of cluster B. We
named these patterns as MAclusterA, MAclusterB. Three histone acetylation patterns with different
properties, including 170 cases of cluster A, 1071 cases of cluster B, 816 cases of cluster C (Figs. 3B),
were termed as ACclusterA-C. Combined with the survival information of the samples, the prognostic
analysis showed that the m6A methylation subgroup had a better survival in the MAclusterB group than
MAclusterA group (Figs. 3C). Among the three subgroups with histone acetylation modi�cation patterns,
AClusterA had a better probability of survival in the �rst 7 years, and AClusterB had the worst probability
of survival (Figs. 3D). Notably, tSNE analysis showed signi�cant differences in transcriptional pro�les
among m6A methylation modi�cation patterns and the three histone acetylation modi�cation patterns,
respectively(Figs. 3E, F), which also indicated the success of our unsupervised clustering results. Finally,
we grouped 2057 samples according to the grouping of m6A methylation with histone acetylation and
performed survival analysis. the common sample group of MAclusterB and AClusterB had better survival,
while interestingly: Samples in the AClusterC group, which had a higher survival rate and also belonged to
the MAclusterA group, which had a low survival rate, instead had a lower survival rate than those in the
AClusterB group, which also belonged to the MAclusterA group and had a lower survival rate.
Subsequently, we obtained similar results in TCGA-LUAD and GEO meta cohort(Supplement Figs. 2).

Molecular Background of Tumors and In�ltration Characteristics of TME Cells in Different Patterns



Page 7/27

To identify the differences in biological behavior between the different modi�cation patterns of m6A
methylation and histone acetylation, GSVA enrichment analysis was performed (Table S4, Figs. 4A, B
Supplement Fig. 3A-C). MAclusterA was enriched in cancer pathways MYC/NOTCH/PI3K/TGF-Beta, and
cell cycle, while MAclusterB was enriched in Antigen processing
machinery/WNT/EMT/Angiogenesis/CSCs activity pathways (Figs. 4C). In the histone acetylation
pattern, the highest abundance in the cell cycle/HIPPO/MYC/NOTCH/PI3K/TGF-Beta pathway was in the
AClusterB group and the lowest in the AClusterA group, while the highest abundance in the
WNT/EMT/Angiogenesis pathway was in the AClusterC. interestingly, in the lowest abundance in the
EMT and CSCs activity pathway was in the AClusterA group rather than in the AClusterB group, which had
the worst survival rate (Figs. 4D). These results re�ect that the regulatory pattern is closely related to the
biological behavior of lung adenocarcinoma. Highly active regulators may be a key factor in improving
the malignancy of lung adenocarcinoma.

In previous studies, immune cell in�ltration of TME was signi�cantly correlated with alterations in histone
acetylation and m6A methylation. Therefore, we analyzed the role played by 57 regulators in TME. The
relative abundance of in�ltrating TME immune cells was quanti�ed by ssGSEA algorithm (Supplement
Fig. 3D, E) and "CIBERSOFT" package (Supplement Fig. 3F, G). And the association between regulators
and TME-in�ltrating immune cells was analyzed (Figs. 4E, F). Evaluation of tumor purity of samples with
'ESTIMATE' package (Supplement Fig. 3H-N). T cells gamma delta, Mast cells resting, Eosinophils and
Immature. dendritic.cells were positively correlated with the majority of regulatory factors. We also
analyzed the TME cell in�ltration in various patterns. MAclusterB differed signi�cantly from MAclusterA.
The abundance of plasmacytoid dendritic cells was higher in MAclusterB than in MAclusterA, suggesting
that MAclusterB has a higher antigen-presenting function. Natural killer cells, immature dendritic cells,
etc., were in higher abundance in MAclusterB. However, activated CD8 T cells, the most potent effector in
the anticancer immune system(23), as well as other important tumor-killer cells and gamma delta T cells
(24), were lower in MAclusterB than in MAclusterA(Figs. 4G).In the histone acetylation pattern(Figs. 4H),
plasmacytoid dendritic cells were much more abundant in the ACclusterC than in the ACclusterB group.
Natural killer cells were equally abundant in AC group C than in AC group B. Similar to m6A methylation,
the abundance of Activated CD8 T cell, Gamma delta T cell and other cells were higher in the ACclusterB
group. What is interesting is the ACclusterA group. It has comparable levels of Regulatory T cell,
Macrophage, Natural killer cell, Natural killer T cell with the ACclusterC group, and also has comparable
levels of Activated CD8 T cell with the ACclusterB group. B cell abundance in the ACclusterA group was
much higher than that in ACclusterB and ACclusterC, and also had the lowest abundance of Activated
CD4 T cell. These results suggest that the modi�cation patterns of both m6A methylation and histone
acetylation are closely related to the tumor immune microenvironment.

Based on the analytical results of our study and the experimental �ndings of previous authors. We
selected FTO, KAT2B, METTL3 for further analysis (Figs. 4E, F). We divided the samples into a high FTO
group and a low FTO group by FTO expression. k-M plot analysis showed high FTO expression group had
better survival, and we subsequently examined the expression levels of m6A methylation and histone
acetylation regulators in both groups and found that the expression of regulators in the high FTO group
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far exceeded that in low group (Supplement Fig. 4A, B). We also obtained the same results in the
corresponding analysis of two genes, KAT2B, METTL3(Supplement Fig. 4C-F). Lin et al, noted that
METTL3 promotes translation in human lung adenocarcinoma. We therefore collected genome-wide
mRNA expression data from GSE200649 transfected with shMETTL3 versus NC in control cells. The
expression differences between m6A methylation regulators and histone acetylation regulators after
transfection were analyzed. Interestingly, in this dataset, the difference in expression of stably transfected
shMETTL3 at the mRNA level was not signi�cant (Table S5). These results further suggest a tight
relationship between m6A methylation regulators and histone acetylation regulators.

Identi�cation of phenotype-related genes

Due to the differences in regulatory transcriptional pro�les between m6A modi�cation Pattern as well as
histone acetylation modi�cation Pattern, we then explored the genetic variation and mechanisms of the
congregational modi�cation patterns. Identi�cation of differential genes between subgroups by limma R
package. We identi�ed DEGs between the MAclusterA and MAclusterB groups and between the AClusterA,
AClusterB and AClusterC groups (Table S6). Subsequently, 18 and 27 genes associated with survival were
selected respectively. To further deepen the understanding of m6A methylation and histone acetylation,
Unsupervised clustering analysis was performed with 18 and 27 genes separately and patients were
classi�ed into different gene clusters. As with previous modi�cation patterns, two m6A-modi�ed gene
phenotypes and three histone acetylation-modi�ed gene phenotypes were identi�ed. (Fig. 5A, B). We
named them as MA-gene-clusterA/B, AC-gene-clusterA/B/C, respectively. These results suggest that three
histone acetylation modi�cation modes and two m6A methylation modi�cation modes do exist in LUAD.
A signi�cant proportion of genes in the m6A gene cluster pattern are highly expressed in MA-gene-
clusterB. We then performed unsupervised clustering of the TCGA cohort separately from the meta-GEO
cohort (Supplement Fig. 5A-F). It was found that the samples were still clustered into two groups. The
same clustering was also used to analyze the histone acetylation gene cluster patterns (Fig. 5C, D), with
the AC-gene-clusterA group having the highest expression of PRMT1, RHOB and TAF10, while all other
DEGs had lower expression than that both in AC-gene-clusterB and AC-gene-clusterC groups. The
expression levels of DEGs in the better surviving AC-gene-clusterC were higher than those in AC-gene-
clusterB group. Subsequently, we analyzed the expression of m6A and histone acetylation regulators in
the gene cluster. Notably, The expression of m6A methylation regulators was also much higher in the AC-
gene cluster C group than in the AC-gene-cluster-B group. The expression level of m6A methylation
regulators in AC-gene-clusterC group was also signi�cantly higher than that in AC-gene-clusterB group
(Fig. 5E-G). Similarly, the expression of 57 regulators in the MA-gene-cluster was higher in MA-gene
cluster B than in MA-gene cluster A(Fig. 5H-J).To reveal the role of related phenotypes in TME
immunomodulation, we investigated the expression of chemokines and cytokines in gene clusters.
Cytokines and chemokines were extracted from the published literature(25, 26). Interestingly: TGFb/EMT
pathway-related mRNAs, immune activation transcript-related mRNAs and immune checkpoint-related
mRNAs were all highly expressed in MAgA.ACgC(The group consisting of MA-gene-clusterA and AC-gene-
clusterC common samples) and MAgB.ACgC (The group consisting of MA-gene-clusterB and AC-gene-
clusterC common samples)groups(Supplement Fig. 5G-I).The ssGSEA analysis showed that MAgA.ACgC



Page 9/27

and MAgB.ACgC were more active in the pathways of Antigen processing machinery, EMT and CSCs
activity. Consistent with our previous �ndings (Supplement Fig. 5J)

Construction of a Digital Model for Individual Lung Adenocarcinoma Patients

Patients with lung adenocarcinoma are heterogeneous and complex. We constructed a phenotypic gene-
based scoring model, called MAscore and ACscore, respectively. The variation of patients' attributes can
be clearly observed by alluvial plots (Fig. 6A, Supplement Fig. 6A, B). We analyzed the correlation between
the scores and immune cells, Type 2 T helper cell, Eosinophil, Immature dendritic cell and Mast cell were
signi�cantly positively correlated with MAscore, while Gamma delta T cell and CD56dim. Natural killer
cells were signi�cantly negatively correlated with MAscore. Type 2 T helper cell, Eosinophil and Immature
dendritic cell are signi�cantly positively correlated with ACscore, while CD56dim natural killer cell and
Monocyte are signi�cantly negatively correlated with ACscore(Fig. 6B,Supplement Fig. 6C).Then, we
analyzed the scores in cluster and gene-cluster. The MAclusterB and MA-gene-clusterB groups with better
survival had much higher MAscore than the MAclusterA and MA-gene-clusterA groups, respectively (Fig.
6C, D). While the ACscore in the subgroup of histone acetylation, ACclusterA, which had a better survival
curve among ACcluster and AC-gene-cluster, AC-gene-clusterA had the lowest ACscore score among the
respective groups. The ACscore of ACclusterC and AC-gene-clusterC with better survival was higher than
that of ACclusterB and AC-gene-clusterB with poorer survival, respectively (Fig. 6E, F). Cox regression
analysis in the TCGA cohort showed that our constructed MAscore and ACscore can be used as
independent prognostic detectors. Using the optimal cut-off point to classify patients into high and low
groups, survival analysis showed that patients with high scores had a better survival prognosis than
patients with low scores. Combining the high and low groups of m6A methylation and histone
acetylation, the survival analysis showed that the group with both MAscore and ACscore had better
survival, and encouragingly, the expression levels of m6A regulators and histone acetylation regulators in
this group far exceeded those of other lung adenocarcinoma patients (Fig. 6G, H).

Models predict potential therapeutic drugs

Based on the Cancer Genome Project (CGP) database, we predicted the sensitivity of 138 drugs. We
selected drugs with lower IC50 values in the low-risk group in the m6A methylation and histone
acetylation subgroups, and selected drugs with higher IC50 values in both the MASH.ACSH group than in
the other groups, followed by analysis of the drugs most associated with MAscore, ACscore
values.GW843682X, MS.275, S.Trityl.L.cysteine. VX.680 were screened (Fig. 7A, Table S7). gw843682X is
a PLK inhibitor that plays a role in regulating cell mitosis, etc. MS.275 is a histone deacetylase inhibitor
that potently inhibits HDAC1 and HDAC3. s.Trityl.L.cysteine is an Eg5 inhibitor that induces mitotic arrest
in HL-60 cells and VX.680 is an inhibitor of pan-Aurora, which is also a regulator of mitosis. We analyzed
the expression of the target genes of the four drugs in each risk group, in which AURKB and PLK1 may be
effective therapeutic targets(Fig. 7B), and then analyzed the relationship between the expression of
AURKB, PLK1 and LUAD survival, survival analysis showed better survival in patients with low levels of
AURKB and PLK1(Fig. 7C,D), which also re�ects that VX.680, GW843682X may be a promising drug for



Page 10/27

the treatment of patients in MASL.ACSH and MASL.ACCSL groups. TIDE, which is widely used and highly
recommended for assessing immune responses in cancer-related studies(27, 28). Considering the
MAscore, the ACscore seems to be closely related to TME. We analyzed the differences in TIDE scores
across subgroups. The results showed that the TIDE scores of MASH. ACSL were much lower than those
of the MASH.ACSL and MASL.ACSL groups (Fig. 7E). However, the MASH.ACSH group did not have the
lowest scores, but rather the MASL.ACSH group had the lowest TIDE scores, and it is possible that the
MASL.ACSH group had a higher treatment outcome from ICI treatment. Therefore, we explored the
correlation between MAscore /ACscore and immunophenoscore (IPS) in LUAD for the purpose of
predicting the response of immune checkpoint inhibitors (ICIs). Correlation analysis showed that
MAscore, ACscore and ips_ctla4_neg_pd1_pos, and ips_ctla4_pos_pd1_pos had the highest negative
correlation (Fig. 7F). The expression of immune checkpoints were similarly higher in the MASH.ACSH
group than in the others. This likewise re�ects the high level of m6A methylation with high
immunoreactivity of histone acetylation (Fig. 7G).

Organelle division aids m6A methylation and histone acetylation to identify LUAD patients with better
prognosis

In a previous study (Fig. 3I), we found that the m6AA.AcC group, which should have survived better,
instead had a worse survival curve than the m6AA.AcB group. Not coincidentally, the MAgA.ACgC group
in the genome had better survival than the MAgB.ACgC group instead. We extracted these patients for
further analysis. Survival analysis showed no signi�cant difference between m6AA.AcB and m6AA.AcC
(Fig. 8A), while MAgA.ACgC, MAgB.ACgC survival differed signi�cantly (Fig. 8B). Interestingly, when we
analyzed the expression of m6A methylation regulators and histone acetylation regulators in these
groups, we found no signi�cant survival differences between the m6AA.AcB and m6AA.AcC groups, but
instead there were considerable differences in the expression levels of the regulators (Fig. 8C, D), while
there were mostly no signi�cant differences in the expression of the regulators between MAgA.ACgC and
MAgB.ACgC group (Supplement Fig. 7A, B). This result predicts the existence of one or more pathways
that effectively assist in the modi�cation pattern of m6A methylation and histone acetylation. To explore
whether such a pathway exists, we performed differential analysis of the two groups, MAgA.ACgC and
MAgB.ACgC, and identi�ed a total of 235 differential genes. We then performed GO and KEGG enrichment
analysis based on these 235 genes. Most of the enrichment results were associated with cell proliferation
(Table S8). We selected 6 biological features for further analysis. The activity of each sample pathway
was quanti�ed by GSVA and was signi�cantly higher in the MAgA.ACgC group than in the MAgB.ACgC
group in �ve biological features (Fig. 8E). Based on a total of 1152 samples from the MAgA.ACgC and
MAgB.ACgC groups, we found that the lower the activity of the four pathways CELL CYCLE,
CHROMOSOME SEGREGATION, MITOTIC NUCLEAR DIVISION and ORGANELLE FISSION, the higher the
survival rate (Supplementary Fig. 7C-H). We then introduced ORGANELLE FISSION into the grouping of
m6A methylation with histone acetylation. Survival analysis showed that ORGANELLE FISSION
complemented the grouping of m6A methylation and histone acetylation (Fig. 8F, Supplementary Fig. 7I,
L), and the expression levels of most m6A methylation and histone acetylation regulators were also
signi�cantly different (Fig. 8E, F).
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Discussion
Much evidence suggests that m6A regulators play an integral role in in�ammation, innate immunity, and
antitumor. However, most studies have targeted only single factors, and progress in the overall role of
m6A regulators remains relatively slow. Histone acetylation faces a similar situation, and relatively little is
known about the relationship between the roles of these regulators ("writers", "erasers" and "readers") in
cancer. Because epigenetic modi�cations are a tight network, a holistic analysis is necessary in cancer
research. hunag et al. revealed crosstalk between histone modi�cations and RNA methylation(27). And
Liu et al. further revealed that SIRT1 can promote SUMOization of m6A demethylase, which in turn
increases m6A modi�cation of the oncogene GNAO1 and other hepatocellular carcinoma-related genes,
leading to the development of hepatocellular carcinoma(29), all of which suggest a strong intrinsic link
between histone acetylation and m6A methylation. Determining the pattern of m6A modi�cation and
histone acetylation modi�cation will improve our understanding of tumorigenesis development and guide
clinical progression.

In this study, A total of 57 regulators related to m6A methylation and histone acetylation, the expression
of almost all regulators were positively correlated with each other and the correlation coe�cients were
extremely high. Based on 14 m6A methylation regulators and 37 histone acetylation regulators, we
classi�ed patients into two m6A methylation phenotypes and three histone acetylation phenotypes,
respectively (MAclusterA/MAclusterB, ACcluster A/ACcluster B/ACcluster C). The expression of 14 m6A
methylation regulators was much higher in the MAclusterB group than in MAclusterA group, and K-M plot
also advised the MAclusterB group had a much better survival than the MAclusterA group. 37 histone
acetylation regulators were over-expressed in the AClusterC group than in the AClusterB group, and
survival The survival analysis was also better in the AClusterC group. In the AClusterA group, the
expression of 19 of the 37 histone acetylation regulators were signi�cantly higher in the AClusterA group
than in the AClusterB group, and the expression levels of 13 regulators were lower in the AClusterA group
than in the AClusterB group. Survival analysis showed that AClusterA had the highest survival rate at 2–7
years. To explore the mechanisms responsible for the differences in prognosis of patients with different
phenotypes, we �rst analyzed the biological features of cancer using m6A methylation and histone
acetylation patterns. We found that the MAclusterA group was characterized by cell cycle,
HIPPO(30),MYC,NOTCH(31),PI3K and TGF-Beta(32) were signi�cantly activated. These pathways are
critical in tumor development, several pathways had the highest activity in the AClusterB group, followed
by the AClusterC group and the lowest in the AClusterA. the EMT, Angiogenesis, and CSCs activity
pathways had the highest activity in the AClusterC group. these pathways also had the highest activity in
the AClusterB group, followed by the AClusterC group and the lowest in the AClusterA. the EMT,
Angiogenesis, and CSCs activity pathways had the highest activity in the AClusterC group. Common
differential genes between the DEGs located between MAcluster A and MAcluster B and between the
AClusterA, ACluster and AClusterC groups were identi�ed by analyzing the transcriptional patterns of
related genes. These DEGs were designated as phenotypically related marker genes. Key genes
associated with survival were screened by Cox regression analysis and a scoring system was established
with 18 and 27 genes to assess the modi�cation pattern of individual LUAD patients, respectively.
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VX-680 is an inhibitor that targets Aurora kinase(33).VVX-680 inhibits cell proliferation and induces
apoptosis in many cancer types(34, 35). In addition, VVX-680 enhances the chemosensitivity of
cisplatin(36). GW843682X is an inhibitor of PLK1(37).GW843682X is capable of inhibiting the G2/M
checkpoint(38).However, GW843682X also had an inhibitory effect on the kinase activity of PLK3. In lung
adenocarcinoma, PLK3 expression is down-regulated and much higher in the MASH.ACSH group with
better survival, so it may be di�cult to achieve full success when treating lung adenocarcinoma patients
with GW843682X, and combining other drugs or treatment modalities to eliminate the inhibition of PLK3
may yield surprising results. The tumor immune dysfunction and exclusion (TIDE) algorithm is a
modeling approach that effectively predicts the immune checkpoint blockade response, and the TIDE
score largely re�ects the likelihood of tumor immune escape. The higher TIDE scores in MASL.ACSH and
MASL.ACSH groups indicate that samples in these two groups are more likely to develop immune escape.
vX-680 and GW843682X are the drugs targeted to MASL.ACSH and MASL.ACSH groups. It is likely that
these two drugs play some inhibitory role in immune escape.

Finally, consider that we found in the previous analysis that the survival of some subgroups was not
exactly as expected. We used the MAgA.ACgC and MAgB.ACgC groups with signi�cant survival
differences as a breakthrough and found that several biological features and pathways were closely
related to the differential genes in these two groups. Further analysis revealed that biological features
such as organelle division could effectively assist in the classi�cation of patients by m6A methylation
and histone acetylation modi�cation patterns. This also re�ects the important role of m6A methylation
and histone acetylation in the development of lung adenocarcinoma, and the crosstalk between the two
re�ects the complex regulatory mechanisms within tumor cells, and increasingly illustrates the
importance of the overall analysis of tumor cells.

Conclusion
In this study, we identi�ed a histone modi�cation pattern based on 37 histone acetylation regulators and
a m6A methylation modi�cation pattern based on 14 m6A methylation regulators. Systematic analysis
showed that the high mortality in the group with poorer survival may be due to high tumor malignant
pathway activity. Based on the transcriptional differences between phenotypes, we constructed a score
model to numerically describe lung adenocarcinoma patients and identi�ed potential drugs for the poorly
scored group. In conclusion, our study suggests that combining m6A methylation with histone
acetylation to assess patients will enhance our understanding of the TME pro�le and help develop,
combined and immune-targeted treatment strategies for LUAD patients. In brief, we have established that
m6A methylation modi�cations and histone acetylation modi�cations interact with each other, and our
study also shows that m6A methylation and histone acetylation alone cannot fully analyse the situation
of lung adenocarcinoma patients, and that more biological characteristics and deeper exploration remain
to be enhanced. However, our study also suffers from limitations such as lack of experimental validation
and incomplete clinical data on patients.
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Abbreviations
TME Tumor microenvironment

m6A N6-methyladenosine

LUAD Lung adenocarcinoma

m1A N1-adenylation

TIDE The Tumor Immune Dysfunction and Rejection

IPS The immunophenotype score

ICI Immune checkpoint inhibitors

CGP Cancer Genome Project

CNV  copy number variation

M6AA.AcA A grouping consisting of common samples of MAclusterA and ACclusterA groups.M6AA.AcB,
M6AA.AcC, M6AB.AcB and M6AB.AcC are similar.

MASH.ACSH  A grouping consisting of common samples from the MAscore high group and the ACscore
group.MASH.ACSL,MASL,ACSH and MASL,ACSL are similar.
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Figure 1

The landscape of genetic alterations of regulators in LUAD. (A) Functional annotations of 57 regulators
analyzed by the Metascape enrichment tool. Cluster annotations are shown in the color code. (B)
Principal component analysis was performed on 57 regulators to distinguish tumor and normal samples
in TCGA and GTEx. (C) The mutation frequency of 18 m6a regulators in TCGA-LUAD cohort. Each column
represents individual patients. The barplot on top shows TMB, and the numbers on the right display the
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mutation frequency of each regulator. The barplot on the right shows the proportion of each variation
type. (D) The mutation frequency of 39 histone acetylation regulators in TCGA-LUAD cohort. (E) The copy
number variation (CNV) frequency of 57 regulators is common in TCGA-LUAD. This column represents
the frequency of alteration. Deletion frequencies are light blue dots; ampli�cation frequencies are dark red
dots.(F) The location of CNV alteration of m6A regulators and m6a regulators on 23 chromosomes in
TCGA-LUAD cohort.



Page 19/27

Figure 2

Expression and relevance of regulators. (A)Expression of 18 m6A methylation regulator in TCGA and
GTEx cohorts in normal and tumor.(B)Expression of 39 histone acetylation regulators in TCGA and GTEx
cohorts in normal and tumor.(C)Correlation analysis of m6A methylation regulators with histone
acetylation regulators. Red represents positive correlation, green represents negative correlation.

Figure 3
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modi�cation patterns in LUAD. (A)Consensus matrix of m6A methylation for 2057 samples.(B)Consensus
matrix of histone acetylation for 2057 samples.(C)Survival analysis of m6A methylation modi�cation
patterns.(D)Survival analysis of histone acetylation modi�cation patterns.(E)Principal component
analysis was performed on 14 m6A methylation regulators to distinguish methylation modi�cation
patterns.(F)Principal component analysis was performed on 37 histone acetylation regulators to
distinguish histone acetylation modi�cation patterns.(G)Expression of m6A regulators in the m6A
methylation modi�cation pattern.(H)Expression of histone acetylation regulators in the histone
acetylation modi�cation pattern.(I)Survival analysis of mixed groupings of m6A methylation and histone
acetylation. Asterisks represent statistical p-values (*p < 0.05; **p < 0.01; ***p < 0.001).M6AA.AcA: A
grouping consisting of common samples of MAclusterA and ACclusterA groups. M6AA.AcB, M6AA.AcC,
M6AB.AcB and M6AB.AcC are also grouped in the same way.
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Figure 4

In�ltration characteristics and biological features of TME cells in different dilution patterns. (A B)GSVA
enrichment analysis showing the activation status of the KEGG (A) vs. GO (B) biological pathway
between MAclusterA-B. Red and blue colors indicate the activation and inhibition states, respectively, and
are visualized by heat map.(C,D)Differences in oncogenic pathways in two different MAcluster groups(C)
and three ACcluster groups(D).(E,F)Correlation analysis of regulatory factors and immune cells, the size
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of the dots represents the value of the correlation coe�cient, blue and red represent positive and negative
correlations, respectively.(H,G)The abundance of immune cells in different groups of MAcluster(H) and
ACcluster(G). Asterisks represent statistical p-values (*p < 0.05; **p < 0.01; ***p < 0.001).

Figure 5
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Genomic subtyping of differentially expressed genes that can affect the prognosis of cancer patients by
unsupervised clustering analysis. (A B)Consensus matrix of DEGs based on m6A methylation
grouping(A) and the corresponding survival analysis(B).(C,D) Consensus matrix of DEGs based on m6A
methylation grouping(C) and the corresponding survival analysis(D).(E-G)Expression of different histone
acetylation gene cluster genes: m6A regulators(E), DEGs(F), histone acetylation regulators(G).(H-
J)Expression of different m6A methylation gene cluster genes: m6A regulators(H), DEGs(I), histone
acetylation regulators(J). Asterisks represent statistical p-values (*p < 0.05; **p < 0.01; ***p < 0.001).
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Figure 6

Digital Model for Individual Lung Adenocarcinoma Patients.(A)Alluvial plots showing changes in clusters,
gene clusters, risk groupings, and immune subtypes.(B) Correlation analysis of ACscore and immune
cells.(C,D)Levels of MAscore in MAcluster(C), MA-gene-cluster (D)groups.(E,F)Levels of ACscore in
ACcluster(E), AC-gene-cluster (F)groups.(G)Survival analysis of mixed groupings of MAscore and
ACscore.(H,I)Expression of m6A methylation regulators(H) and s histone acetylation regulators(I) in
mixed subgroups. Asterisks represent statistical p-values (*p < 0.05; **p < 0.01; ***p <
0.001).MASH.ACSH: A grouping consisting of common samples from the MAscore high group and the
ACscore group.MASH.ACSL,MASL,ACSH and MASL,ACSL are also grouped in the same way.
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Figure 7

Screening of targeted therapeutic agents and prediction of ICI treatment responsiveness.(A)Sensitivity
prediction of four drugs in score subgroups.(B) Expression of target genes of drugs in each group.
(C,D)Survival analysis con�rmed the effect of PLK1(C)/AURKB(D) expression on survival.(E)TIDE scores
for each scoring group.(F)Correlation analysis of MAscore, ACscore and IPS in TCGA-LUAD cohort.
(G)Expression of immune checkpoints in each scoring subgroup. Asterisks represent statistical p-values
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(*p < 0.05; **p < 0.01; ***p < 0.001).MASH.ACSH: A grouping consisting of common samples from the
MAscore high group and the ACscore group.MASH.ACSL,MASL,ACSH and MASL,ACSL are also grouped
in the same way.

Figure 8
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Organelle �ssion contributes to the isoform grouping of m6A methylation and histone acetylation.
(A)Survival analysis of M6AA.AcB and M6AA.AcC.(B)Survival analysis of MAgA.ACgC and MAgB.ACgC.
(C,D)Expression of m6A regulators(C) and histone acetylation regulators(D) between M6AA.AcB and
M6AA.AcC groups.(E)Six biological characteristics differed between MAgA.ACgC and MAgB.ACgC
groups.(F)Survival analysis based on a mixed group of MAscore, ACscore and Organelle �ssion.
(G,H)Differential expression of m6A methylation regulators(G) and histone acetylation regulators(H) in
high and low activity groupings of Organelle �ssion. Asterisks represent statistical p-values (*p < 0.05; **p
< 0.01; ***p < 0.001).MASH.ACSH: A grouping consisting of common samples from the MAscore high
group and the ACscore group.MASH.ACSL,MASL,ACSH and MASL,ACSL are also grouped in the same
way.
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