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Abstract
We present a new framework for incorporating aerial measurements into comprehensive oil and gas
sector methane inventories that achieves robust, independent quantification of measurement and sample
size uncertainties, while providing timely source-level insights beyond what is possible in current official
inventories. This “hybrid” inventory combines top-down, multi-pass aerial measurements with bottom-up
estimates of unmeasured sources leveraging continuous probability of detection and quantification
models for a chosen aerial technology. Notably, the combined Monte Carlo and “mirror-match”
bootstrapping technique explicitly considers skewed source distributions and finite facility populations
that have not been previously addressed. The protocol is demonstrated to produce a comprehensive
upstream oil and gas sector methane inventory for British Columbia, Canada, which while approximately
1.7 times higher than the most recent official bottom-up inventory, reveals a lower methane intensity of
produced natural gas (< 0.5%) than comparable estimates for several other regions. Finally, the developed
method and data are used to upper bound the potential influence of source variability/intermittency on
the overall inventory, directly addressing an open question in the literature. Results demonstrate that even
for an extreme case, variability/intermittency effects can be addressed by sample size and survey design
and have a minor impact on overall inventory uncertainty.

Introduction
Rapid reduction of oil and gas sector methane emissions is an essential part of international efforts to
slow global temperature rise1,2. However, mitigation efforts and associated regulations have been
hampered by poor understanding of true levels of methane emissions and the underlying distribution of
sources. Studies in multiple jurisdictions have repeatedly found significant underestimation of methane
emissions in official inventories using a range of approaches3–10. While proposed reasons for these
discrepancies include the failure of bottom-up emission factor calculations to account for strongly
skewed source distributions and “super-emitters”8, 11–15, the limited data sets behind bottom-up emission
factors and associated measurement uncertainties in creating these emission factors4,5, 16–18, and
potential for episodic emissions – specifically manual liquid unloadings – to skew measurements19, the
root of the challenge is the lack of direct measurement data in current inventories. Moreover, missing in
the discussion is how quickly inventories can be expected to evolve and how quickly they will need to
evolve if we are to accurately track progress toward reduction targets. Most critically, the expectation for
rapid methane reductions and need to monitor and verify the extent of these reductions requires
incorporation of direct, real-time measurement data in inventories.

Indeed the U.S. National Academies have concluded that “(i)mprovements in the accuracy and precision
of methane emission estimates will be maximized through the use of both top-down and bottom-up
measurements”20 and recently launched a fast-track study to develop a framework for evaluating
emissions inventories and information21. In parallel, the Intergovernmental Panel on Climate Change
(IPCC) Task Force on National Greenhouse Gas Inventories (TFI) – which publishes the international



Page 3/20

guidelines for emissions reporting under the United National Framework Convention on Climate Change
(UNFCCC) – has initiated meetings on the “Use of Atmospheric Observations Data in Emissions
Inventories”22. Notably, although the existing IPCC methodology includes text allowing for the use of
measurements in official inventories23,24, current Tier 3 protocols (the most accurate recommended
approach) are still solely based on bottom-up activity and emission factor calculations. As also noted by
Rutherford et al.16, a key challenge in incorporating measured data into inventories is the need to preserve
the source-level resolution of current bottom-up methodologies, which are critical for guiding regulations
and to a lesser extent to meeting IPCC reporting requirements. Recently, Tyner and Johnson5

demonstrated the potential to combine aerial LiDAR measurements with ground-based survey data to
create a source-resolved, “hybrid” top-down/bottom-up measurement-based methane inventory for the
upstream oil and gas sector in British Columbia, Canada. This study significantly extends this work to
develop and demonstrate a formal protocol that explicitly considers sample-size uncertainties and finite
population effects within the context of highly skewed source distributions, while simultaneously
accounting for aerial measurement uncertainties and probabilistic detection sensitivities.

The goals of this study are: (i) to develop a protocol to create a “hybrid” measurement-based oil and gas
sector methane inventory combining comprehensive source-resolved aerial survey data with bottom-up
inputs and prior ground-based study data; (ii) to develop and describe a robust method to calculate
uncertainties in the measured component of the inventory that, to the authors’ knowledge, is the first to
explicitly consider both sample size and finite population effects as well as aerial measurement
uncertainties and condition-dependent detection sensitivities; (iii) to demonstrate this approach by
creating a source-resolved measurement-based methane inventory for the British Columbia (BC)
upstream oil and gas sector sufficient for use in IPCC reporting; and (iv) to analyze potential influence of
source variability and intermittency on the derived inventory and share methods to bound the effects of
source variability in future studies following the presented inventory protocol. The developed approach is
readily extensible to other jurisdictions and demonstrates how source- or site-resolved measurement data
obtained using a range of technologies could be directly included in inventories so long as quantified
measurement uncertainty and probabilistic detection sensitivity data for that technology are available.

Results
Figure 1 outlines the developed protocol for creating a measurement-based inventory from source- or site-
resolved measurement data. For the ideal scenario of a comprehensive measurement survey using a
perfectly accurate and infinitely sensitive instrument, all sources would be captured such that the
emissions inventory would be the sum of all directly measured emissions. In practice however, the finite
detection sensitivity of methane-sensing instrumentation necessitates a piecewise approach considering
two nonoverlapping subsets – measured/measurable and unmeasured/unmeasurable sources – that
sum to the whole. Measured sources are those that were detected and quantified at the surveyed sites as
well as sources that would be detected/quantified at sites not included in the survey sample. By contrast,
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unmeasured sources are those that were not successfully detected during the survey and those that
would not be detected/quantified at sites not included in the sample.

Importantly, the diverse facility types within the upstream oil and gas sector (e.g., isolated wells, multi-well
batteries, compressor stations, gas plants, etc.) are treated as separate strata within the overall sample;
Fig. 1 is thus separately applied in parallel to each stratum as defined in Table S1 of the Supplemental
Information (SI) for the demonstration inventory in BC along with associated sample and population
sizes for each. Aggregation of like entities into homogeneous strata tends to reduce the variance of
desired statistics, improving the precision in each stratum’s calculated mean emission rate (i.e., emission
factor) and total emissions (i.e., emissions inventory). This approach can also permit stratum-dependent
methodologies leveraging prior information about the strata – e.g., pneumatic equipment at gas plants in
BC are almost exclusively air-driven and may be ignored in the methane inventory. Finally, this approach
provides the relative contribution of each stratum to the whole, which is important data for regulation and
mitigation. While the present demonstration of this approach uses aerial measurement data collected
using Bridger Photonics Gas Mapping LiDAR (GML), the protocol is generally applicable to any
technology with well-characterized probabilities of detection (POD) and quantification uncertainties25 and
sufficient spatial resolution to resolve individual facilities.

Protocol for Quantifying Measured Sources and
Uncertainties
As outlined in Fig. 1a and more fully detailed in the SI, the measured source inventory calculation takes
pass-by-pass aerial measurement data from surveyed sites, introduces known measurement
uncertainties and detection sensitivities25 via Monte Carlo and Bayesian analysis, and scales via
bootstrapping to consider sites not included in the sample. This approach solves three key challenges.
First, the joint Monte Carlo and Bayesian approach (see Section S2.1) provides a formal framework for
objectively considering any “missed” detections of a source seen in one or more other passes of the
aircraft, noting that this could be due to both variability/intermittency of the source and/or the finite
detection sensitivity of GML. Notably, this approach allows explicit consideration of the condition-specific
probability of detection during each measurement pass along with available information about a source
from all passes where it had a potential to be measured. Second, the Monte Carlo analysis robustly
considers the source quantification uncertainty during each pass, leveraging detailed uncertainty models
for the aerial technology25, permitting direct analysis of measurement uncertainties at the source, site,
and inventory level. Third, the mirror-match bootstrapping technique26,27 enables robust scaling of
emissions in each sample stratum to the population in a way that considers the actual distribution of
emissions at sites in the stratum (which are generally non-smooth and highly skewed) as well as finite
population effects (which are critically important since the population of facilities and wells in each
stratum is finite, and the size of the sample can be large relative to the population, see Table S1 of the SI).
Stated in terms of a specific example, it would not be reasonable to consider methane emissions at a gas
plant as indicative of emissions at a well site when developing an inventory, which shows the importance
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of stratified sampling. Even at the source level, where both types of sites may have some similar
equipment, it is also unlikely these would be from equivalent populations given expected differences in
controls, sizing, and throughput. Conversely, within any region of interest such as the province of BC, the
total population of gas plants is finite (60 active facilities in 2021) and “standard” statistics based on
assumed (non-Gaussian) distributions for an infinite population are not accurate or relevant. Notably, the
implemented mirror-match bootstrapping approach overcomes these challenges to permit independent
and robust analysis of sample size uncertainties for each stratum and for the total inventory.

Figure 2 illustrates the power of this approach in producing a measured-source methane inventory using
the present analysis of BC, Canada as an example. The total measured inventory of 112.2 kt/yr is
computed by summing the measured inventory for each unique strata over BMC = 104 times BBS = 104

estimates, and reveals overall uncertainties of − 18% to + 21% at 95% confidence. Interestingly, despite the
relatively large sample sizes (see Table S1), the combined uncertainties are still dominated by sample
size effects. A key innovation of this approach is a robust framework for considering sample size
requirements in future inventory studies and regulated monitoring, reporting, and verification (MRV)
efforts.

Figure 2b demonstrates how the method can also be used to calculate separate inventory uncertainties
for different facility types (strata) and their relative contributions to the overall uncertainty of the
measured portion of the inventory. The bars of Fig. 2b are shaded by the percentage of each stratum’s
population included in the sample, which highlights important effects that may not be automatically
anticipated. For example, while the relatively large uncertainty contribution of compressor stations might
be expected from the comparatively low sample coverage of 18% for that stratum, the large uncertainty
for gas plants relative to its magnitude is potentially unexpected, especially the large sample size
uncertainty given the 77% sample coverage. This can ultimately be explained by the strongly skewed
distribution of sources at gas plants, where parallel root cause analysis28 has shown that emissions tend
to be driven by controlled tank sources that generally do not emit but can emit large volumes when they
do. Conversely, uncertainties at off-site gas wells are nearly equally affected by quantification uncertainty
and sample size uncertainty despite lower sample coverage (9%) implying less internal variability within
the off-site gas well stratum. Most importantly, the results of Fig. 2b demonstrate how the presented
protocol yields useful data to optimize the design of future measurement campaigns to maximize
precision and minimize sampling effort. It should also be noted that any temporal variability among sites
in each stratum, in addition to being empirically considered through measurement flights over separate
days each with potentially multiple passes, should manifest as increased variability in emissions among
sites in the sample and thus is also inherently captured in the uncertainty analysis. This is further
analyzed in the Discussion below.

Protocol for Estimating Unmeasured Sources
The preceding measured source protocol quantifies the contribution of all sources that are detected and
quantified during at least one flight pass. However, due to source intermittency and the probabilistic and
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finite sensitivity of aerial methane-detection technologies, some quantity of sources may not be detected
during any flight pass of the survey. Depending on the sensitivity of the employed aerial technology and
the jurisdiction’s underlying source distribution, these unmeasured sources may be significant and must
be considered during inventory development. Referring to Fig. 1b, this is possible via a parallel Monte
Carlo simulation considering site/condition-specific POD25 using “bottom-up” equipment count and
measurement data from prior studies (e.g., refs 29–33) as inputs. This new “unmeasured source”
protocol allows robust derivation of stratum-dependent, average, emission factors for unmeasured
sources on a per-site basis.

Briefly, for an aerial survey of  unique flight passes over a source, where each pass has a unique POD
that depends on the conditions (e.g., wind and altitude) and source rate at the time of the pass, the source
is unmeasured if it is probabilistically missed during all  passes. This problem is ideally suited to
Monte Carlo analysis as shown in Fig. 1b and more fully detailed in S2.2 of the SI. Inputs (shown in red)
include the actual empirical distribution of the number of flight passes over a source and the distributions
of wind speeds and altitudes from each pass of the survey; continuous POD data from the aerial
technology25; and relevant bottom-up data from the literature for the distribution of potential sources near
and below the aerial technology’s sensitivity limit. These bottom-up feedstock data may include
measurement data from surveys using more-sensitive technologies and/or the combination of counts
and typical (manufacturer-rated) emissions of underlying equipment, similar to those used to derive the
emission factors underpinning traditional bottom-up inventories.

For the presently derived inventory for BC in 2021, supplemental feedstock data were sourced from a
ground survey of 149 unique sites (including 62 facilities and 205 wells) in BC performed in 201832. This
data set includes 1) estimated emission rates from non-pneumatic equipment detected by optical gas
imaging and measured where possible using Hi-Flow sampling, 2) counts and identification
(manufacturer and model) of pneumatic equipment, and 3) estimated vent rates for identified
pneumatics based on prior field measurements and manufacturer data. More generally, in the absence of
region-specific feedstock data, other general data sets (such as refs. 29–31, 33–37) may be used as in
the work of Rutherford16. The Monte Carlo analysis then outputs final average site-level emission factors
which are applied to the stratum’s population to yield the unmeasured inventory for the stratum,
optionally parsed by non-pneumatics (orange, see section S2.2.1 of the SI) and pneumatic
instrument/pumps (gray, see section S2.2.2 of the SI). Detailed results of the unmeasured source
analysis for BC are included in the SI.

Discussion

Upstream Oil and Gas Methane Inventory for British
Columbia in 2021

N

N
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Figure 3 plots the measured and unmeasured components of the presently derived 2021 methane
inventory for BC and compares with the official 2020 (most recent available) federal inventory estimate
from Environment and Climate Change Canada (ECCC)38. For 2021, total estimated upstream oil and gas
sector methane emissions are 144.6 kt/yr, of which 78% is from measured/measurable sources and 22%
is from unmeasured “bottom-up” sources. This high proportion of measured sources reflects the low
detection sensitivities of the employed aerial measurement technology and adds confidence in the total
estimate. While the developed hybrid inventory protocol could be applied to any technology with well-
quantified POD and uncertainty models, there is an obvious advantage in choosing technologies with
better detection and quantification thresholds such that a higher portion of total sources are directly
measured.

The plotted 95% confidence interval indicates the total quantified uncertainty in the measured sources
from Fig. 2, noting that it is not possible to create a similarly robust estimate of the uncertainty in the
bottom-estimate of unmeasured sources derived using existing data. However, because the official
bottom-up ECCC inventory leverages these same count and field data, any bias or uncertainty in these
bottom-up sources should be equivalent such that the two inventories are directly comparable
considering the error bars as indicated. The nominal factor of 1.7 times higher methane emissions (range
of 1.5–2.0 times) seen in the newly derived measurement-based inventory is consistent with a broad
range of previous studies throughout North America4–10, 18. This underscores the importance of
incorporating direct measurements into official estimates to accurately track and reduce oil and gas
sector methane emissions. The present 2021 calculation is also consistent with the authors’ previous
estimate of 162.6 kt/yr for BC in 20195. Although this implies a nominal decrease in emissions of 11%
since 2019 consistent with the introduction of new methane regulations in January 202039, it should be
noted that the previous sample size was three times smaller and the difference is well within the error
bars of the present calculation.

Referring to SI, Section S3, methane intensities (“leakage rates”) of marketed natural gas were calculated
by attributing quantified methane emissions on a produced energy basis consistent with the Natural Gas
Sustainability Initiative protocol40 and Schneising et al.41. Considering first sources captured in the
present upstream methane inventory, the upstream methane intensity of BC natural gas was 0.38% (95%
confidence interval (CI): 0.33–0.45%). Adding in 14.4 kt of methane from downstream sources (i.e.,
distribution, transmission & storage, refining, see Table S8) as inventoried by ECCC38, suggests total oil
and gas sector methane emissions of 159.0 kt of which 143.7 kt are attributable to natural gas
production. This results in an overall natural gas methane intensity of 0.42% (95% CI: 0.37–0.48%), which
is lower than a 2019 Western Canadian average of 0.63–1.11% and a 2019 U.S. average of 1.08–1.51%
derived from satellite measurements10, a 2015 U.S. range of 1.45–1.94% derived from Alvarez et al.8, and
2018/2019 ranges of 0.55–5.59% for five different U.S. basins from Schneising et al.41 (note all ranges
have been recalculated using a consistent set of assumptions as detailed in SI Section S3). This
comparatively low intensity is presumably indicative of 2020 regulations in BC which include mandatory
three times per year leak detection and repair (LDAR) surveys at most facilities as well as an impending
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(January 2023) limit on total site-level tank emissions39. Recent ground-based root-cause analysis of
aerially detected emissions also notes that as much as a quarter of natural gas compressors at upstream
facilities are electric-drive in BC28. Conversely, these same ground data show that there remains
significant mitigation potential suggesting a plausible pathway for further reductions necessary to reach
the federal 75% reduction targets42 through the Global Methane Pledge2 as well as international 0.2 − 
0.25% intensity targets43,44.

Beyond having potential to track and verify necessary reductions much faster than it would be possible to
update bottom-up inventories and associated emission factors, the present measurement-based
inventory protocol can also provide source-level breakdowns critical to the ongoing regulatory efforts
(e.g., refs. 45, 46) intended to meet these goals. This is illustrated in Fig. 4, which compares source
breakdowns in the presently derived inventory with those in the latest official federal inventory38. Noting
that the colours are matched for equivalent sources, there are several stark differences beyond the factor
1.7 difference in total magnitude. Notwithstanding the generic categories of venting and leaks in the
official inventory that are traced to industry reported volumes and not attributed to specific sources,
emissions from tanks, dehydrators, and separators are notably underrepresented in the official inventory.
Similarly, unlit flares – a prominent source in several recent studies5,28,47,48 – do not appear as a source
category despite constituting 6% of total methane emissions in the measurement-based inventory. If
compressor seal emissions, start gas, and a generic estimate for methane from fuel combustion in the
official inventory are combined to compare with the compressor category from the present survey, their
proportional total notably exceeds the present measurement. However, this surely overestimates the
importance of compressor seal emissions given results of parallel ground inspections suggesting these
are likely at most one-third of the present attribution to compressors28, or no more than 13% of the total
inventory. More importantly, Fig. 4 highlights the value of measured data in permitting effective regulatory
and mitigation actions that efficiently target the sources that matter most. Conversely, this result also
reveals the associated risks in relying on regulations that are based on incorrectly assumed source
distributions to achieve necessary reduction targets.

Bounding the Potential Effects of Source Intermittency on
Inventory Uncertainty
A potential limitation of any measurement study taken over a short window in time, is the effect of source
variability and intermittency on the calculated inventory. Certainly, if the overall emission processes are
ergodic, such that the ensemble average of random samples during a measurement campaign are equal
to the time-average total, then the challenge is simply one of sample size. However, this has not been
possible to directly test and to the authors’ knowledge, remains an open question in the literature. The
present inventory protocol and uncertainty analysis procedures provide a framework to put an upper
bound on the potential influence of source variability/intermittency on the measured inventory.
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During the present aerial survey, all sites with detected sources were re-flown at least once, 1–10 days
after the initial flight, where each flight contained up to 5 passes over each source. The raw variation in
the estimated source rates for each pass on each day (including estimates of zero when a source was
within the measurement swath but not detected) is a convolution of measurement uncertainty,
probabilistic detection sensitivity, and source variability/intermittency. However, if the former two
contributions are purposely neglected, then the observed variation can be used as a conservative
overestimate of the source variability/intermittency. Building on this concept, a bootstrapping analysis
was designed in which the actual measured emission rates from each pass of each source were
substituted with a random sample (with replacement) from all relevant passes (including zeroes) for that
source. In other words, the entire inventory analysis was repeated multiple times as the individual pass-
by-pass measurements for all sources were randomly varied in an intentional overestimate of possible
source variability based on the raw data. The rest of the analysis then proceeded as in Fig. 1a, adding in
measurement uncertainties for each randomly drawn pass value and quantifying sample size
uncertainties for each stratum on route to constructing an overall inventory. The additional uncertainty
contribution from this intentional overestimate of source variability/intermittency could then be
compared to the individual component and overall uncertainties.

As shown in Fig. 5, even grossly overestimating the variability and intermittency of sources using the
pass-by-pass empirical data has a negligible effect on the measured source inventory. Although the mean
measured source total increases slightly to 114.9 kt/y in this scenario from 112.2 kt/y, the 95%
confidence limits are effectively unchanged (91.7–135.9 kt/y vs. 91.9–142.6 kt/y). Closer inspection of
the results reveals that the uncertainty contribution of source variability/intermittency is within the range
attributable to quantification error. This illustrates how a protocol combining multi-pass measurements
over separate days inherently addresses source variability within this timescale across a large sample.

However, there is still a possibility of temporal variation at time scales not captured by the survey. This
may include seasonal variations in emissions (e.g., driven by increased use of methanol injection pumps
and catalytic heaters in colder months) or diurnal variations driven by servicing activities limited to
workday hours (e.g., due to manual liquid unloadings as specifically suggested from measurements and
analysis for the Fayetteville shale region of Arkansas19,49). Seasonal variations might ideally be
addressed by conducting regular measurement surveys at different times of the year but could also easily
be bounded given the likely small contribution of seasonally varying sources within the total inventory
(Fig. 4). For the present inventory specifically, aerial measurements were performed during the “shoulder”
season of September to October, such that the portion of non-operating and operating methane pumps
and heaters may to first approximation be representative of broader operations during the year.

While manual liquid unloadings vented to atmosphere of the scale suggested in refs. 19 and 49 may be a
somewhat unique feature of the Fayetteville shale region8 and are not thought to be a typical component
of operations in BC, the potential influence of workday-specific activities was nevertheless considered in
two separate ways. First, the present source-based measurements permitted review of each detected
source including a subset that were investigated in separate on-site root cause analysis28. Only 2 of 527
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aerial quantified sources were notably linked to service operations – a 22.6 kg/h source from well
completion equipment which typically operates continuously day and night until the well is completed,
and a 16 kg/h truck loading event which would likely only occur during workday hours but is still
inconsequential relative to the > 5500 kg/h of measured sources in the survey. Second, the potential for
differences in measured emissions magnitudes between workdays and weekends was investigated
statistically. As detailed in Section S4 of the SI, null hypothesis testing confirmed there was no statistical
difference (at 5% significance) in emission magnitudes nor distributions measured on weekdays vs.
weekends for tanks, flares, separators, compressor buildings, dehydrators, power generators, piping,
unknown, and other sources, i.e., all sources with sufficient data to run the analysis. Most importantly,
although this result is not necessarily generalizable to other regions which may have different source
characteristics, the variability analysis summarized in Fig. 5 and the subsequent statistical analysis
discussed here represents a framework for quantitatively bounding the effects of source variability and
intermittency in each region where this new measurement-based inventory protocol might be applied.

Methods
The presented inventory analysis was completed for the province of British Columbia, Canada, which
currently produces 36% of Canadian natural gas 50 and is poised to become a significant global exporter
of liquified natural gas (LNG) with the completion of the LNG Canada terminal 51. Aerial LiDAR
measurements were completed during September 11 to October 8, 2021 at 508 distinct sites (polygons)
comprising 601 active facilities and 702 active wells. As detailed in Table S1, this sample represented
60% of the approximately 1006 active facilities and 8% of the 8726 active wells in the province at that
time. More importantly, the stratified sample achieved broad representation across the range of unique
facility subtypes as necessary to create a robust inventory.

The aerial measurements used Bridger Photonics’ Gas Mapping LiDAR (GML) technology, a light aircraft-
mounted, active-scanning optical sensor capable of providing high-resolution (~ 1–2 m) geo-located
imagery of methane abundance over an approximately 100-m wide measurement swath. Briefly, as
detailed elsewhere5,25,52, emission rates of detected sources are estimated combining measured plume
height and methane concentrations between the aircraft and the ground with locally estimated wind
speed data (e.g., High-Resolution Rapid Refresh (HRRR) database53 or Meteoblue (meteoblue.com)
depending on coverage in the region of interest). Most critically, detailed independently-derived POD and
quantification uncertainty models are available for this technology. These suggest that at the typical
altitude of 175 m above ground level and 3-m windspeeds between 1.7 and 8.3 m/s (95% equal tail
confidence interval) seen during the present survey, sources between 0.7 − 3.5 kg/h and 1.5 − 7.0 kg/h will
be detected with 50% and 90% probability, respectively25. At the median wind speed of 4.5 m/s from the
survey, the 50% and 90% PODs are 1.7 kg/h and 3.5 kg/h.

All sites with detected sources were flown at least twice on separate days 1–10 days apart, where each
flight included multiple overlapping passes as necessary to fully cover the facility or previously detected
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sources. Average emission rates for each source were derived using data from multiple measurement
passes and pass-specific POD data according to the inventory protocol summarized in Fig. 1 and fully
detailed in the SI. As in previous work5, all detected sources were manually reviewed and attributed to
specific equipment and facility subtypes using a combination of high-resolution aerial imagery, facility
plans, and industry-reported production accounting data, as well as information from parallel ground
inspections when available28.
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Figures

Figure 1

High-level summary of a protocol for creating measurement-based inventories using aerial data that
considers both quantification and sample-size uncertainties (with finite population corrections) for the
measured sources and combines bottom-up inputs for unmeasured sources to create a complete “hybrid”
inventory.
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Figure 2

Quantified uncertainties in the measured-source portion of the BC 2021 methane inventory. (a)
Distribution of quantification uncertainty, sample size uncertainty, and total uncertainty in the measured-
source inventory. (b) Measured source emissions and quantification, sample size, and total uncertainties
for different facility or well types (strata) with bars shaded according to sample coverage for each
stratum.
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Figure 3

Comparison of presently derived 2021 measurement-based “hybrid” methane inventory for upstream oil
and gas production in BC with most recent (2020) official inventory estimate from ECCC. The 95%
confidence intervals represent the total uncertainty on the measured source fraction of the inventory.
Uncertainties on the unmeasured source component should be equivalent between the present and ECCC
inventories since they are derived from similar bottom-up data.
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Figure 4

Comparison of estimated and measured sources contributing to the total upstream oil and gas methane
inventory in BC.  (a) Assumed source breakdown in the most recent (2020) official inventory (SCVF =
Surface casing vent flow; Dehys. = Glycol Dehydrators). (b) Source breakdown from the presently derived
2021 measurement-based methane inventory.
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Figure 5

Analysis to bound the potential effects of source variability and intermittency on the derived methane
inventory. Even when overestimating the source variability based on the raw empirical, pass-by-pass
measurement data, the potential added uncertainty (brown histogram) is no more than the source
quantification error (pink histogram) and has no appreciable effect on the overall inventory uncertainty
(black histogram and indicated 95% confidence limits).
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