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Abstract 1 

Land–atmosphere energy and moisture exchange can strongly influence local and 2 

regional climate. However, high uncertainty exits in the representation of land–3 

atmosphere interactions in numerical models. The parameterization of surface 4 

exchange process is greatly affected by varying the parameter Czil which, however, is 5 

typically set to a domain-wide constant value. In this study, we examine the sensitivity 6 

of regional climate simulations over China to different surface exchange strengths using 7 

three Czil schemes (default without Czil, constant Czil = 0.1, and dynamic canopy-height-8 

dependent Czil-h schemes) in the 13-km-resolution Weather Research and Forecasting 9 

model coupled with a Noah land surface model with multi-parameterization options 10 

(WRF/Noah-MP). Our results demonstrate that the Czil-h scheme substantially reduces 11 

the overestimations of land–atmosphere coupling strength in the other two schemes, 12 

and comparisons with the ChinaFLUX observations indicate the capability of the Czil-13 

h scheme to better match the observed surface energy and water variations. The results 14 

of the Czil schemes applying to four typical climate zones of China present that the Czil-15 

h simulations are in the closest agreements with the field observations. The Czil-h 16 

scheme can narrow the positive discrepancies of simulated precipitation and surface 17 

fluxes as well as the negative biases of Ts in areas of Northeast, North China, Eastern 18 

Northwest, and Southwest. Especially, the above remarkable improvements produced 19 

by the Czil-h scheme are primarily over areas covering short vegetation. Also noted that 20 

the precipitation simulated by the Czil-h scheme exhibits more intricate and unclear 21 

changes compared with surface fluxes simulations due to the non-local impacts of 22 

surface exchange strength resulted from the fluidity of the atmosphere. Overall, our 23 

findings highlight the applicability of the dynamical Czil as a better physical alternative 24 

to treat the surface exchange process in atmosphere coupling models. 25 

Keywords: Land–atmosphere coupling; Surface exchange coefficient; Canopy-height-26 

dependent Czil; Surface fluxes; Climate zones 27 

 28 
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1 Introduction 29 

Land–surface processes, through controlling energy, momentum, and mass 30 

transportation to lower atmosphere and then affecting local planetary boundary layer 31 

profiles and differential surface heating (Betts et al. 1996; Los et al. 2006), may play a 32 

significant role in cloud formation and precipitation generation (Findell and Eltahir 33 

2003; Trier et al. 2004). The influences of local land surface characteristics such as land 34 

use, soil, and topography on the occurrence and development of precipitation are 35 

manifest especially over strongly land–atmosphere coupled regions (Houze 2012; 36 

Koster et al. 2003, 2004; Li et al. 2017; Pielke et al. 2001). For example, previous 37 

studies of the midwestern U.S. drought in 1988 and flood in 1993, suggested that the 38 

soil moisture condition helps to sustain the extreme circumstances throughout the 39 

summer (Atlas et al. 1993; Trenberth and Guillemot 1996). These studies underline that 40 

land–atmosphere interactions may hold the key for the improvements of weather 41 

forecast and climate prediction. 42 

The land–atmosphere coupling issue was investigated in many observational and 43 

modeling studies, such as the calculation of land–atmosphere feedback numbers based 44 

on atmospheric moisture budget (Trenberth 1999), the diagnosis of a multi-model 45 

integrated coupling coefficient (Koster et al. 2004), and the assessment of the 46 

relationship between soil moisture, evaporation, and precipitation (Dirmeyer et al. 2006; 47 

Ruiz-Barradas and Nigam 2005; Zhang et al. 2008). However, there are still great 48 

uncertainties due to the complexity of coupling process and its strong dependence on 49 

model or reanalysis results (Koster et al. 2003, 2004; Seneviratne et al. 2010). For 50 

instance, some regions identified as areas of strong coupling between summer rainfall 51 

and soil moisture (Koster et al. 2004), however, due to the reliability on the performance 52 

of land surface models (LSMs) in predicting coupling strength, could not be correctly 53 

captured in the Global Land–atmosphere Coupling Experiment study (Dirmeyer et al. 54 

2006), or even not appear as strong coupling regions such as the central United States 55 

(Zhang et al. 2008). Additionally, Ruiz-Barradas and Nigam (2005) demonstrated that 56 

excessively land–atmosphere coupling in numerical models produces too much latent 57 

heat flux (LH), resulting in potentially incorrect feedback between soil moisture and 58 
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precipitation. Therefore, the coupling issue regarding the exchange efficiencies of 59 

energy and moisture between land surface and atmosphere, quantified as a parameter 60 

Ch (surface exchange coefficient) in numerical models, may potentially constitute a 61 

major uncertainty affecting model performance, but theoretical Ch parameterization still 62 

remains poorly understood. 63 

During recent decades, there are many theoretical and experimental studies on Ch 64 

parameterization in which many efforts have been put into the treatment for the surface 65 

roughness lengths of heat or moisture (Zot) and momentum (Zom) (Brutsaert 1982; Chen 66 

et al. 1997; Chen and Zhang 2009; Yang et al. 2008). The roughness lengths describe 67 

the characteristics of surface fields combining the effects of land cover, orography and 68 

airflow, however, the differences in transfer mechanisms, transporting heat or moisture 69 

through molecular diffusion and momentum through pressure fluctuation gradients, 70 

generate the discrepancies between Zot and Zom (Reijmer et al. 2004; Rigden et al. 2018). 71 

Beljaars and Viterbo (1994) suggested that using a fixed ratio of Zot/Zom = 10 could 72 

contribute to the improvements in simulated surface sensible heat flux (SH) and land 73 

surface temperature (Ts). Zilitinkevich (1995) created an empirical coefficient Czil that 74 

can bridge the relationship between Zot and Zom. Chen et al. (1997) recommended using 75 

the Zilitinkevich formula with Czil = 0.1 which yields the results similar in most cases 76 

to the use of Zot/Zom = 10, but the former non-fixed formulation is physically more 77 

preferable and helps reduce forecast precipitation bias; since then, the Czil = 0.1 in 78 

Zilitinkevich’s formulation has been commonly used in the NCEP operational 79 

prediction systems. Further, Chen and Zhang (2009) proposed a vegetation-type 80 

dependent Czil which could achieve more realistic application for models in representing 81 

land–atmosphere coupling. 82 

Recent studies have been limited to the response of land–surface process to the Ch 83 

parameterization, but ignored what extent changing the Ch schemes can really improve 84 

the regional climate simulations. The importance of surface roughness in land–surface 85 

process impacts on atmosphere has been frequently studied, e.g., the numerical 86 

experiments of Maynard and Royer (2004) demonstrated the reduced surface roughness 87 

plays a dominant role in African tropical deforestation affecting climate change. 88 
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Therefore, it is necessary to explore the sensitivity of climate change to the parameter 89 

Ch which heavily relies on surface roughness and directly reflects the strength of land–90 

atmosphere coupling. Additionally, the Ch parameterization with a dynamic Czil has 91 

more applications for the evaluation over North America (e.g. Chen and Zhang 2009; 92 

Chen et al. 2019; Zheng et al. 2015), but the Ch evaluations in China have been 93 

conducted in only few investigations confined to the change of land–surface process 94 

and small areas such as at individual arid and semi-arid sites (Chen et al. 2010; Yang et 95 

al. 2008) and in Yangtze River basin (Huang et al. 2016). The Czil emperical coefficient 96 

contributes most to the uncertainty in the surface energy flux estimates (Siemann et al. 97 

2018), and the specification of the coefficient affects areas of strong land–atmosphere 98 

coupling in both the simulated general location and strength (Zheng et al. 2015). Thus, 99 

although some investigations regarding the effects of the dynamic Czil on surface flux 100 

and precipitation simulations at a point or regional scale (Chen et al. 2010; Huang et al. 101 

2016; Trier et al. 2011) have been conducted, the parameterization of Ch still has large 102 

sensitivity and uncertainty to the changes in Czil over regions spanning various 103 

topography, land cover, and climate change, especailly for China. Some issues 104 

regarding how to properly parameterize coupling strength, and to what extent to affect 105 

the simulated surface flux and regional rainfall need to be further explored. 106 

The objective of this study is to assess the variability in regional climate 107 

simulations in response to the representation of land–atmosphere coupling in numerical 108 

models, and to provide potential mechanisms by which this occurs. Differing from 109 

previous studies directly adjusting Czil values in Chen97 scheme (e.g. Chen and Zhang 110 

2009; Huang et al. 2016; Zheng et al. 2015), we introduced the Zilitinkevich formula 111 

with a dynamic Czil into the Monin–Obukhov (M–O) scheme (hereafter Czil-h), using 112 

the Weather Research and Forecasting model (WRF) coupled with a Noah land surface 113 

model with multi-parameterization options (Noah-MP) (WRF/Noah-MP). Section 2 114 

describes detailed land–atmosphere coupling method and the experimental setup using 115 

the coupled WRF/Noah-MP model. Section 3 assesses the capability of Czil-h in 116 

improving land–atmosphere coupling, and its impacts on the regional climate 117 
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simulations. Section 4 discusses the uncertainty of Czil-h scheme in modelling regional 118 

climate. Conclusions are drawn in Sect. 5. 119 

2 Methodology, model and data 120 

2.1 Land–atmosphere coupling method 121 

The Noah-MP LSM provides lower boundary layer conditions for the planetary 122 

boundary layer scheme in the coupled atmospheric WRF model (Chen et al. 2007; 123 

Skamarock et al. 2008), which relies on the surface fluxes of SH and LH (unit: W m-2), 124 

determined through the bulk transfer formulas (Garratt 1992), 125 𝑆𝐻 = 𝜌𝐶𝑝𝐶ℎ|𝑈|(𝜃𝑠 − 𝜃𝑎) ,                         (1) 126 𝐿𝐻 = 𝜌𝐶𝑒|𝑈|(𝑞𝑠 − 𝑞𝑎) ,                          (2) 127 

where  is the air density (kg m-3), Cp is the air heat capacity (J kg-1 K-1), and U is the 128 

wind speed (m s-1). a and qa are the potential temperature (K) and specific humidity 129 

(kg kg-1) of air, respectively, and s and qs are at the surface. Ch (unitless) is the surface 130 

exchange coefficient for SH, and Ce is for LH. Many studies (e.g., Högström 1967; 131 

Swinbank and Dyer 1967) concluded the general equality of Ce and Ch from the high 132 

correlation between the air temperature (Ta) and specific humidity over the evaporating 133 

surface, and the approximation has been widely adopted in the numerical models (e.g., 134 

Chen et al. 1997; Huang et al. 2016; Trier et al. 2011). Therefore, the study focuses on 135 

the parameterization of Ch, which is directly linked to coupling strength and controls 136 

the inputs of total energy flux into lower atmosphere. The observed values of Ch can be 137 

reconstituted from the measurements of variables contained in the following equation 138 

(Chen and Zhang 2009),  139 𝐶ℎ = 𝑆𝐻𝜌𝐶𝑝|𝑈|(𝜃𝑠−𝜃𝑎) .                           (3) 140 

Instruments at stations directly provided SH and U; a was converted from observed Ta 141 

adiabatically adjusted for the height above the surface, and s was estimated from 142 

upwelling longwave radiation following Stephan Boltzmann relation (Yang et al. 2008); 143 

the values of Cp and  can be derived from observed Ta, relative humidity, and surface 144 

pressure (Allen et al. 1998; Goff 1957).  145 

For the M–O scheme within the Noah-MP LSM, Ch is parameterized as function 146 
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of roughness length based on the M–O similarity theory (Brutsaert 1982) as follows, 147 𝐶ℎ = 𝑘2[ln(𝑍−𝑑0𝑧𝑜𝑚 )−𝜓𝑚(𝑍−𝑑0𝐿 )][ln(𝑍−𝑑0𝑧𝑜𝑡 )−𝜓ℎ(𝑍−𝑑0𝐿 )] ,                 (4) 148 

𝐿 = − 𝜌𝐶𝑝𝑢∗3𝑇𝑎ℎ𝑘∙𝑔∙𝑆𝐻  ,                                  (5) 149 

where Z is the height above the surface ground (m), d0 is the zero-displacement height 150 

(m), L is the M–O length (m), and the ratio (Z-d0)/L is termed as non-dimensional M–151 

O stability parameter ζ. Tah is canopy air temperature (K), u* is friction velocity (m), k 152 

= 0.4 is the von Kaman constant, and g = 9.8 m s-2 is the acceleration of gravity. Ψm is 153 

the stability function for momentum and Ψh is for heat (Paulson 1970). Zom is 154 

aerodynamic roughness length (m), denoting the height at which the extrapolated wind 155 

speed goes to zero. Zot is thermal roughness length (m), and represents the height at 156 

which the extrapolated Ta equals to the Ts.  157 

Zot through a function of atmospheric flow can be related to Zom, proposed by 158 

Zilitinkevich (1995) as,  159 𝑍𝑜𝑡 = 𝑍𝑜𝑚 exp(−𝑘𝐶𝑧𝑖𝑙√𝑅𝑒) ,    𝑅𝑒 = 𝑢∗𝑍𝑜𝑚𝜐  ,               (6) 160 

where Czil is an empirical coefficient, v is the kinematic molecular viscosity (~1.5×10-5 161 

m2 s-1), and Re is the roughness Reynolds number. The Czil values are usually assumed 162 

to be the range of 0.01 to 1.0, with surface coupling varying from strong to weak (Chen 163 

et al. 1997; Zheng et al. 2015). The Czil in the current versions of WRF model is assigned 164 

as 0.1, based on earlier model comparisons and calibrations with field data (Chen et al. 165 

1997), and only the Chen97 option has access to the default Czil value of 0.1, for the M–166 

O option assumes Zot = Zom without considering Czil.  167 

Further, a dynamic Czil scheme vegetation type dependent was put forward by 168 

Chen and Zhang (2009), and they using the multi-year Ameriflux data and the least 169 

squares regression method determined the parameter Czil as a function of canopy height 170 

h (unit: m):  171 𝐶𝑧𝑖𝑙 = 10(−0.4ℎ) .                                (7) 172 

2.2 Coupled WRF/Noah-MP model and experiment design 173 

In this study, the WRF 3.9.1 model coupled with Noah-MP (WRF/Noah-MP) was used 174 
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to investigate the sensitivities of regional climate simulations to land–atmosphere 175 

coupling. As a state-of-the-art atmospheric modeling system, the WRF model 176 

(Skamarock et al. 2008) has full physical process and multiple parameterization options, 177 

and thus usually acts as a common framework applied to physical scheme improvement, 178 

regional climate simulation, and numerical weather prediction. The Noah-MP LSM 179 

(Niu et al. 2011), the successor of the Noah LSM (Chen et al. 1996), is applied as an 180 

augmented land surface module in the coupled WRF model. Just like WRF, the 181 

selection of multiple physics scheme options is available in the Noah-MP. 182 

The WRF/Noah-MP experiments in this study were initiated at 00:00 UTC on 1 183 

February and ran until 00:00 UTC on 1 September (i.e. vegetation growing season) for 184 

the years between 2003 and 2012, in which the first months of each year were treated 185 

as the model’s spin-up time. As shown in Fig. 1a, the model was integrated over a 186 

domain covering the entire China land with a central point at 37°N and 102.5°E. The 187 

horizontal resolution was 13 km with grid points of 399 × 344. The grid vertically 188 

contained 36 terrain-following eta levels with the model top at 100 hPa. Atmospheric 189 

lateral boundary conditions and initial atmospheric fields were taken from the six-190 

hourly 0.75° × 0.75° European Centre for Medium-Range Weather Forecast Interim 191 

Reanalysis (ERA-Interim) data (Dee et al. 2011).  192 

The physical parameterization schemes employed in the study include the Noah-193 

MP land-surface model (Niu et al. 2011), the Thompson microphysics (Thompson et al. 194 

2008), Kain-Fritsch convection (Kain 2004), the Yonsei University planetary boundary 195 

layer (Hong et al. 2006), and the rapid radiative transfer model (Iacono et al. 2008). The 196 

Noah-MP provides two options to calculate Ch: the M–O (Brutsaert 1982) and the 197 

Chen97 (Chen et al. 1997) schemes. Both of them are based on the M–O similarity 198 

theory, and rely heavily on aerodynamic (Zom) and thermal (Zot) roughness lengths as 199 

well as the atmospheric stability. The primary differences lie on the treatment of 200 

roughness lengths, i.e., the Chen97 through the parameter Czil accounts for the 201 

discrepancy between Zot and Zom (usually Czil = 0.1, so Zot=Zom/10), while the M–O 202 

considers identical roughness lengths with the zero-displacement height. In this study, 203 

we performed model experiments by incorporating the Zot/Zom relation of Eq. (6) with 204 
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a dynamic Czil of Eq. (7) into the M–O scheme.  205 

Three cases were designed to simulate the different responses of the regional 206 

climate simulations to land–atmosphere coupling: Case 1 (Default; Czil ~0) adopted the 207 

original M–O option to calculate Ch, Case 2 (Czil; Czil = 0.1) adopted a typical constant 208 

Czil value, and Case 3 (Newczil; Czil-h) adopted a dynamic canopy height dependent Czil.  209 

2.3 Validation datasets 210 

The surface meteorological data (V3.0) including over 2000 stations during 2003–2012 211 

operated by China Meteorological Administration (CMA) were utilized in deriving 212 

regional Ch observations and verifying the performance of model. The variables 213 

involved include hourly precipitation and Ta, as well as Ts, surface wind speed, surface 214 

humidity and surface pressure at a 6-hourly interval. Using a Cressman-type 215 

interpolation, we horizontally interpolated the on-site observations to the gridded data 216 

of 399 × 344, which had the same resolution as the regional climate simulations. The 217 

SH data required by calculating the Ch observations were obtained from the monthly 218 

0.0833° FLUXNET-MTE (Model Tree Ensemble) dataset provided by Max Planck 219 

Institute for Biogeochemistry. The gridded FLUXNET-MTE dataset was integrated 220 

using global 253 FLUXNET eddy covariance observations and the MTE algorithm of 221 

machine learning technology (Jung et al. 2009). The FLUXNET-MTE products have 222 

been widely employed as a proxy for observations to the analysis of land–atmosphere 223 

energy exchanges and the validation of land surface modeling at regional and global 224 

scales (Bonan et al. 2011; Gan et al. 2019; Zhang et al. 2019). It should be noted that 225 

the gridded dataset has no values in areas of western China for the lack of observation 226 

stations, and unevenly distributed flux towers used to train the model tree can create 227 

not negligible uncertainty in the product. Additionally, we collected measurements at 228 

nine flux tower sites (Table 1) from Chinese terrestrial ecosystem flux research network 229 

(ChinaFLUX) to reconstruct Ch and evaluate the simulated surface energy and water 230 

variations. The 30-min flux observations were located at areas spanning different land–231 

cover types (grassland, forest, and wetland) and climatic regimes (arid, semi-arid, semi-232 

humid, and wet).  233 
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In addition, the atmospheric aridity index (AI), the ratio of annual accumulated 234 

precipitation to potential evapotranspiration, was utilized to determine dry and wet 235 

climatic regions (Hulme 1996; Middleton and Thomas 1992). The AI values were 236 

derived using the monthly 0.5° precipitation and potential evapotranspiration during 237 

1983–2012 in CRU-TS3.23 (Climate Research Unit) dataset from the University of 238 

East Anglia. The extreme arid, arid, semi-arid, semi-arid and semi-humid, and humid 239 

climate zones are defined according to 0 ≤ AI  0.05, 0.05 ≤ AI  0.20, 0.20 ≤ AI  240 

0.50, 0.50 ≤ AI  0.65, and AI ≥ 0.65, respectively.  241 

3 Results  242 

3.1 Model verification 243 

Prior to employing WRF model for exploring the characteristics of land–atmosphere 244 

coupling and its influences on local climate, it is necessary to examine the model skill 245 

using available field observations. Here, we evaluated the default M–O simulations 246 

against on-site observations in terms of Ta and precipitation. Three statistics commonly 247 

used to quantify the consistency between model outputs and field observations (e.g., 248 

Brovkin et al. 2013; Dai et al. 2019) were adopted: the Pearson correlation coefficient, 249 

the mean bias error, and root mean square error.  250 

Figure 2 shows that the patterns of simulated summer Ta and precipitation agree 251 

well with that of the observations over China for 2003–2012, with spatial correlations 252 

of 0.86 and 0.78, respectively. The simulated Ta can capture the observed large-scale 253 

pattern, although colder simulations occur in southwest and warmer values are in 254 

northwest China. The modeled precipitation bears a resemblance to the observed pattern 255 

of low rainfall amounts in the northwest and large amounts in the southeast, despite 256 

overestimated magnitude appears in most areas. Further, the model capacity for 257 

simulating the temporal evolutions of Ta and precipitation was assessed in four typical 258 

climate regions of China (blue rectangles in Fig. 1b). As exhibited in Fig. 3, the model 259 

reproduces well the observed Ta and precipitation variability, and mostly presents 260 

significantly positive correlations over 0.8 passing the 95% confidence level. However, 261 

the simulations in Northeast, North China, and Southwest present cold biases and in 262 
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Eastern Northwest tend to be warmer; additionally, the model generates too much 263 

rainfall in the four regions, especially in Southwest with a large positive deviation may 264 

owing to the influences of Asian summer monsoon and plateau topography (Song et al. 265 

2010; Wang et al. 2014). Accurately estimating Ta and precipitation has been a 266 

challenge, especially, generally overestimated precipitation appears in many 267 

atmospheric modeling (Liu et al. 2017; Wang et al. 2015). The accuracy of simulation 268 

could be improved through the reduction in errors of model boundary conditions as well 269 

as the developments in critical physical parameterizations, e.g., the boundary layer 270 

scheme and radiative transfer scheme for simulating Ta (Wang and Zeng 2011; Wang 271 

et al. 2015), and cloud microphysical scheme and cumulus scheme for precipitation 272 

(Gao et al. 2020; Liu et al. 2017).  273 

In general, the WRF model used in this study exhibits the good performance in 274 

reoccurring the features of observed large-scale spatial pattern and temporal evolution, 275 

and the verification analyses indicate that using the WRF model to conduct sensitivity 276 

experiments can offer helpful information regarding the characteristics of the 277 

modification of regional climate in relation to different extents of coupling strength.  278 

3.2 Impacts of Czil on land–atmosphere coupling strength 279 

The Czil schemes adopted in the surface layer parameterization through the exchange 280 

efficiencies of land–atmosphere energy and moisture may produce pronounced effects 281 

on the evolution of weather and climate systems (Chen and Zhang 2009; LeMone et al. 282 

2008; Trier et al. 2011), thus we first comparatively analyzed the Ch simulated in 283 

different Czil experiments basing on field observations, prior to assessing the impacts of 284 

land–atmosphere coupling on regional climate. 285 

The Ch observations were calculated from Eq. (3) using surface flux and 286 

meteorological measurements. Fig. 4a–c shows general overestimations in most areas 287 

of China during 2003–2012 summers compared with the observation-derived Ch. 288 

Taking Fig. 4a–c along with Fig. 4d–e, the Czil-h scheme produces generally closest Ch 289 

values with the observations, and remarkably reduces the positive Ch bias in the default 290 

M–O and Czil = 0.1 experiments, which implies the improvements of the application for 291 
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the dynamic Czil in representing land–atmosphere coupling. Further, the Ch simulations 292 

present evident variability across various vegetation types, as Fig. 4f exhibits, a large 293 

increase in Ch from a smoothly sparse vegetated surface with short canopies to a rougher 294 

flourishing surface with high canopies occurs as the observations show. Particularly, 295 

the Czil-h scheme performs best over areas covering short vegetation (e.g., barren, crop, 296 

grass, and shrub) with the smallest mean bias error of 0.37, and exhibits similar 297 

behavior of coupling strength modification as the default M–O at grids with tall 298 

vegetation (e.g., mixed forest), producing overestimated but reasonable Ch values.  299 

The results in this study are generally consistent with the findings obtained using 300 

offline Noah-MP simulations over China (Zhang et al. 2021), as well as using 301 

FLUXNET observations and numerical models in North America (Chen and Zhang 302 

2009; Chen et al. 2019). Overall, the Czil-h scheme adopted can help improve the 303 

representation of land–atmosphere coupling in atmospheric coupled models, and then 304 

influence the transport of land–atmosphere energy and moisture, hence, the next focus 305 

of this study will be on to what extent the process affecting surface and atmospheric 306 

conditions. 307 

3.3 Impacts of Czil on surface energy and water variations 308 

The land–atmosphere coupling (Ch) represented in the atmospheric model was verified 309 

to be improved by the Czil-h scheme in Sect. 3.2, further, the potential skill of the Czil-h 310 

scheme in replicating the observed surface energy and water components was evaluated. 311 

Figure 5 shows the daily evolutions of SH, LH, soil temperature (ST), and SM averaged 312 

from the ChinaFLUX grassland sites (Dan, Sw2, Cng, HaM, and Du2; Table 1) and 313 

forest sites (Qia, Din, and Cha) during March to August. The ST and SM were simulated 314 

in four soil layers (0–0.1, 0.1–0.4, 0.4–1, and 1–2 m), and the observed values were 315 

measured at 0.05 m except at Ha2 site of 0.1 m and Sw2 site of 0‒0.3 m. The simulated 316 

ST and SM were aggregated to match the observed soil layer. The model shows the 317 

ability to favorably capture the daily variability of the observed surface energy and 318 

water fluxes. However, the values of SH, LH, ST, and SM are generally overestimated 319 

by all Czil experiments. By contrast, the simulations from the Czil-h scheme agree better 320 
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with the measurements of ChinaFLUX grassland sites, with minimum root mean square 321 

errors for SH, LH, and ST of 14.55 W m-2, 18.38 W m-2, and 1.41 °C, respectively. The 322 

Czil schemes produce minor differences in the simulated SM. Further, diurnal surface 323 

heat fluxes at ChinaFLUX grassland and forest sites are exhibited in Fig. 6. The Czil 324 

schemes simulate larger diurnal amplitudes of SH and LH than the flux measurements, 325 

especially during the daytime. However, the Czil-h scheme substantially reduces the 326 

overestimated SH by the default M–O and Czil = 0.1 schemes, which corresponds to the 327 

behavior of the Czil-h scheme in weakening the excessively strong coupling (Fig. 4). 328 

Comparatively, the modeled LH values by three Czil schemes show negligible 329 

discrepancies for both grassland and forest. 330 

3.4 Responses of regional climate simulations to Czil over four typical climate zones 331 

of China 332 

Thus far, we have shown that the Czil-h scheme contributes significantly to the improved 333 

performance of the WRF/Noah-MP model in representing land–atmosphere coupling 334 

and regenerating surface fluxes. Further, the Czil-h scheme was applied to four typical 335 

climate zones of China (blue rectangles in Fig. 1b), and its behavior in replicating 336 

observed regional climate was assessed. Northeast, North China, and Eastern Northwest 337 

were located in the dry-wet transition zones that have strong land–atmosphere 338 

interactions (Huang et al. 2017; Li et al. 2017; Ma and Fu 2003) and predominately 339 

covered with short vegetation (e.g., crop and grass), and the Southwest region located 340 

in a humid zone was also chosen primarily because of the large coverage of tall 341 

vegetation (e.g., mixed forest). 342 

Figure 7 displays the differences of summertime precipitation between the 343 

simulations using three Czil schemes and the CMA field observations during 2003–2012. 344 

Different Czil schemes produce generally similar spatial patterns of climatological 345 

precipitation, but differ in the precipitation intensity. The simulated precipitation 346 

magnitudes are larger than the observations, whereas the Czil-h scheme decreases the 347 

positive deviations in the other two Czil simulations and provides noticeable 348 

improvements in the northeastern of Northeast, the south of North China, the southwest 349 
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of Eastern Northwest, and the northeastern of Southwest. Likewise, the Czil-h scheme 350 

reduces the negative bias of Ts produced by the default M–O and Czil = 0.1 experiments 351 

(Fig. 8), and has the minimal mean deviations from the observations of –3.04 °C, –352 

1.29 °C and –4.18 °C for Northeast, North China and Southwest, respectively. Figures 353 

9–10 show the discrepancies in SH and LH between the WRF/Noah-MP simulations 354 

and the FLUXNET-MTE observations. The Czil-h scheme generally narrows the mean 355 

biases of surface fluxes simulated by the other two Czil schemes, and presents more 356 

consistence with the observations. These features correspond to the skill of the Czil-h 357 

scheme to significantly reduce the overestimated Ch by the default M–O and Czil = 0.1 358 

schemes (Fig. 4). The Czil-h scheme through mitigating the efficiency of land–surface 359 

coupling (Fig. 4) transfers less surface fluxes into atmosphere (Figs. 9–10), and leads 360 

to a corresponding increase in Ts (Fig. 8), which consequently through atmospheric 361 

planetary boundary layer affects atmospheric precipitation (Fig. 7). Also note that 362 

remarkable improvements in the four climate zones primarily occur in the short 363 

vegetation areas with canopy height < 5 m (Fig. 1a).   364 

Atmospheric circulations that affect precipitation were analyzed through moisture 365 

flux (i.e., the multification of vector wind and specific humidity) vertically integrated 366 

from 1000 to 300 hPa (Fig. 11). The treatment of Czil in the surface layer 367 

parameterization has conspicuous effects on the magnitude and direction of horizontal 368 

water vapor transport. The differences between the Czil simulations exhibit distinct 369 

seasonality and regionality, which appears to be more remarkable deviations in summer 370 

and stronger water vapor transport over eastern China. Additionally, atmospheric 371 

convective conditions in terms of convective available potential energy (CAPE), 372 

planetary boundary layer height (PBLH), and 2-m specific humidity (Fig. 12) were 373 

analyzed to reveal the potential influence of convective activity on precipitation using 374 

different Czil schemes. CAPE represents the amount of energy available for convection, 375 

and is an indicator of atmospheric instability. Compared with the default M–O and Czil 376 

= 0.1 schemes, the Czil-h scheme considerably decreases atmospheric instability energy 377 

over a wide area, which is unfavorable for the onset of convective triggering and the 378 

occurrence of precipitation. The elevated PBLH simulated by the Czil-h scheme 379 
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enhances the mixing of water vapor in lower atmosphere, along with more water vapor 380 

evaporated by warmer Ts (Fig. 8), leading to a conspicuous reduction in near-surface 381 

humidity. These unfavorable convective conditions might potentially reduce the 382 

precipitation intensity in the Czil-h experiments over the four climate zones.  383 

Further, to comprehensively understand the physical mechanisms of the change in 384 

precipitation induced by the Czil-h scheme, Table 2 quantitatively analyzes the 385 

differences in simulations between Czil schemes in the four climate zones through 386 

considering thermal and dynamical factors together. The Czil-h scheme simulates less 387 

precipitation than the default M–O scheme for Northeast, North China, Eastern 388 

Northwest, and Southwest in summer. The decrease in precipitation is associated with 389 

less water vapor horizontally transported from moisture source areas such as the Bay 390 

of Bengal and the South China Sea (Table 2 and Fig. 11), less water vapor evaporated 391 

from drier surface vertically weakening LH, along with lower CAPE stabilizing lower 392 

atmosphere and suppressing thermal convection. The SH values decrease concurrently 393 

with reduced coupling strength (Ch; Fig. 4) in the Czil-h experiments, leading to a 394 

corresponding rise in land–air temperature contrast (ΔT) and hence deepened PBLH. 395 

The Czil-h scheme generates intensified precipitation in spring, which corresponds to 396 

more water vapor available for precipitation from enhanced horizontal moisture 397 

transport, wetter humidity and increased LH under favorable convective conditions. In 398 

comparison with the Czil = 0.1 simulations, the Czil-h scheme produces less precipitation 399 

for the four regions in summer as well as Northeast and Southwest in spring, and 400 

increased amount for North China and Eastern Northwest in spring. The responses of 401 

the changes in precipitation to the surface and atmosphere components simulated by 402 

the Czil-h against the Czil = 0.1 scheme are generally consistent with that against the 403 

default M–O scheme. 404 

Additionally, according to Table 2, the large discrepancies in ΔT between the Czil 405 

simulations primarily arise from the contribution of Ts, and Ta values vary little with 406 

different Czil schemes. For example, the difference of summer ΔT in North China 407 

between the Czil-h and default M–O schemes is 1.48 °C, in which the mean bias for Ts 408 

is 1.28 °C (the contribution of 86.49%) and for Ta is –0.20 °C. These demonstrate the 409 
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important role of Ch in controlling Ts, and Yang et al. (2011) indicated that Ch is the 410 

most important factor of modeling Ts, thus, considerable efforts by the LSMs modelers 411 

have been spent to improve the performance of model in reproducing Ts through the Ch 412 

parameterization (Chen et al. 2011; Gomez et al. 2020). 413 

4 Discussions 414 

4.1 Sensitivities of surface flux and precipitation simulations to the Czil-h scheme 415 

and the uncertainties of applying the Czil-h scheme 416 

In this study, we have verified that the Czil in the surface layer parameterization can be 417 

slightly adjusted by WRF coupled model to improve regional climate simulation over 418 

China. Compared with the control experiments without considering Czil or directly 419 

setting it as constant 0.1, a dynamic Czil scheme depending on vegetation type (i.e., Czil-420 

h) can achieve improvements in simulating land–atmosphere coupling strength, thus 421 

affect atmospheric planetary boundary layer through the exchange of heat and moisture, 422 

and then alter regional climate simulations. However, the impacts of the Czil-h scheme 423 

on the simulations appear to vary with land–cover types, variables, and seasons, etc. 424 

Specifically, the Czil-h scheme has the ability to reduce the overestimations in both the 425 

default M–O and Czil = 1 experiments for short vegetation canopies, but it behaves 426 

similarly to the default M–O scheme for high canopies, further, such behavior of the 427 

Czil-h scheme does not work for all surface and atmospheric variables. Therefore, this 428 

section quantifies the sensitivity of simulations to the Czil-h scheme by analyzing the 429 

discrepancies between Czil experiments, and discusses the deficiencies of applying the 430 

Czil-h scheme in numerical models.  431 

Considering that the experiments designed in this study are greatly affected by 432 

land–cover types, we analyze Ch, SH, Ts and precipitation that are strongly influenced 433 

by Czil schemes at three dominant vegetation types in China. Figure 13 and Table 3 show 434 

the relative deviations between simulations using different Czil schemes. These values 435 

are at grassland, cropland, and forest, which were extracted from the areas of Eastern 436 

Northwest, North China, and Southwest, respectively (Fig. 1). The relative deviations 437 

in Ch of about –10% (–12%) between the Czil-h and default M–O simulations occur in 438 
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grassland (cropland), which doubles (quadruples) the amount in that between the Czil-h 439 

and the Czil = 0.1 schemes. These indicate the marked influence of Czil coupling 440 

coefficient on the simulations and the substantial reduction by the Czil-h scheme in the 441 

Ch overestimation by the default M–O scheme, corresponding to the results in Fig. 4. 442 

The Czil-h scheme generates an average relative deviation of –8.12% in Ch compared 443 

with the control experiments for short vegetation canopies, and the weakened coupling 444 

strength results in less surface SH (an average relative deviation of –6.82%) inputs into 445 

the atmosphere and a higher Ts (an average relative deviation of 5.28%). The Ch 446 

simulations in the Czil-h experiments at forest exhibit large positive deviations (relative 447 

deviation > 36%) against the Czil = 0.1 simulations, with consequences for a 448 

significantly higher SH (16%) and negative Ts deviation (8%). The precipitation 449 

generated by the Czil-h scheme in grassland and cropland produces a mean negative 450 

deviation of –4.69% against the control experiments. Although the Ch values simulated 451 

by the Czil-h scheme in forest have small negative deviations ( 0.2%) against the 452 

default M–O scheme, such minor biases in land–atmosphere coupling strength still 453 

result in distinctively different precipitation, especially in summer, with the relative 454 

deviations of up to 60%. This arises probably because local available moisture and 455 

energy are affected by the enhancement in land–atmosphere exchange efficiency as 456 

vegetation grows luxuriantly from spring to summer (Chen and Zhang 2009; Zhang et 457 

al., 2021) as well as the influence of horizontal moisture fluxes transport (Fig. 11).  458 

Theoretically speaking, the fundamental reason for the differences in simulations 459 

between Czil schemes lies in that, the Czil-h scheme can directly relate surface coupling 460 

strength to terrestrial ecosystem through the Eq. (6), thus affecting the ratio of Zot/Zom 461 

that is critical to the Ch calculation. Czil values are assigned according to various 462 

vegetation types, with reducing Czil as canopy height increases, and larger Ch through 463 

enhancing the efficiencies of energy and moisture exchange affects atmospheric lower 464 

boundary conditions (Chen et al. 2019; Trier et al. 2011; Zheng et al. 2015). The 465 

coupling strength of tall vegetation canopies with rougher surfaces is 10 times greater 466 

than that of low vegetation (Chen and Zhang 2009), however, Czil value changes little 467 

over areas with canopy height > 5 m. For example, the Czil difference between 19‒20 468 
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m canopy heights is only 1.51 ×10–8, but 0.24 is for that between 1‒2 m. A close-to-469 

zero Czil for high vegetation results in equivalent aerodynamic and thermal roughness 470 

lengths according to Eqs. (6)–(7), therefore, the Czil-h scheme produces positive 471 

deviation similar to the default M–O scheme does. 472 

In fact, there are still many deficiencies in applying the Czil-h scheme to 473 

atmospheric coupling model for regional climate simulation. Firstly, regarding the 474 

canopy height and Zom that play important roles in the experiments, we adopted the 475 

default data within MODIS land cover classification in the model, due to the 476 

unavailability of the observations covering China. However, taking Sud and Smith 477 

(1985) for an example, they indicated that the decrease of surface roughness from 45 478 

cm to 0.02 cm considerably reduces precipitation in the Sahara desert, and the impact 479 

is comparable to that of surface albedo enhancement. Therefore, more accurate data 480 

used in the Czil-h scheme will contribute to the improvement of Ch parameterization, 481 

and may provide more valuable detailed information. Secondly, the Czil-h scheme 482 

improves land–atmosphere coupling strength mainly in short vegetation canopies, and 483 

the simulations for high vegetation are similar to that of the default M–O scheme, 484 

comparatively, the Czil = 0.1 scheme produces Ch closer to the observed. Therefore, 485 

based on extensive evaluations of the Czil-h simulations, it may be necessary to consider 486 

how to further improve and optimize the Czil-h scheme in future studies. Additionally, 487 

the adjustment of land–surface physical processes can substantially affect climate 488 

change (Maynard and Royer 2004; Pielke 2001; Trier et al. 2011), simultaneously, the 489 

changes in surface water and energy process can result from land–surface feedbacks to 490 

atmospheric anomalies (Findell and Eltahir 2003; Wang and Zeng 2011). Deeply 491 

exploring whether the land–atmosphere responses and feedbacks differ from Czil 492 

schemes may help to further better understand the impacts of Czil value on the land 493 

surface and atmosphere, might contributing to improve the Czil-h scheme. 494 

4.2 Impacts and uncertainties of atmospheric dynamics on the representation of 495 

land–atmosphere coupling strength 496 

The representation of land–atmosphere coupling in the WRF/Noah-MP model through 497 
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adjusting Czil to vary as vegetation types can be improved and then modify the regional 498 

climate simulations (Sect. 3.4). Further, near-surface atmospheric dynamic conditions, 499 

by influencing surface roughness elements and aerodynamic properties, interact with 500 

the dynamical change of the land–atmosphere coupling strength (Ch) in a complicated 501 

approach (Rigden et al. 2018; Zhang et al. 2012). Therefore, this section analyzes how 502 

atmospheric dynamics affect Ch and in turn alter climate simulations, and discusses the 503 

uncertainties of atmospheric dynamics on land–atmosphere coupling represented in 504 

numerical models.  505 

In this study, we referred to Zhang et al. (2012) to construct a dynamic 506 

comprehensive variable u2/u*, in which, surface wind speed (u) significantly changes 507 

the structure and morphology of roughness elements (e.g. plant height and density), and 508 

friction velocity (u*) can represent the interaction between near-surface airflow and 509 

roughness elements (Rigden et al. 2018; Zilitinkevich et al. 2008). Moreover, the M–O 510 

stability parameter ζ (the calculation seen in Sect. 2.1), comprehensively considering 511 

thermodynamic influences on atmospheric stability and acting as a determinant in Ch 512 

parameterization (Grachev et al. 1998; Yang et al. 2001), was also analyzed. Figure 14 513 

depicts the scatter distributions between Ch and u2/u*, ζ and precipitation simulated by 514 

the Czil-h scheme, respectively, at grassland, cropland, and forest (the coverage 515 

equivalent to that in Sect. 4.1). The correlations between Ch and u2/u* are significantly 516 

positive (p < 0.05) for the three vegetation regions, indicating enhanced effects of 517 

airflow movement on surface exchange process. The Ch and u2/u* in forest have a larger 518 

correlation coefficient of 0.64 than that in grassland and cropland (~0.4), implying that 519 

the Ch of high vegetation canopies is more susceptible to atmospheric dynamical 520 

conditions. The scatters between Ch and u2/u* exhibit obvious discrete at grassland and 521 

cropland, whereas at forest the variations of u2/u* are more concentrated presumably 522 

due to the decrease of surface wind speed resulting from the blocking effect of dense 523 

canopy (Maynard et al. 2004; Pielke 2001). Thus, the u2/u* in forest (55.98 m s-1) has 524 

a lower climatic average than in grassland (90.23 m s-1) and cropland (85.51 m s-1), 525 

despite larger Ch values for forest (an average lg Ch of –1.61) than cropland (–2.01) and 526 

grassland (–2.08). The Ch along with the change of ζ negatively correlated. The ζ mostly 527 
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has negative values, denoting unstable atmospheric stratification (ζ < –0 .01), and the 528 

greater the value of |ζ|, the stronger the instability, accordingly, the intensified the 529 

coupling strength (larger Ch values); as atmosphere becomes stability (ζ > 0 .01), Ch 530 

tends to decrease and the land–atmosphere coupling strength weakens; –0.01 < ζ < 0 .01 531 

denotes near-neutral atmosphere. The atmosphere in forest exhibits the strongest 532 

instability with a broader range of |ζ| between 0–1.5×104, leading to the most efficient 533 

land–atmosphere coupling with the range in lg Ch of –2.6 to –0.8. However, the weakest 534 

atmospheric instability occurs in grassland, with sparse values of |ζ| over 104 compared 535 

to that in forest and cropland, and thus corresponds to the modest coupling strength. 536 

The values of Ch and precipitation are distributed relatively discretely, but still show 537 

significant positive correlations (p < 0.05). Enhanced coupling strength of larger Ch 538 

through the exchange of heat and water is conducive to the increase in precipitation, 539 

simultaneously, sufficient rainfall enables vegetation to flourish, and in turn makes the 540 

Ch larger by affecting surface roughness (Chen and Zhang 2009; Zhang et al. 2013). 541 

The complicated interactions between atmosphere dynamical conditions and the 542 

variability in land–atmosphere coupling strength bring challenges to how to more 543 

accurately characterize the land–atmosphere interactions in numerical models. The 544 

influences of atmospheric dynamics on land surface are closely connected to not only 545 

surface roughness geometry such as plant height and density, but also the dynamical 546 

response of vegetation to airflow (e.g. the flexibility of crop and grass), however, the 547 

intricate process of dynamic roughness changes affecting Ch has yet been implemented 548 

in the current models (Gomez et al. 2020; Zhang et al. 2012; Zilitinkevich et al. 2008). 549 

Moreover, the variations in Zom, a key factor influencing Ch parameterization, are 550 

manifest due to the strong dependence of vegetation growth on precipitation variability 551 

(Zhang et al. 2013), however, the Zom values in this study were determined as a function 552 

of only vegetation type, just as most current numerical models have done (e.g., Trier et 553 

al. 2011), and thus the introduction of dynamical Zom (e.g., monthly values) in the model 554 

may improve the simulations.  555 
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5 Conclusions 556 

In this study, we investigated the sensitivity of regional climate simulations over China 557 

during 2003–2012 to the parameterized land–atmosphere coupling in the 13-km 558 

WRF/Noah-MP model. The surface coupling strength in the model is greatly affected 559 

by varying the parameter Czil, which is typically set to a constant, through dynamically 560 

adjusting values across land–cover types. Thus, we designed three Czil schemes: the 561 

default M–O (Czil~0), constant Czil (set to 0.1) and dynamic canopy-height-dependent 562 

Czil (Czil-h), and simulations were compared with the observations from over 2000 563 

meteorological stations and nine ChinaFLUX sites. The main conclusions of this study 564 

are summarized as follows. 565 

The remarkable differences in the strength of land–atmosphere coupling can be 566 

modeled by three Czil schemes. The default M–O scheme substantially overestimates 567 

the observation-derived Ch, and the Czil = 0.1 scheme slightly reduces the positive 568 

deviation. In contrast, the Czil-h scheme produces the lowest Ch deviation from the 569 

observations for short vegetation canopies (e.g., crop, grass, and shrub), and obtains Ch 570 

values similar to that of the default M–O scheme for high canopies (e.g., mixed forest). 571 

Additionally, comparisons with the ChinaFLUX observations indicate the capability of 572 

the Czil-h scheme to better match the observed surface energy and water variations. In 573 

general, using the Czil-h scheme can achieve improved representation of the land–574 

atmosphere coupling in the numerical models.  575 

Adjusting Czil to vary as vegetation types can modulate the exchange efficiencies 576 

of land–atmosphere energy and moisture, and subsequently through atmospheric 577 

planetary boundary layer alter regional climate simulations. The results of the Czil 578 

schemes applying to four typical climate zones of China present that the Czil-h 579 

simulations are in the closest agreements with the field observations. The Czil-h scheme 580 

narrows the positive discrepancies of simulated precipitation and surface fluxes as well 581 

as the negative biases of Ts in areas of Northeast, North China, Eastern Northwest, and 582 

Southwest compared to the default M–O and Czil = 0.1 schemes. This arises because the 583 

Czil-h scheme through mitigating the efficiency of land–surface coupling transfers less 584 

surface fluxes into atmosphere, and leads to a corresponding rise in Ts. The elevated 585 
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PBLH simulated by the Czil-h scheme enhances the mixing of water vapor in lower 586 

atmosphere, along with more moisture evaporated by warmer Ts, resulting in a 587 

conspicuous reduction in near-surface humidity. The decreased precipitation in the Czil-588 

h experiments is associated with less water vapor horizontally transported from 589 

moisture source areas, less moisture evaporated from drier surface vertically weakening 590 

LH, along with smaller CAPE stabilizing lower atmosphere and suppressing thermal 591 

convection.  592 

Although the Czil-h scheme has achieved competitive skill in representing land–593 

atmosphere coupling, the deficiencies and uncertainties in the application of the 594 

dynamical scheme in atmospheric coupled models, e.g., the accuracy of canopy height 595 

and Zom data, the regional applicability of the scheme, and the dynamical response of 596 

vegetation to airflow, require to be further explored and resolved through performing a 597 

large number of experiments. These may be helpful in accurately characterizing land–598 

atmosphere coupling and further optimizing the Ch parameterization. 599 

 600 
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Figures

Figure 1

(a) Weather Research and Forecasting model coupled with a Noah land surface model with multi-
parameterization options (WRF/Noah-MP) modeling domain. Shaded contours represent Moderate
Resolution Imaging Spectroradiometer (MODIS) land cover/land use classi�cation within the
International Geosphere-Biosphere Program (IGBP). Values in parentheses indicate canopy height (unit:
m). Dark circles denote the locations of nine ChinaFLUX sites: Changbaishan (Cha), Changling (Cng),
Dangxiong (Dan), Dinghushan (Din), Duolun (Du2), Haibei Alpine (HaM), Haibei Shrubland (Ha2),
Qianyanzhou (Qia), and Siziwang Banner (Sw2). (b) Division of wet and dry climate zones in China.



Shaded contours represent atmospheric aridity index, the ratio of annual accumulated precipitation to
potential evapotranspiration. Blue rectangles denote four typical climate regions selected in this study.
N.E.: Northeast (120~135°E, 42.5~50°N); N.C.: North China (110~123°E, 35~41°N); E.N.W.: Eastern
Northwest (99~109°E, 32.5~40°N); S.W.: Southwest (98~111°E, 22~28°N) Note: The designations
employed and the presentation of the material on this map do not imply the expression of any opinion
whatsoever on the part of Research Square concerning the legal status of any country, territory, city or
area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been
provided by the authors.

Figure 2

Spatial patterns of (a) air temperature and (b) precipitation in the �eld observations from China
Meteorological Administration (OBS) and the simulations from WRF/Noah-MP model using the default
M–O scheme (WRF), as well as their differences (WRF-OBS) during the summers of 2003–2012 Note:
The designations employed and the presentation of the material on this map do not imply the expression
of any opinion whatsoever on the part of Research Square concerning the legal status of any country,
territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This
map has been provided by the authors.



Figure 3

Temporal evolutions of air temperature and precipitation in the �eld observations from China
Meteorological Administration (OBS) and the simulations from WRF/Noah-MP model using the default
M–O scheme (WRF) for (a–b) Northeast, (c–d) North China, (e–f) Eastern Northwest and (g–h)
Southwest during March to August of 2003–2012. R, MBE, and RMSE denote the Pearson correlation
coe�cient, the mean bias error, and root mean square error, respectively



Figure 4

Comparisons of surface exchange coe�cient, Ch (plotted at log10 scale), derived from the �eld
observations of China Meteorological Administration (OBS), and calculated by the WRF/Noah-MP model
using the default M–O (Default), Czil = 0.1 (Czil), and Czil-h (Newczil) schemes during 2003–2012
summers. (a–c) the differences between the simulations and the observations, (d–e) the differences
between the simulations, and (f) regional averaged Ch values for typical land–cover types. Bias: the
mean deviation of the simulations from the observations; Bias shortveg: the discrepancy between the
simulated and the observed values averaged from short vegetation areas with canopy height < 5 m.
Green bars in (f) denote canopy height Note: The designations employed and the presentation of the
material on this map do not imply the expression of any opinion whatsoever on the part of Research
Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning
the delimitation of its frontiers or boundaries. This map has been provided by the authors.



Figure 5

Comparisons of daily sensible heat �ux (SH), latent heat �ux (LH), soil temperature (ST), and soil
moisture (SM) during March to August between the ChinaFLUX observations (OBS) and the WRF/Noah-
MP simulations using the default M–O (Default), Czil = 0.1 (Czil), and Czil-h (Newczil) schemes. The
values in (a) were averaged from the ChinaFLUX grassland sites (Dan, Sw2, Cng, HaM, and Du2) for
respective available years (Table 1), and the values in (b) from the forest sites (Qia, Din, and Cha). Root



mean square errors (RMSE) in sequence for the default M–O, Czil = 0.1, and Czil-h simulations are
displayed in each panel

Figure 6

Diurnal comparisons of sensible heat �ux (SH) and latent heat �ux (LH) between the ChinaFLUX
observations (OBS) and the WRF/Noah-MP simulations using the default M–O (Default), Czil = 0.1 (Czil),
and Czil-h (Newczil) schemes. The values in (a–d) were averaged from the ChinaFLUX grassland sites
(Dan, Sw2, Cng, HaM, and Du2) for respective available years (Table 1), and the values in (e–h) from the
forest sites (Qia, Din, and Cha)



Figure 7

Spatial differences of precipitation between the �eld observations from China Meteorological
Administration (OBS) and the WRF/Noah-MP simulations using the default M–O (Default), Czil = 0.1
(Czil), and Czil-h (Newczil) schemes over (a) Northeast, (b) North China, (c) Eastern Northwest and (d)
Southwest during the summers of 2003–2012. Bias: the mean discrepancy between the simulations and
the observations Note: The designations employed and the presentation of the material on this map do



not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal
status of any country, territory, city or area or of its authorities, or concerning the delimitation of its
frontiers or boundaries. This map has been provided by the authors.

Figure 8

Spatial differences of land surface temperature between the �eld observations from China
Meteorological Administration (OBS) and the WRF/Noah-MP simulations using the default M–O
(Default), Czil = 0.1 (Czil), and Czil-h (Newczil) schemes over (a) Northeast, (b) North China, (c) Eastern
Northwest and (d) Southwest during the summers of 2003–2012. Bias: the mean discrepancy between
the simulations and the observations Note: The designations employed and the presentation of the



material on this map do not imply the expression of any opinion whatsoever on the part of Research
Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning
the delimitation of its frontiers or boundaries. This map has been provided by the authors.

Figure 9

Spatial differences of sensible heat �ux between the FLUXNET-MTE observations (OBS) and the
WRF/Noah-MP simulations using the default M–O (Default), Czil = 0.1 (Czil), and Czil-h (Newczil)



schemes over (a) Northeast, (b) North China, (c) Eastern Northwest and (d) Southwest during the
summers of 2003–2012. Bias: the mean discrepancy between the simulations and the observations
Note: The designations employed and the presentation of the material on this map do not imply the
expression of any opinion whatsoever on the part of Research Square concerning the legal status of any
country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or
boundaries. This map has been provided by the authors.

Figure 10



Spatial differences of latent heat �ux between the FLUXNET-MTE observations (OBS) and the WRF/Noah-
MP simulations using the default M–O (Default), Czil = 0.1 (Czil), and Czil-h (Newczil) schemes over (a)
Northeast, (b) North China, (c) Eastern Northwest and (d) Southwest during the summers of 2003–2012.
Bias: the mean discrepancy between the simulations and the observations Note: The designations
employed and the presentation of the material on this map do not imply the expression of any opinion
whatsoever on the part of Research Square concerning the legal status of any country, territory, city or
area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been
provided by the authors.

Figure 11



Spatial difference of moisture �ux between the simulations using the default M–O (Default), Czil = 0.1
(Czil), and Czil-h (Newczil) schemes during the springs and summers of 2003–2012. The moisture �ux
values were derived by multiplying speci�c humidity and vector wind, and vertically integrated from 1000
to 300 hPa Note: The designations employed and the presentation of the material on this map do not
imply the expression of any opinion whatsoever on the part of Research Square concerning the legal
status of any country, territory, city or area or of its authorities, or concerning the delimitation of its
frontiers or boundaries. This map has been provided by the authors.

Figure 12

Spatial differences of (a–d) convective available potential energy (CAPE), (e– h) planetary boundary
layer height (PBLH), and (i–l) 2-m air speci�c humidity (Q) between the simulations using the default M–
O (Default), Czil = 0.1 (Czil), and Czil-h (Newczil) schemes during the springs and summers of 2003–
2012 Note: The designations employed and the presentation of the material on this map do not imply the
expression of any opinion whatsoever on the part of Research Square concerning the legal status of any
country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or
boundaries. This map has been provided by the authors.



Figure 13

The deviations in Ch (plotted at log10 scale), sensible heat �ux (SH), precipitation (Precip), and land
surface temperature (Ts) between the simulations using the default M–O (Default), Czil = 0.1 (Czil), and
Czil-h (Newczil) schemes at (a– b) grassland, (c–d) cropland, and (e–f) forest during 2003–2012. ND:
(Newczil – Default) / |Newczil|×100, NC: (Newczil – Czil) / |Newczil|×100



Figure 14

Scatter distributions at (a) grassland, (b) cropland, and (c) forest between the 6-hourly Ch (plotted at
log10 scale) and the dynamic comprehensive variable (u2 /u*), the Monin–Obukhov stability parameter
(ζ) and precipitation simulated by the Czil-h scheme during 2003–2012 summer. The u2 /u* is the ratio
of surface wind speed (u) squared and friction velocity (u*), and the ζ is the ratio of reference height and
Monin-Obukhov length (the detailed calculation seen in Eq. 5). Pearson correlation coe�cient between
the simulations and the observations (R) is displayed in each panel

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

CHinChinaWRFtable.pdf

https://assets.researchsquare.com/files/rs-221209/v1/9c2e5807670412073cdadf64.pdf

