
Geometric Programming Approximation to Dynamic
Programming
Harrison O. Amuji ( harrison.amuji@futo.edu.ng)

Federal University of Technology Owerri
Chinemerem Igboanusi

Federal University of Technology Owerri
Obioma G. Onukwube

Federal University of Technology Owerri

Method Article

Keywords: Dynamic programming, Curse of dimensionality, Optimal allocation policy, Geometric
programming, Optimal objective function

Posted Date: October 31st, 2022

DOI: https://doi.org/10.21203/rs.3.rs-2217286/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-2217286/v1
mailto:harrison.amuji@futo.edu.ng
https://doi.org/10.21203/rs.3.rs-2217286/v1
https://creativecommons.org/licenses/by/4.0/

1

Geometric Programming Approximation to Dynamic Programming

Harrison O. Amuji1*, Chinemerem Igboanusi 2 and Obioma G.Onukwube3

1,3Department of Statistics, Federal University of Technology Owerri, Imo State Nigeria

2Department of Transport Management Technology, Federal University of Technology, Owerri

1harrison.amuji@futo.edu.ng, 2c.igboanusi@yahoo.com 3obioma.onukwube @futo.edu.ng

Abstract:

In this paper, we have developed a geometric programming approximation to dynamic

programming. The method has additional advantages of providing the cost involved in decision

making and also eliminates the course of dimensionality which restricted the application of

dynamic programming to small problems. We also obtained the optimal dual decision variables.

We stated two lemmas, and through them, we proved that the optimal allocation policy is the

same as the optimal primal decision variables and that the sum of cost matrix in Dynamic

programming is the same as the cost coefficient in Geometric programming. We applied the

method on a problem and obtained the optimal cost for decision making to be N97.30 and

optimal decision policy to be (0.1, 0.2, 1, 3). This policy means that lecturers should combine to

teach courses in year two and year three but each lecturer handles one course in year four and

three courses in year five.

Keywords: Dynamic programming, Curse of dimensionality, Optimal allocation policy,

Geometric programming, Optimal objective function

1. Introduction

Dynamic programming is a class of non-linear programming that makes use of optimality and

recursive relationship to arrive at optimal decision. It has diverse applications, especially in those

areas where most of other non-linear and linear optimization cannot be applied. It breaks a

problem into stages with each stage having independent optimal decisions. Dynamic

programming has variant models, depending on the nature of the problem to be solved, but in

general it maintains a unique feature. Our interest in this paper is to provide solution to non

applicability of dynamic programming in solving large class of problems. The restriction is due

to the curse of dimensionality. The curse of dimensionality is the problem caused by the

exponential increase in volume associated with adding extra dimensions to Euclidean space. The

curse of dimensionality occurs when the complexity increases rapidly which is caused by the

increasing number of possible combinations of inputs. This problem can be solved by converting

the high dimensional variables into lower dimensional variables without changing the specific

information of the variables. For example, in the principal component analysis, the curse of

dimensionality is reduced to the Principle component, where a reasonable high percentage of the

variation is accounted for by the principal component. The general objectives of principle

component analysis are data reduction and data interpretation, Onyeagu (2003). But principle

component has a linear function while we are dealing with a non-linear programming.

mailto:harrison.amuji@futo.edu.ngb
mailto:2c.igboanusi@yahoo.com%203obioma.onukwube%20@futo.edu.ng

2

For problems with equal quantification levels of the state variables, the amount of high-speed

memory, the number of calculations and the amount of off-line memory required increase

exponentially according to the number of state variables. The number of calculations has been

shown also to increase exponentially according to the number of decision variables, Esogbuo and

Marks (1974).

2. Literature Review

Researchers have tried to solve this problem of curse of dimensionality in different ways; for

example De Farias and Van-Roy (2003) used linear programming to approach the problem of

curse of dimensionality. They converted dynamic programming to linear programming. Their

major reason was to avoid the curse of dimensionality in dynamic programming. Of course we

know that in the history of linear programming via simplex method, there was an observed

shortcoming in the storage space. It was argued against linear programming that it occupies a

large memory spaces with some variables that are not needed. Similarly, approximating dynamic

programming by linear programming will still not entirely solve the problem of occupying a

large memory space.

A similar restriction was observed in geometric programming but researchers such as

Kochenberger et al (1973) transformed the non-linear programming problem to a linear

programming using separable programming. Though the authors applied this approach to

geometric programming problem to overcome the computational difficulties arising from the

greater than zero degree of difficulty problem, the same approach can be applied to dynamic

programming. They noted that the approximating linear programming problems were larger than

the original dual problem but can easily be solved due to the efficiency of the Simplex method.

However, Separable Programming has received some criticism; for example, Richard (1978)

observed that the problem with Separable linear programming was the inability to obtain a global

optimal solution. Separable Programming (SP) is a Linear Programming (LP) extension for

handling certain types of non-linear functions within the framework of a general linear format.

The author, Kilmer (1978) saw Separable Programming as a technique through which non-linear

programming problems may be solved using the Simplex method. The point we are try to drive

home here is that linear programming does not produce the global optimal solution and it also

requires a large memory space. Hence, the dimensionality we are trying to avert is still not

entirely eliminated.

Other authors such as Doraszelski and Judd (2012) devised an approach to avoid the curse of

dimensionality. They observed that Discrete-time stochastic games with a finite number of states

have been widely applied to study the strategic interactions among players in dynamic

environments. They noted that the games suffer from a curse of dimensionality when the cost of

computing players' expectations over all possible future states increases exponentially in the

number of state variables. They explore the alternative of continuous-time stochastic games with

a finite number of states and argued that continuous time may have substantial advantages. They

observed that under widely used laws of motion, continuous time avoids the curse of

dimensionality in computing expectations, thereby speeding up the computations by orders of

magnitude in games with more than a few state variables.

3

On the other hand, Fernandez-Villaverde et al (2020) resorted to deep learning, which they found

useful in solving the problem of curse of dimensionality. They were of the opinion that for

researchers to answer a wide range of important economic questions, they must solve high

dimensional dynamic programming problems. To break the curse of dimensionality associated

with these high-dimensional dynamic programming problems, the authors proposed a deep-

learning algorithm that efficiently computes a global solution to this class of problems. This

method is by no means easier in finding solution to the problem of curse of dimensionality.

On the other hand, Geometric Programming (GP) on its own is a member of non-linear

programming problem with a special feature; that is, its objective function and constraint

equation(s) are both posynomials, Amuji et al (2020). Posynomial is a polynomial with positive

coefficients. The constraint equation(s) are bounded above by unity to ensures that the function

attain global optimal solution; see Avriel and Williams (1970) and Ojha and Das (2010). The

standard form of geometric programming is that its objective function must be in the

minimization form and the constraint equation must be bounded above by unity for constrained

geometric programming problems; see Boyd et al (2007) and Mazumder and Jefferson (1983). It

was developed for solving nonlinear optimization problems, and was initially developed to

model engineering and economic problems, Ben-Israel (1968), but was later extended to model

problems in mathematics, statistics, operations research and other numerous disciplines, Amuji et

al (2020). The pioneers of geometric programming having carefully observed the nature of

polynomial concluded that it could be used to model several physical and engineering problems

Rao (2009). But instead of using the generalized polynomials, they restricted the coefficients of

the polynomials and its variables to values greater than zero. This restricted polynomial is called

monomial if it has only one term and posynomial (that is, positive polynomial) when the

numbers of terms are more than one, [9]. It is not always easy to formulate geometric

(Posynomial) programming problem, but once formulated, the solution is easy, Mazumder and

Jefferson (2007).

It will be most appreciated to approximate a non-linear programming by another non-linear

programming. Hence we propose a geometric programming approximation to dynamic

programming problem. The obvious advantage of this approach is not only to give dynamic

programming a new look but to eliminate completely the curse of dimensionality associated with

dynamic programming problem, establish cost for making decisions, establish that the optimal

primal decision variables is the same as the optimal decision policy, attains global optimal

solution without going through different stages of the problem and to solve large class of

dynamic programming problems.

3. Methodology

3. 1. Development of the Technique

Our interest in this work is to find a new technique for dealing with curse of dimensionality. In

the course of our research, we observed that dynamic programming can be transformed into

geometric programming and the solution approximated via geometric programming. This

4

proposed method is novel and will help in the extension of dynamic programming to solve large

class of problems.

Dynamic programming model is of the form;

)()(),(
*

1 iiiiiiii xSfxRxSf −+= + ; see Amuji et al (2017) (1)

From (1), let Si be the state variables, xi be the stage variables;),(1xSf ii be a total investment;

)(ii xR be the previous investment and)(
*

1 nnn xSf −+ be the current investment.

We write the model in equation (1) as:

 )(*)(max),(1 iiiii
x

ii xRfxRxRf
i

−+= + (2)

From the model in equation (2), we observed that the problem is separable in the stage variables,

xi. Also referring to the properties of geometric programming, we noted that geometric

programming is closed under addition, multiplication and division, see Boyd et al (2007). Hence,

we can write equation (2) as

    )(*max)(max),(1 iii
x

ii
x

ii xRfxRxRf
ii

−+= + (3)

At optimality, the minimum of the primal geometric programming problem is equal to the

maximum of the dual geometric programming problem, and maximization of a dual problem is

the same as minimization of the inverse of the problem (i,e, the prima problem), see Amuji et al

(2021), hence we have;

   )(*

1

)(

1
),(

1 iiiii

ii
xRfxR

xRfMin
−

+=
+

 (4)

We noticed that xi has the same dimension as Si, and resulting into a square matrix of order n,

and hence, a geometric programming problem with zero degree of difficulty, see Amuji et al

(2020). From equation (4), we observed that each of the terms contains both state and stage

variables with associated cost coefficient; hence, we can write equation (4) as


==

=
m

i

a

i

n

j

j
ijxczfMin

11

)((5)

Where zxR nn =),(, cj is the cost coefficient associated with each term, n is the number of terms,

m is the number of variables, xi is the primal decision variables and aij is the exponent matrix.

Equation (5) is an unconstrained geometric programming problem. Splitting equation (5) into a

constrained geometric programming problem, we have


=

+

===

+=
0

0

00

0

0

1

1

1

0

11

00)(
m

i

a

i

n

j

j

m

i

a

i

n

j

j
ijij xcxczfMin (6)

5

Subject to 1)(
11

= 
==

k

ijk

m

i

a

i

n

j

kjk xcxg (7)

Re-writing Equation (6 and 7) in a standard geometric programming form, we have


==

=
0

0

0

11

00)(
m

i

a

i

n

j

j
ijxcxfMin (8)

Subject to 1)(
11

= 
==

k

ijk

m

i

a

i

n

j

kjk xcxg (9)

Equations (8) and (9) are the constrained geometric programming models; where n0 = number of

terms in the objective; f0(x) = objective function; gk(x) = constraint equation; C0j = cost

coefficient; m0 = number of variables; aoij = exponent matrix, all in the objective function. Then,

xi = primal decision variables; nk = number of terms in the constraint equation(s); Ck = cost

coefficient; mk = number of variables; akij = exponent matrix all in the constraint equation(s); see

see Amuji et al (2020).

Lemma 1:

The sum of cost matrix in Dynamic programming is the same as the cost coefficients in

Geometric programming.

Proof:

Let
ijjj xxx ., . . ,, 21 be the column entries of the cost matrix in dynamic programming

Hence,

ij

n

ij

ij bx = (10)

But ..xb
n

ij

ij = (11)

Where
ijb is the column sum and ..x is the grand sum of the entire cost columns and

kjjjkj cccC +++= ...21 (12)

where
kjC is the total sum of the cost coefficients of geometric programming and ckj is the sub

cost coefficients; this implies that

kjCx ..= and
kjij cb = (13)

Therefore:

6

..xb
n

ij

ij → as ..→n (14)

Let the column terms be
kjjjj bbbb ,..., ; ; 321

 and krrr  ,..., r 321 ; where ir is the common

rations; b1j is the first term ‘a’ and Sm is the sum of finite series.

Let 1ir

 kjjj

n

ij

ij bbbxb +++== ...21..

()
..

1

1
x

r

ra
bS

nn

ij

ijm →
−
−

== (15)

() ()
..

1

2

12

2

12

2

1

2

1

1

1

xka
k

ka

b

bb

b

bb
a

b

b

b

b
a

n

ij

ij

n

ij

j

jj

n

j

jj

j

j

n

j

j

===











 −










 −

=












−












−

= −
 (16)

From equations (16), we observed that equation (13) holds; and hence, the sum of cost matrix in

Dynamic programming is the same as the cost coefficient in Geometric programming.

Lemma 2:

Optimal allocation policy is the same as the optimal primal decision variables.

Proof:

Let nS be the state variables; nx be the stage variables and 
nx be the optimal decision policy in

Dynamic programming; then, the optimal decision policy is obtained as follows:

==−= ndnn xxxnS ,1


−−− ==−−= 1,211)1(ndnn xxxnS

............ ===


−−−− ==−−−= 1,)1()1())1((xxxnnS dnnnnn

()
−

 = 11 ,...,, xxxx nnd (17)

Equation (17) is the optimal decision policy

7

Again;

Let nxxxx ,...,,, 321 be the primal decision variables in Geometric programming,


=



=
m

i

a

kj

ijx
C

xf

1

)(y
 (18)

where y* is the optimal weight of the dual decision variables; f*(x) is the optimal objective

function; Ckj is the cost coefficient and 
=

m

i

aijx
1

is the product of the primal decision variables and

aij is the exponent matrix; for the relationship in (18), see [9].

The Log linear transformation of equation (18) gives

Gln ln xaln xaln xa mmj22j11j =+++  (19)

where
kjC

xf)(y
G



=

Let ixlnw i = (20)

where wi are the transformed variables; from equation (20), taking the exponential of both sides,

we have

 == xxi)exp(w i (21)

Equation (21) is the optimal primal decision variables. We observed that equation (17) agrees

with equation (21), and hence,

 == xxx id (22)

Haven established that the optimal allocation policy is the same as the optimal primal decision

variables and that the sum of cost matrix in Dynamic programming is the same as the cost

coefficient in Geometric programming; see lemma 1 and 2, we can apply our developed method

to approximate dynamic programming problem.

4. Application of the method

We shall demonstrate the application of the developed method by the problem presented in Table

1. The Table presents cadres of lecturers and the level of students.

8

 Table 1: Cadre of Lecturers (Sn) and Levels of Students (xn)

Sn/xn

1 2 3 4

1

3 3 3 3

2

3 3 3 3

3

1 3 2 3

4

3 3 3 3

5

3 3 3 3

6

1 3 3 3

 Source: Amuji et al (2017)

The problem has six states and four stages. The respective costs are obtained as follows;

14
6

1

11 ==
=i

ixC
;

18
6

1

22 ==
=i

ixC
;

17
6

1

33 ==
=i

ixC
;

18
6

1

44 ==
=i

ixC

Formulating the problem, we have

4321 18x17x18xx14f(x) Minimize +++= (i)

Equation (i) is an unconstrained geometric programming problem. Reformulating the problem to

a constrained geometric programming problem, we have

4

1

31432

1

3

1

2

-1

14

-1

21 xx18xxxx17xx18xxx14f(x) Minimize
−−− +++= x (ii)

1xxxx(x)g Subject to 31

-1

421 += (iii)

1xxxx(x)g Subject to 3

-1

1

-1

4

-1

22 += (iv)

Equations (ii) – (iv) is in the form of equations (8) and (9)

Subject to normality and orthogonality conditions of equations (v & vi)

1y
0n

1j

0j =
= (v)

0ya
0

1

n

1j

0jij =
= =

m

i (vi)

Where 0jy = dual decision variables

Equations (v) and (vi) are put together as a non-homogenous system of linear equations

 BAy = (vii)

9

Applying equation (vii) on equations (ii) – (iv), we have the following system of linear equations

y1 – y2 + 0y3 + y4 + 0y5 + y6 + 0y7 – y8 = 0

-y1 + y2 + y3 + 0y4 + y5 + 0y6 - y7 + 0y8 = 0

0y1 – y2 + y3 - y4 + 0y5 + y6 + 0y7 + y8 = 0

y1 + 0y2 + y3 + y4 - y5 + 0y6 - y7 + 0y8 = 0

y1 + y2 + y3 + y4 = 1























=























































−−

−
−

1

0

0

0

0

00001111

01011101

10101-11-0

01010111-

1010101-1

8

7

6

5

4

3

2

1

y

y

y

y

y

y

y

y

Solving for yi, we have

 A= [1, -1, 0, 1, 0, 1, 0, -1; -1, 1, 1, 0,1 ,0, -1, 0; . . . ; 1, 1, 1, 1, 0, 0, 0, 0];

B= [0; 0; 0; 0; 1];

y* = Pinv(A)*B >0

0

0.1447

0.4474

0.0789

0.1974

0.0921

0.2237

0.3553

0.3289

 *y 

































=

The above values of y* are the optimal weights of the dual decision variables and they satisfy the

orthogonality and normality conditions.

We obtain the optimal objective function as follows;

10

() ()() () ()()**^** ***^***

*
...

*
*

*
*

*
)(*

87876565

*

8

8

*

3

3

*

2

2

*

1

1

8321

yyyyyyyy

y

C

y

C

y

C

y

C
yf

yyyy

++++





















































































=

()() ()() 2682.975921.0^5921.0 *2763.0^2763.0*

1447.0

1
*

4474.0

1
*

0789.0

1
*

19741.0

1
*

0921.0

18
*

2237.0

17
*

3553.0

18
*

3289.0

14
)(*

1447.04474.00789.019741.0

0921.02237.03553.03289.0

=















































































































































=yf

The above is the optimal objective function.

We proceed to calculate the primal decision variables as follows using equation (18);

4

1

2114)2682.97)(3289.0(xxx
−=

1

32

1

118)2682.97)(3553.0(
−−= xxx

43217)2682.97)(2237.0(xxx=

4

1

3118)2682.97)(0921.0(xxx
−=

1

42)2682.97)(1974.0(
−= xx

31)2682.97)(0789.0(xx=

1

4

1

2)2682.97)(4474.0(
−−= xx

3

1

1)2682.97)(1447.0(xx
−=

Optimal matrix is located at (Nr = N0), that is, the first four rows since it is a constrained

geometric programming problem.

Hence, taking the Ln of both sides, we have

421 lnlnln8264.0 xxx +−=

321 lnlnln6523.0 xxx −+−=

432 lnlnln2468.0 xxx ++=

11

431 lnlnln6978.0 xxx +−=−

ixlnlet w =

Hence, forming the matrix, we have

w1 -w2 + 0w3 + w4 = 0.8264

-w1 + w2 - w3 + 0w4 = 0.6523

0w1 + w2 + w3 + w4 = 0.2468

w1 + 0w2 - w3 + w4 = -0.6978



















−

=





































6978.0

2468.0

6823.0

8264.0

11-01

1110

01-11-

101-1

4

3

2

1

w

w

w

w

A = [1, -1, 0, 1; -1, 1, -1, 0; 0, 1, 1, 1; 1, 0, -1, 1];

B = [0.8264; 0.6823; 0.2468; -0.6978];

w* = inv(A)*B



















=

1.1110

0.02339

1.4268-

2.1765-

 *w

Applying equation (21), we have;



















=



















==

3

1

0.2

0.1

3.0374

1.0237

0.2401

0.1132

 exp(w*)*x i

These are the optimal weights of the primal decision variables.

5. Conclusion

We approximated dynamic programming by geometric programming, the major reason for this is

because of the curse of dimensionality that restricted the application of dynamic programming to

12

a small class of problems. In the original dynamic programming problem, there was no provision

for the cost of making decision but only the optimal allocation policy. In the proposed method,

not only that we were able to obtain the optimal allocation policy using our developed method

but the optimal cost involved in making such a decision. The sample problem was adapted from

Amuji et al (2017) and we were able to obtain the optimal allocation of courses to lecturers to be

(0.1, 0.2, 1, 3). This means that there should be pairing of course to different cadres of lecturers

in second and third year; then, in the fourth year, lecturers in each cadre should get one course

each and in the fifth year they should get 3 courses each). Note that from the original data, first

year was not considered. To take this decision, it will cost the policy makers the sum of N97.30.

The optimal primal decision variable (xi*) is the optimal allocation policy,. Finally, we stated

two lemmas, and through them, we have proved that the optimal allocation policy is the same as

the optimal primal decision variables and that the sum of cost matrix in Dynamic programming

is the same as the cost coefficient in Geometric programming.

Acknowledgement

We acknowledge the authors and researchers whose works we have used.

Declaration

Not applicable.

Funding

There is no external funding for this paper.

Conflicts of interest/Competing interests

The authors declare no conflict of interest

Availability of data and material

The data is available at Open Journal of Optimization, Vol.6 (2), 176 – 186.

Code availability

Not applicable

Authors' contributions

All authors contributed in the preparation of the paper and Literature Review. Harrison O. Amuji

contributed in the development of the method and its application. Harrison O. Amuji,

Chinemerem Igboanusi and G. O. Onukwube contributed in the conclusion of the paper and

writing the manuscript.

13

References

Amuji, H. O., Ugwuanyim, G. U., Ogbonna, C. J., Iwu, H. C. and Okechukwu, B. N. (2017). The

Usefulness of Dynamic Programming in Course Allocation in the Nigerian Universities.

Open Journal of Optimization, Vol.6 (2), 176 – 186.

Amuji, H. O., Ugwuanyim, G. U. and Nwosu, C. O. (2021). A solution to geometric

programming problems with negative degrees of difficulty. Advances and Applications

in Discrete Mathematics, 26 (2), 221 – 230.

Amuji, H. O; Ugwuowo, F. I; Chukwu, W. I. E and Uche, P. I. (2020). A Modified

 Generalized Inverse Method for Solving Geometric Programming Problems with

Extended Degrees of Difficulties. International Journal of Operational Research, 38(1),

19-30.

Avriel, M. and Williams, A. C. (1970). Complimentary Geometric Programming. SIAM Journal

on Applied Mathematics, 19(1), 125 – 141.

Ben-Israel, A. (1968). Geometric Programming - Theory and Application. Society for

 Industrial and Applied Mathematics, 10 (2), 235 – 236.

Boyd, S., Kim, S. J, Vandenberghe, L. and Hassibi, A. (2007). A Tutorial on Geometric

 Programming. Optimization in Engineering, 8, 67 –127.

De Farias, D. P. and Van-Roy, B. (2003). The Linear Programming Approach to Approximate

 Dynamic Programming. Operations Research, 51(6), 850-865.

Doraszelski, U. and Judd, K. L. (2012). Avoiding the Curse of Dimensionality in Dynamic

 Stochastic Games, University of Pennsylvania.

Esogbuo, A. O. and Marks, B. R. (1974). Non-Serial Dynamic Programming - A Survey.

 Operational Research Quarterly, 25(2), 253-265.

Fernandez-Villaverde, J., Nuno, G., Sorg-Langhans, G. and Vogler, M. (2020). Solving High-

Dimensional Dynamic Programming Problems using Deep Learning. University of

Pennsylvania.

Kilmer, R. L. (1978). Optimality and Separable Linear Programming: An Additional

 Reminder. Western Journal of Agricultural Economics, 3(1), 81 – 84.

Onyeagu, S. I. (2003). A First Course in Multivariate Statistical Analysis: MegaConcept,

Nigeria.

Richard, L. K. (1978). Optimality and Separable Linear Programming: An Additional

 Reminder. Western Journal of Agricultural Economics, 3(1), 81 – 84.

Kochenberger, G. A., Woolsey, R. E. D. and McCarl, B. A. (1973). On the Solution of

 Geometric Programs via Separable Programming. Operational Research Quarterly, 24(2),

 285–294.

Mazumder, M. and Jefferson, T. R. (1983). Maximum Likelihood Estimate for Multinomial

 Probabilities Via Geometric Programming. Biometrika Trust, 70(1), 257 – 261.

14

Rao, S. S. (2009). Engineering Optimization: Theory and Practice 4th ed: John Wiley & Sons Inc:

Canada.

