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Abstract: 

In this paper, we have developed a geometric programming approximation to dynamic 

programming. The method has additional advantages of providing the cost involved in decision 

making and also eliminates the course of dimensionality which restricted the application of 

dynamic programming to small problems. We also obtained the optimal dual decision variables. 

We stated two lemmas, and through them, we proved that the optimal allocation policy is the 

same as the optimal primal decision variables and that the sum of cost matrix in Dynamic 

programming is the same as the cost coefficient in Geometric programming. We applied the 

method on a problem and obtained the optimal cost for decision making to be N97.30 and 

optimal decision policy to be (0.1, 0.2, 1, 3). This policy means that lecturers should combine to 

teach courses in year two and year three but each lecturer handles one course in year four and 

three courses in year five.          

Keywords: Dynamic programming, Curse of dimensionality, Optimal allocation policy, 

Geometric programming, Optimal objective function 

1. Introduction 

Dynamic programming is a class of non-linear programming that makes use of optimality and 

recursive relationship to arrive at optimal decision. It has diverse applications, especially in those 

areas where most of other non-linear and linear optimization cannot be applied. It breaks a 

problem into stages with each stage having independent optimal decisions. Dynamic 

programming has variant models, depending on the nature of the problem to be solved, but in 

general it maintains a unique feature. Our interest in this paper is to provide solution to non 

applicability of dynamic programming in solving large class of problems.  The restriction is due 

to the curse of dimensionality. The curse of dimensionality is the problem caused by the 

exponential increase in volume associated with adding extra dimensions to Euclidean space. The 

curse of dimensionality occurs when the complexity increases rapidly which is caused by the 

increasing number of possible combinations of inputs. This problem can be solved by converting 

the high dimensional variables into lower dimensional variables without changing the specific 

information of the variables. For example, in the principal component analysis, the curse of 

dimensionality is reduced to the Principle component, where a reasonable high percentage of the 

variation is accounted for by the principal component. The general objectives of principle 

component analysis are data reduction and data interpretation, Onyeagu (2003). But principle 

component has a linear function while we are dealing with a non-linear programming.  
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For problems with equal quantification levels of the state variables, the amount of high-speed 

memory, the number of calculations and the amount of off-line memory required increase 

exponentially according to the number of state variables. The number of calculations has been 

shown also to increase exponentially according to the number of decision variables, Esogbuo and 

Marks (1974).  

2. Literature Review 

Researchers have tried to solve this problem of curse of dimensionality in different ways; for 

example De Farias and Van-Roy (2003) used linear programming to approach the problem of 

curse of dimensionality. They converted dynamic programming to linear programming. Their 

major reason was to avoid the curse of dimensionality in dynamic programming. Of course we 

know that in the history of linear programming via simplex method, there was an observed 

shortcoming in the storage space. It was argued against linear programming that it occupies a 

large memory spaces with some variables that are not needed. Similarly, approximating dynamic 

programming by linear programming will still not entirely solve the problem of occupying a 

large memory space. 

A similar restriction was observed in geometric programming but researchers such as 

Kochenberger et al (1973) transformed the non-linear programming problem to a linear 

programming using separable programming. Though the authors applied this approach to 

geometric programming problem to overcome the computational difficulties arising from the 

greater than zero degree of difficulty problem, the same approach can be applied to dynamic 

programming. They noted that the approximating linear programming problems were larger than 

the original dual problem but can easily be solved due to the efficiency of the Simplex method. 

However, Separable Programming has received some criticism; for example, Richard (1978) 

observed that the problem with Separable linear programming was the inability to obtain a global 

optimal solution. Separable Programming (SP) is a Linear Programming (LP) extension for 

handling certain types of non-linear functions within the framework of a general linear format. 

The author, Kilmer (1978) saw Separable Programming as a technique through which non-linear 

programming problems may be solved using the Simplex method. The point we are try to drive 

home here is that linear programming does not produce the global optimal solution and it also 

requires a large memory space. Hence, the dimensionality we are trying to avert is still not 

entirely eliminated. 

Other authors such as Doraszelski and Judd (2012) devised an approach to avoid the curse of 

dimensionality. They observed that Discrete-time stochastic games with a finite number of states 

have been widely applied to study the strategic interactions among players in dynamic 

environments. They noted that the games suffer from a curse of dimensionality when the cost of 

computing players' expectations over all possible future states increases exponentially in the 

number of state variables. They explore the alternative of continuous-time stochastic games with 

a finite number of states and argued that continuous time may have substantial advantages. They 

observed that under widely used laws of motion, continuous time avoids the curse of 

dimensionality in computing expectations, thereby speeding up the computations by orders of 

magnitude in games with more than a few state variables.  
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On the other hand, Fernandez-Villaverde et al (2020) resorted to deep learning, which they found 

useful in solving the problem of curse of dimensionality. They were of the opinion that for 

researchers to answer a wide range of important economic questions, they must solve high 

dimensional dynamic programming problems. To break the curse of dimensionality associated 

with these high-dimensional dynamic programming problems, the authors proposed a deep-

learning algorithm that efficiently computes a global solution to this class of problems. This 

method is by no means easier in finding solution to the problem of curse of dimensionality. 

 

On the other hand, Geometric Programming (GP) on its own is a member of non-linear 

programming problem with a special feature; that is, its objective function and constraint 

equation(s) are both posynomials, Amuji et al (2020). Posynomial is a polynomial with positive 

coefficients. The constraint equation(s) are bounded above by unity to ensures that the function 

attain global optimal solution; see Avriel and Williams (1970) and Ojha and Das (2010). The 

standard form of geometric programming is that its objective function must be in the 

minimization form and the constraint equation must be bounded above by unity for constrained 

geometric programming problems; see Boyd et al (2007) and Mazumder and Jefferson (1983). It 

was developed for solving nonlinear optimization problems, and was initially developed to 

model engineering and economic problems, Ben-Israel (1968), but was later extended to model 

problems in mathematics, statistics, operations research and other numerous disciplines, Amuji et 

al (2020). The pioneers of geometric programming having carefully observed the nature of 

polynomial concluded that it could be used to model several physical and engineering problems 

Rao (2009). But instead of using the generalized polynomials, they restricted the coefficients of 

the polynomials and its variables to values greater than zero. This restricted polynomial is called 

monomial if it has only one term and posynomial (that is, positive polynomial) when the 

numbers of terms are more than one, [9]. It is not always easy to formulate geometric 

(Posynomial) programming problem, but once formulated, the solution is easy, Mazumder and 

Jefferson (2007). 

It will be most appreciated to approximate a non-linear programming by another non-linear 

programming. Hence we propose a geometric programming approximation to dynamic 

programming problem. The obvious advantage of this approach is not only to give dynamic 

programming a new look but to eliminate completely the curse of dimensionality associated with 

dynamic programming problem, establish cost for making decisions, establish that the optimal 

primal decision variables is the same as the optimal decision policy, attains global optimal 

solution without going through different stages of the problem and to solve large class of 

dynamic programming problems. 

 

3. Methodology 

3. 1. Development of the Technique 

Our interest in this work is to find a new technique for dealing with curse of dimensionality. In 

the course of our research, we observed that dynamic programming can be transformed into 

geometric programming and the solution approximated via geometric programming. This 
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proposed method is novel and will help in the extension of dynamic programming to solve large 

class of problems.  

Dynamic programming model is of the form; 

)()(),(
*

1 iiiiiiii xSfxRxSf −+= +  ;   see Amuji et al (2017)                                        (1) 

From (1), let Si be the state variables, xi be the stage variables; ),( 1xSf ii be a total investment; 

)( ii xR be the previous investment and )(
*

1 nnn xSf −+ be the current investment.  

We write the model in equation (1) as: 

 )(*)(max),( 1 iiiii
x

ii xRfxRxRf
i

−+= +                                                                 (2) 

From the model in equation (2), we observed that the problem is separable in the stage variables, 

xi. Also referring to the properties of geometric programming, we noted that geometric 

programming is closed under addition, multiplication and division, see Boyd et al (2007). Hence, 

we can write equation (2) as 

     )(*max)(max),( 1 iii
x

ii
x

ii xRfxRxRf
ii

−+= +                                                       (3) 

At optimality, the minimum of the primal geometric programming problem is equal to the 

maximum of the dual geometric programming problem, and maximization of a dual problem is 

the same as minimization of the inverse of the problem (i,e, the prima problem), see Amuji et al 

(2021), hence we have; 

   )(*

1

)(

1
),( 

1 iiiii

ii
xRfxR

xRfMin
−

+=
+

                                                             (4) 

We noticed that xi has the same dimension as Si, and resulting into a square matrix of order n, 

and hence, a geometric programming problem with zero degree of difficulty, see Amuji et al 

(2020). From equation (4), we observed that each of the terms contains both state and stage 

variables with associated cost coefficient; hence, we can write equation (4) as 


==

=
m

i

a

i

n

j

j
ijxczfMin

11

)(                                                                                          (5) 

Where zxR nn =),( , cj is the cost coefficient associated with each term, n is the number of terms, 

m is the number of variables, xi is the primal decision variables and aij is the exponent matrix.  

Equation (5) is an unconstrained geometric programming problem. Splitting equation (5) into a 

constrained geometric programming problem, we have 


=

+

===

+=
0

0

00

0

0

1

1

1

0

11

00 )( 
m

i

a

i

n

j

j

m

i

a

i

n

j

j
ijij xcxczfMin                                                             (6) 
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Subject to   1)(
11

= 
==

k

ijk

m

i

a

i

n

j

kjk xcxg                                                                     (7) 

Re-writing Equation (6 and 7) in a standard geometric programming form, we have 


==

=
0

0

0

11

00 )( 
m

i

a

i

n

j

j
ijxcxfMin                                                                                      (8) 

Subject to   1)(
11

= 
==

k

ijk

m

i

a

i

n

j

kjk xcxg                                                                     (9) 

Equations (8) and (9) are the constrained geometric programming models; where n0 = number of 

terms in the objective; f0(x) = objective function; gk(x) = constraint equation; C0j = cost 

coefficient; m0 = number of variables; aoij  = exponent matrix, all in the objective function. Then, 

xi = primal decision variables;  nk = number of terms in the constraint equation(s); Ck = cost 

coefficient; mk = number of variables; akij  = exponent matrix all in the constraint equation(s); see 

see Amuji et al (2020).  

Lemma 1: 

The sum of cost matrix in Dynamic programming is the same as the cost coefficients in 

Geometric programming. 

Proof: 

Let 
ijjj xxx  ., . . ,, 21  be the column entries of the cost matrix in dynamic programming 

Hence,  

ij

n

ij

ij bx =                                                                                                                 (10) 

But ..xb
n

ij

ij =                                                                                                          (11) 

Where 
ijb  is the column sum and ..x  is the grand sum of the entire cost columns and  

kjjjkj cccC +++= ...21                                                                                                (12) 

where 
kjC is the total sum of the cost coefficients of geometric programming and ckj is the sub 

cost coefficients; this implies that  

kjCx  ..=  and 
kjij cb =                                                                                                 (13) 

Therefore:   
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..xb
n

ij

ij → as ..→n                                                                                              (14) 

Let the column terms be 
kjjjj bbbb  ,...,  ; ; 321

 and krrr   ,..., r  321 ; where ir  is the common 

rations; b1j is the first term ‘a’ and Sm is the sum of finite series. 

Let 1ir  

 kjjj

n

ij

ij bbbxb +++== ...21..  

( )
..

1

1
x

r

ra
bS

nn

ij

ijm →
−
−

==                                                                                    (15) 

     

( ) ( )
..

1

2

12

2

12

2

1

2

1

1

1

xka
k

ka

b

bb

b

bb
a

b

b

b

b
a

n

ij

ij

n

ij

j

jj

n

j

jj

j

j

n

j

j

===











 −










 −

=












−












−

= −
                                    (16)                                                         

From equations (16), we observed that equation (13) holds; and hence, the sum of cost matrix in 

Dynamic programming is the same as the cost coefficient in Geometric programming. 

Lemma 2: 

Optimal allocation policy is the same as the optimal primal decision variables. 

Proof: 

Let nS  be the state variables; nx  be the stage variables and 
nx  be the optimal decision policy in 

Dynamic programming; then, the optimal decision policy is obtained as follows: 

==−= ndnn xxxnS ,1  


−−− ==−−= 1,211 )1( ndnn xxxnS  

............ ===  


−−−− ==−−−= 1,)1()1( ))1(( xxxnnS dnnnnn  

( )
−

 = 11 ,...,, xxxx nnd                                                                                             (17) 

Equation (17) is the optimal decision policy 
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Again; 

Let nxxxx ,...,,, 321  be the primal decision variables in Geometric programming,  


=



=
m

i

a

kj

ijx
C

xf

1

)(y
                                                                                                   (18)    

where y* is the optimal weight of the dual decision variables; f*(x) is the optimal objective 

function; Ckj is the cost coefficient and 
=

m

i

aijx
1

is the  product of the primal decision variables and 

aij is the exponent matrix; for the relationship in (18), see [9].  

The Log linear transformation of equation (18) gives 

Gln ln xaln xaln xa mmj22j11j =+++                                                                   (19) 

where  
kjC

xf )(y
G



=  

Let ixlnw i =                                                                                                            (20) 

where wi are the transformed variables; from equation (20), taking the exponential of both sides, 

we have  

 == xxi)exp(w i                                                                                                    (21)  

Equation (21) is the optimal primal decision variables. We observed that equation (17) agrees 

with equation (21), and hence,                                      

 == xxx id                                                                                                          (22) 

Haven established that the optimal allocation policy is the same as the optimal primal decision 

variables and that the sum of cost matrix in Dynamic programming is the same as the cost 

coefficient in Geometric programming; see lemma 1 and 2, we can apply our developed method 

to approximate dynamic programming problem. 

4. Application of the method 

We shall demonstrate the application of the developed method by the problem presented in Table 

1. The Table presents cadres of lecturers and the level of students. 
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     Table 1: Cadre of Lecturers (Sn) and Levels of Students (xn) 

Sn/xn 
 

1 2 3 4 

1 
 

3 3 3 3 

2 
 

3 3 3 3 

3 
 

1 3 2 3 

4 
 

3 3 3 3 

5 
 

3 3 3 3 

6 
 

1 3 3 3 

                                                  Source: Amuji et al (2017) 

The problem has six states and four stages. The respective costs are obtained as follows;  

14
6

1

11 ==
=i

ixC
; 

18
6

1

22 ==
=i

ixC
; 

17
6

1

33 ==
=i

ixC
; 

18
6

1

44 ==
=i

ixC
 

Formulating the problem, we have 

4321 18x17x18xx14f(x) Minimize +++=                                                   (i) 

Equation (i) is an unconstrained geometric programming problem. Reformulating the problem to 

a constrained geometric programming problem, we have 

4

1

31432

1

3

1

2

-1

14

-1

21 xx18xxxx17xx18xxx14f(x) Minimize
−−− +++= x        (ii) 

1xxxx(x)g  Subject to 31

-1

421 +=                                                               (iii) 

1xxxx(x)g  Subject to 3

-1

1

-1

4

-1

22 +=                                                           (iv) 

Equations (ii) – (iv) is in the form of equations (8) and (9) 

Subject to normality and orthogonality conditions of equations (v & vi) 

1y
0n

1j

0j =
=                                                                                                    (v) 

 

0ya
0

1

n

1j

0jij =
= =

m

i                                                                                         (vi)                                                                                                    

Where 0jy  = dual decision variables 

Equations (v) and (vi) are put together as a non-homogenous system of linear equations 

 BAy =                                                                                                    (vii) 
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Applying equation (vii) on equations (ii) – (iv), we have the following system of linear equations 

y1 – y2 + 0y3 + y4 + 0y5 + y6 + 0y7 – y8 = 0  

-y1 + y2 + y3 + 0y4 + y5 + 0y6 - y7 + 0y8 = 0  

0y1 – y2 + y3 - y4 + 0y5 + y6 + 0y7 + y8 = 0  

y1 + 0y2 + y3 + y4 - y5 + 0y6 - y7 + 0y8 = 0  

y1 + y2 + y3 + y4 = 1 























=























































−−

−
−

1

0

0

0

0

00001111

01011101

10101-11-0

01010111-

1010101-1

8

7

6

5

4

3

2

1

y

y

y

y

y

y

y

y

 

Solving for yi, we have 

 A= [1, -1, 0, 1, 0, 1, 0, -1; -1, 1, 1, 0,1 ,0, -1, 0; . . . ; 1, 1, 1, 1, 0, 0, 0, 0]; 

B= [0; 0; 0; 0; 1]; 

y* = Pinv(A)*B >0 

0

0.1447

0.4474

0.0789

0.1974

0.0921

0.2237

0.3553

0.3289

  *y 

































=  

The above values of y* are the optimal weights of the dual decision variables and they satisfy the 

orthogonality and normality conditions. 

We obtain the optimal objective function as follows; 
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( ) ( )( ) ( ) ( )( )**^** ***^***               

*
*...*

*
*

*
*

*
)(*

87876565

*

8

8

*

3

3

*

2

2

*

1

1

8321

yyyyyyyy

y

C

y

C

y

C

y

C
yf

yyyy

++++





















































































=

 

( )( ) ( )( ) 2682.975921.0^5921.0 *2763.0^2763.0*                

1447.0

1
*

4474.0

1
*

0789.0

1
*

19741.0

1
*               

0921.0

18
*

2237.0

17
*

3553.0

18
*

3289.0

14
)(*

1447.04474.00789.019741.0

0921.02237.03553.03289.0

=















































































































































=yf

 

The above is the optimal objective function.  

We proceed to calculate the primal decision variables as follows using equation (18); 

4

1

2114)2682.97)(3289.0( xxx
−=  

1

32

1

118)2682.97)(3553.0(
−−= xxx  

43217)2682.97)(2237.0( xxx=  

4

1

3118)2682.97)(0921.0( xxx
−=  

1

42)2682.97)(1974.0(
−= xx  

31)2682.97)(0789.0( xx=  

1

4

1

2)2682.97)(4474.0(
−−= xx  

3

1

1)2682.97)(1447.0( xx
−=  

Optimal matrix is located at (Nr = N0), that is, the first four rows since it is a constrained 

geometric programming problem. 

Hence, taking the Ln of both sides, we have 

421 lnlnln8264.0 xxx +−=  

321 lnlnln6523.0 xxx −+−=  

432 lnlnln2468.0 xxx ++=  
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431 lnlnln6978.0 xxx +−=−
          

 

ixlnlet w =
     

  

Hence, forming the matrix, we have 

w1 -w2 + 0w3 + w4 = 0.8264 

-w1 + w2 - w3 + 0w4 = 0.6523 

0w1 + w2 + w3 + w4 = 0.2468 

w1 + 0w2 - w3 + w4 = -0.6978 



















−

=





































6978.0

2468.0

6823.0

8264.0

11-01

1110

01-11-

101-1

4

3

2

1

w

w

w

w

 

A = [1, -1, 0, 1; -1, 1, -1, 0; 0, 1, 1, 1; 1, 0, -1, 1]; 

B = [0.8264; 0.6823; 0.2468; -0.6978]; 

w* = inv(A)*B 



















=

1.1110

0.02339

1.4268-

2.1765-

 *w  

Applying equation (21), we have; 



















=



















==

3

1

0.2

0.1

3.0374

1.0237

0.2401

0.1132

 exp(w*)*x i

 

These are the optimal weights of the primal decision variables. 

 

5. Conclusion 

We approximated dynamic programming by geometric programming, the major reason for this is 

because of the curse of dimensionality that restricted the application of dynamic programming to 
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a small class of problems. In the original dynamic programming problem, there was no provision 

for the cost of making decision but only the optimal allocation policy. In the proposed method, 

not only that we were able to obtain the optimal allocation policy using our developed method 

but the optimal cost involved in making such a decision. The sample problem was adapted from 

Amuji et al (2017) and we were able to obtain the optimal allocation of courses to lecturers to be 

(0.1, 0.2, 1, 3). This means that there should be pairing of course to different cadres of lecturers 

in second and third year; then, in the fourth year, lecturers in each cadre should get one course 

each and in the fifth year they should get 3 courses each). Note that from the original data, first 

year was not considered. To take this decision, it will cost the policy makers the sum of N97.30. 

The optimal primal decision variable (xi*) is the optimal allocation policy,. Finally, we stated 

two lemmas, and through them, we have proved that the optimal allocation policy is the same as 

the optimal primal decision variables and that the sum of cost matrix in Dynamic programming 

is the same as the cost coefficient in Geometric programming.   
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