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Abstract: The Internet of Things (IoT) has rapidly grown recently, and mobile devices (MDs) have 

encountered widespread usage. All of these cause an increase in the demand for more powerful computing 

resources. Meanwhile, a new concept called mobile edge computing (MEC) was introduced as a 

promising technology to access powerful computing resources closer to the user side for a quick and 

effective response, especially for time-intensive applications. Task offloading has emerged as a solution 

to allocate resources among computing resources of smart devices or computational resources available 

in MEC. This study presents a new binary quantum approach based on an arithmetic optimization 

algorithm (BQAOA) for computational tasks offloading decisions on MDs with low complexity and 

guaranteed convergence. However, since task offloading is an NP-hard problem, there is a need to use 

methods that provide the optimal possible solution for various quality criteria, including response time 

and energy consumption. Indeed, this is where the advantages of arithmetic optimization algorithms 

(AOA)  and quantum computing have been used to improve the performance of MDs. This paper 

introduces a 2-tier architecture from the user to the cloud computing server-side. Also, a Markov model 

is proposed to compute the average network bandwidth in the offloading problem. The proposed BQAOA 

is compared with the best state-of-the-art algorithms in heuristic and meta-heuristic fields in different 

scenarios. The simulation results showed 12.5%, 12%, and 26% improvement in energy consumption, 

makespan, and Energy SLA Violations (ESV) optimization parameters, respectively. 
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1. Introduction 

According to one definition, the IoT is a collection of interconnected devices, from simple sensors to smartphones and 

wearable things. Devices on private or closed networks may interact with one another or the outside world using the 

IoT. IoT empowers a more interconnected world since it allows gadgets to interact inside their own silos and across 

other networking forms. In this scenario, as more and more sensors and devices are networked through IoT approaches, 

the data generated by these sensors and devices will become enormous, necessitating further processing [1]. Moreover, 

because the bulk of IoT devices has limited power, it is vital to balance power usage by allocating computation tasks 

to devices with more sizable computing capability. It is also possible to decrease transmission time and power 

consumption expenses by processing data in computing nodes most distant from the consumer [2-4]. 

It may sound necessary to offload apps needing extensive processing resources to a traditional centralized cloud to 

improve the battery life of the MDs. Although this alternative is more cost-effective, it results in a considerable 

execution delay due to the time spent moving apps to and from the cloud and the time spent on cloud computing. 

Offloading is unsuitable for real-time applications because of its latency. A newly developed concept known as MEC 

has arrived to deal with the delay issue. The MEC offers a variety of resources. Here, computation and storage 

resources are brought to the edge of the mobile network. This new system will allow for the execution of the most 

demanding apps on the MDs while adhering to stringent time-sensitive criteria [5]. MEC uses a smaller portion of the 

network for its traffic. Thus, it can reduce network congestion. Also, MEC can be used in intelligent manufacturing 

for local data analysis and storage and offers more stable connections [6]. After all, there is less competition for the 

link to the edge node. Due to the limitation of computational resources on edge and the possibility of implementing 

the user’s favorite computational application with minimum energy consumption and quick processing time, 
increasing performance requires several policies [7]. One such policy is offloading to utilize the computation concept. 

As developing recent applications require excessive computing power, there is a need to offload computational tasks 

from intelligent devices to the edge layers and ultimately to cloud servers to increase the processing power of IoT 

devices. This offloading, by nature, equal the practical implementation of application and efficient energy 

consumption on the user side [8]. As a result, applications with high processing requirements can run on the user-side 
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edge computing by placing IT resources closer to the end-user and outside a central data center or cloud environment. 

MEC and 5G are tied together because the small cell deployments for urban environments are planned to have 

computing capabilities [9]. 

Offloading solutions should address some issues to be effective in the MEC setting. The first issue relates to the 

wireless channels, intermittent cloudlets, and cloud servers used for fault tolerance in offloading. As a result of these 

mechanisms, handling offloading failures is critical. The second issue is protecting user data during transmission and 

at the destination nodes not under the users’ control because of its transference to remote cloud servers. Third, since 
the offloading process might change depending on a user’s location and context, an MD should evaluate and infer the 

context information. Even when utilizing dynamic decision-making programs, the tasks that may be delegated are 

identified during the development process. However, due to the high analysis costs, partitioning is undesirable during 

program execution. 

Offloading strategies can be categorized into two groups: 

• Complete offloading: When a program is offloaded entirely, it goes to an offloading server rather than staying 

on an MD. However, if the program’s size is more than the combined size of its components, it may result in 

significant network overhead. 

• Partial offloading: A section of a program or workflow will be offloaded when using partial offloading. The 

sMEC server interaction overhead should be well-handled since it might offer a runtime overhead for a client 

program. 

In various cases, offloading systems can also use 3G, 4G, and 5G cellular networks. Additionally, channel availability 

might be continuous or sporadic. Power management in offloading methods might be static, dynamic, or renewable. 

Using techniques like DVFS, dynamic power management offloading systems seek to minimize energy usage on both 

the MDs and destination sides. Although minimizing energy usage, the MDs or destination nodes will still fulfill QoS 

standards. Offloading solutions may also explore using renewable energy at the destination sites, such as cloud DCs. 

MDs can also use cloudlets, fog computing, or MCC to offload queries. The choice to unload might be taken locally 

or globally. 

Computational offloading is an NP-hard problem because of the complexity of resource allocation and discrete 

offloading decisions [10-12]. Many offloading schemes for MEC have been proposed using different methods like 

stochastic or meta-heuristic algorithms to deal with the offloading problems [13-15]. A meta-heuristic algorithmic 

framework is a high-level, problem-independent algorithmic framework that offers a collection of principles or 

methods for developing heuristic optimization algorithms. Some examples of meta-heuristic algorithms include 

genetic/evolutionary algorithms [16], Tabu search [17], simulated annealing [18], variable neighborhood search[ 19], 

ant colony optimization [20], among others. However, many others exist as well. In general, meta-heuristic algorithms 

may be divided into the following categories [21]: 

• Local search, 

• Constructive, 

• Population-based, and 

• Hybrid. 

In this paper, a new meta-heuristic method called the AOA is utilized. This method, among others, takes advantage of 

the distribution behavior of the four principal arithmetic operators in mathematics: multiplication (M), division (D), 

subtraction (S), and addition (A). To conduct the optimization procedures in extensive search areas, AOA is 

theoretically modeled and implemented in a computer program [22]. 

This paper presented BQAOA, a new binary quantum-based AOA algorithm to deal with offloading problems. The 

BQAOA is based on AOA Approach to find the best method using quantum algorithms exploiting quantum 

entanglement; the offloading decision problem can be solved more efficiently than on classical peers. The rationale 

for the binary version of BQAOA is that the final solution is a matrix problem of zeros and ones. Then, BQAOA can 

solve NP problems with considerable time complexity to increase convergence and reduce constraints. Furthermore, 

the resulting BQAOA approach’s energy consumption was reduced while maintaining the performance. Next, the 
proposed BQAOA algorithm is utilized to optimize solutions with acceptable QoS parameters. Finally, the proposed 

algorithm is compared with other state-of-the-art algorithms using various metrics to show its superiority.  

The main contributions of this paper are as follows: 

• A binary version is provided for the AOA algorithm to solve the offloading problem in MEC Systems within 

the first stage; a solution had to be proposed for the AOA algorithm to work discretely. The Sigmund function 

has been used in this research to transform the problem space of the AOA algorithm from continuous to 

discrete.  
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• The Quantum strategy was embedded in BQAOA to select the appropriate solution from the problem space. 

This study attempted to provide a quantum version of the binary AOA algorithm using quantum 

computational theory to enhance the overall performance of the binary AOA algorithm. The purpose was to 

converge binary AOA quicker and help escape local optimization, and ultimately the proposed BQAOA 

algorithm was named. 

• Balanced and efficiently distributed the processing load at exclusive processing levels. In this research, 

through the BQAOA algorithm, the processing load has been attempted to distribute the tasks in a balanced 

way at different levels: the lowest level of MDs and the best level of effective mMEC servers. The proposed 

solution attempts to distribute the tasks the usage of the using the BQAOA algorithm such that the total 

energy consumed in the mobile layer of devices, sBEC servers, and mMEC servers is minimal. It additionally 

attempts to keep the makespan in optimal condition. 

• Since the bandwidth is variable between IoT and MEC, a Markov model is considered to achieve an optimal 

average bandwidth. This model can prevent over-estimating the network bandwidth and improves the 

effectiveness of the proposed scheme. 

• A comprehensive set of simulations are conducted to evaluate the performance of the proposed scheme 

regarding different metrics.  

This article is organized as follows:  The previous  works are described in section 2. In Section 3, the AOA algorithm 

is presented. In Section 4, the problem with our proposed binary quantum AOA-based algorithm is formulated to 

increase the performance of MDs and decrease the completion time and the total energy consumption. Section 5 

describes the BQAOA algorithm. The proposed offloading scheme is described in section 6. The performance 

evaluation and the numerical results are presented in Section 7. Finally, Section 8 concludes the paper.  

 

 

2. Related works 

In [23], Sun et al. introduced a resource scheduling method based on a non-dominated sorting genetic algorithm 

(NSGA-II). The scheduling model has two-level performing scheduling among fog clusters as first-level performing 

scheduling in the same fog cluster during the fog nodes. This approach helps service latency and improves stability.  

Also, in[24], with emphasizing this fact that processing time is one of the vital factors in the IoT devices as QoS 

parameters and with relying on the advantage of fog computing, which is one of the suitable options to solve the 

scheduling problem in the IoT, two meta-heuristic algorithms, ACO and PSO are proposed to solve the problem of 

scheduling computational tasks to be able to reduce response time and achieve a significant improvement in load 

balancing. This approach helps improvement in response times and effective balances. 

In [5], Bitam et al. presented a task scheduling scheme for fog computing that achieves less execution time and meets 

the service computing needs of mobile users. It applies an optimization algorithm based on the bees life algorithm and 

can reduce CPU execution time and the total amount of memory. This approach helps in execution time and allocated 

memory. In [25], Du et al. provided an exploration on the interaction of cloud and fog in mobile computing to improve 

the issue of loading services for smart devices that have inherently computational tasks. In fact, by proposing a mixed 

cloud/fog model that can take advantage of both loading decisions and the issue of resource allocation in cloud 

computing. A low-complexity sub-optimal algorithm is proposed where the semi-definite relaxation and 

randomization implement offloading decisions, and also fractional programming theory and Lagrangian dual 

decomposition obtain resource allocation. The benefit of this approach is cost conversation. 

In [26], Abro et al. introduced a solution to deal with task scheduling in fog computation. The goal is to place local 

and remote tasks on VMs in a fog environment, so the total energy consumption is combined with local energy fog 

resources energy consumption. The joint energy-efficient task assignment (JEETA) is proposed on a new fog cloud 

architecture that performs a novel algorithm, the dynamic application-partitioning algorithm (DAPTS), to decide the 

offloading decision for achieving better results in energy consumption. This approach helps in remote task 

performance and QoS. In [27], Gharehpasha et al. presented a new method based on a hybrid discrete multi-object 

whale algorithm with a combination of chaotic functions to optimal offload decision in the cloud environment. This 

study helps in scaling decisions. 

In [28], Hazra et al. introduced a vision that the advent of MEC has reduced the latency of cloud services, as well as 

the emergence of a term called cloudlet, which is a small scale of cloud infrastructure in the edge of the cloud 

environment and the end-users side. The authors also refer that processing cloudlets on access points is costly, and 

even the service provider may not be able to guarantee a delayed latency. So with this point, out that the problem is 

NP-hard, a new method based on the capability of Mixed Integer Linear Programming (MILP) and Software-Defined 

Network (SDN)-based framework and a bender decomposition-based algorithm are proposed. This study helps in 

energy consumption and acceptance ratio. 
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Table 1.The properties of the offloading methods 

Ref Algorithm/method 

Environment 

Simulation Metrics Shortcoming 
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[23] Genetic Algorithm    
Service latency, 

stability 
It is not economical in terms of cost 

[24] Ant Colony, PSO    
Response time, 

Balance 

It is not economical in terms of cost and tasks 

dependencies 

[5] bees swarm    
Execution time, 

memory. 
Does not support dynamic jobs 

[25] CORA, BCRA    Energy, Delay The access period is not considered 

[26] 
A dynamic application 

partitioning algorithm 
   QoS, Energy 

It is not economical in terms of response time 

and energy 

[28] 
Benders 

decomposition-based 
   Energy consumption The queuing is not considered  

[29] HOM    Total latency It is not economical in terms of cost 

[30] The heuristic approach    Energy consumption It is not economical in terms of time 

[27] 
A machine learning-

based 
   Time, CPU The accuracy is low 

[31] The heuristic approach    Overhead It is not considered hierarchy 

[32] JROPSO algorithm    Time, energy It is not compared to known methods 

[33] greedy hill-climbing    Energy, time The scalability is not considered  

[34] 

MinHop, METComm, 

MCTComm, 

MinMinComm, 

MaxMinComm, 

SufferageComm 

   
Makespan,  Waiting 

time, 
It is not economical in terms of energy 

[35] 
Particle Swarm 

Optimization 
   Time The live migration is not considered  

[36] 
Gray wolf 

optimization 
   Energy The probability and real-time are not considered  

[37] Ant-Bee Algorithm    Energy Online scheduling is not considered.  

[38] (ACS-JS)    
Speed, Bandwidth, 

Execution time 
The workflow is not considered   

[22] ACO & CMSACO    Time, Energy Only compared with the static algorithms. 

[39] GKS algorithm    
Energy, Execution 

cost 
It is not economical in terms of cost 

 

In [29], XUet al. provided an offloading method for edge computing to process and complete the tasks at the cloud 

edge without sending them to the cloud core. This scheme applies deep learning and tries to reduce latency. This 

approach’s advantage is to shorten the time delay. The offloading approach presented in [30] provides a hybrid model 

of multiple servers MECs and multiple MDs. Tasks can be run on either MDs or one of the MECs servers. This scheme 

tries to allocate tasks optimally and reduces their completion time. Also, a distributed heuristic algorithm to decide if 

the task is executed in the same MD and the processing power is fast, so a small number of tasks will be offloaded. 

Also, with the hope that the speed of communication links in 5G is getting higher, it can play an essential role in the 

decision to transfer tasks from MD to MECs. The benefit of this study is random probabilities. 

In [31, 40], Pham et al. presented a framework for the allocation of computational and communication resources. The 

goal is to reduce computational overhead on multiple MEC Het-Net servers. A proposed method that has two parts is 
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the proposed computational loading decision and resource allocation connection. Two algorithms are considered. A 

new method to find placement transfer power for users is based on the duality method and the intercellular 

approximation method. The goal is to find the best processing resources for optimization. The advantage is the small 

optimality gap. The offloading scheme presented in [32] applies the PSO algorithm for making optimal decisions 

about offloading end-user applications in a multi-architecture, using multiple MEC servers in a 5G network. In the 

proposed method, an attempt has been made to optimize the energy consumption of end-users. In this case, if the tasks 

are executable on the end-user side, the task is processed on the end-user side. Otherwise, it is sent to the nearest server 

close to the user range. If a large processing volume is required, the task is sent to the cloud core. The advantage is 

high performance. 

Enzai et al. [33],provided a new multi-site problem for mobile computation offloading, and a scheduler based on 

greedy hill-climbing is proposed for computational tasks both in cloud providers and end-users with satisfying energy 

consumption, task completion time, and charged prices. This study helps in good quality and achieving to a reasonable 

time. In [34], Li et al. introduced a decision problem in mobile ad hoc cloud-based networks on a set of combination 

batch and online scheduling heuristics methods. The idea is to find the best, more powerful cloudlet nodes. The six 

heuristics are proposed to respect the user and system parameters, such as load balancing and waiting time. The 

advantage is high performance in the online model. Guan et al. [35],  presented a proactive cloudlet-based hybrid 

offloading model based on PSO to serve the energy and execution time efficiency. The time series-based prediction 

components are integrated to achieve proactive resource allocation.  

In [36, 41], Veerappa et al. provided a multi-objective heterogeneous framework to increase the energy consumption 

of MDs. A new meta-heuristic algorithm task offloading method based on Gray Wolf Optimization (GWO) is 

described for offloading optimization problem. It reduces the cost of energy consumption between MDs and cloud 

servers. The study helps in the execution of energy in an efficient mode. The advantages are energy cost and high 

accuracy. In [38], Science et al. presented a queue-based and hybrid Ant Colony-Artificial Bee Colony Optimization 

(Ant-Bee) algorithm for task offloading in a Mobile Cloud Computing. The major purpose is to find an accurate place 

in the cloud or cloudlet. The combination of ACO with the ‘Queue Decision Generator’ implements the optimal 
assignment of a task. The advantages are high performance in completion time and power consumption. 

Arunet al. [22] presented new research in mobile computing offloading for choose computing services such as 

computing time, energy consumption, and cost of using computing services for users' mobile tasks. A heuristic 

algorithm known as the accelerated cuckoo search algorithm is proposed to share resources to access high transfer 

rates in mobile processing computing. The study helps in multi-mode cloudlet performance. The [41], Guo provided 

a thesis on mobile cloud computing with the premise that mobile cloud computing is a predictive paradigm to address 

the growing demands of mobile users as users' processing needs increase as well as the number of sensitive 

computational applications. The delay is increasing, then the solution ILP and an efficient heuristic algorithm are 

proposed for offloading optimization problem. Experimental results have shown that the proposed method has 

achieved acceptable profitability in scalable problems. In paper [37], the Cooperative Multi-tasks scheduling 

algorithm based on Ant Colony Optimization algorithm (CMSACO) is proposed to solve the computational-intensive 

task for the offloading problem. This study helps in energy consumption, load balance, and channel state. 

In [39], Wang et al. presented two sub-problems of optimization based on stochastic optimization methods to reduce 

the energy consumption of mobile users. Online task offloading is used to solve the problem, and the frequency scaling 

for Energy Efficiency (TOFFEE) algorithm is proposed to solve the second sub-problem. To achieve a reduction in 

power consumption, the authors have used both task allocation and CPU-cycle frequency. The advantage is high 

performance in energy consumption. Jeong et al.[42], presented that computation-intensive deep neural network 

(DNN) on MDs, so DNN requests are sent to the cloud core. Given that this is costly and time-consuming, trying to 

reduce time using the proposed Incremental Offloading of Neural Network (IONN) method based on the partitioning 

DNN offloading method. The IONN divides the user's DNN model into some partitions and then uploads them one 

by one. A graph-based algorithm is also used to select the best partition. This study helps in query performance and 

energy consumption. 

 

3. The arithmetic optimization algorithm 

In this study, a new meta-heuristic method called AOA is used that utilizes the main arithmetic operators in 

mathematics[22]. These arithmetic operators are: 

• Multiplication (M “ × ”),  
• Division (D “ ÷ ”), 
• Subtraction (S “ - ”) 
• Addition (A “ + ”)) 
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Considering the population-based algorithms processes begin with a set of stochastic candidate solutions, the AOA 

starts the optimization process generating initial stochastic solutions in a matrix [43]. In each iteration, the best 

candidate solution or early optimum so far is considered. This algorithm consists of two phases based on the 

population-based optimization method process. Therefore, this algorithm uses two phases: 

• exploration  

• exploitation 

The exploration phase is used to avoid local solutions according to extensive coverage. The exploitation is mainly 

used for accuracy enhancement for obtained solutions in the exploration phase [42]. 

 

3.1. The exploration phase 

The AOA has used the simplest rule to simulate the behavior of AOA operators. The equations for position updating 

are as follows for the exploration section: 

𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = {𝑏𝑒𝑠𝑡(𝑥𝑗)  ÷ (𝑀𝑂𝑃 + 𝜀) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) ∗ µ + 𝐿𝐵𝑗)                          𝑟2 < 0.5𝑏𝑒𝑠𝑡(𝑥𝑗) ×  𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) ∗ µ + 𝐿𝐵𝑗)                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (1) 

Where 𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) denotes the ith solution in the next iteration, 𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟)denotes the jth position of the ith solution at the 

current iteration, and 𝑏𝑒𝑠𝑡( 𝑥𝑗) is the jth position in the best-obtained solution so far. ϵ is a small integer number, 𝑈𝐵𝑗 , 
and 𝐿𝐵𝑗denote to the upper bound value and lower bound value of the jth position, respectively. µ is a control parameter 

to adjust the search process, fixed to 0.5[22]. 

 

3.2. The exploitation phase 

In AOA, the exploitation operators of AOA explore the search area deeply on several dense regions and approach to 

find the best solution based on two search methods which are modeled as follows: 

𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = {𝑏𝑒𝑠𝑡(𝑥𝑗) −  𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) ∗ µ + 𝐿𝐵𝑗)                                     𝑟3 < 0.5𝑏𝑒𝑠𝑡(𝑥𝑗) +  𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) ∗ µ + 𝐿𝐵𝑗)                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (2) 

4. The proposed binary AOA 

In this section, a new binary version of the arithmetic algorithm is introduced, considering that in this research, the 

offloading problem has been solved in the form of a binary problem. The exploration and exploitation mechanisms 

are achieved by the arithmetic operators’ conception in math are presented by logical operators in the binary AOA. 
Before starting the AOA, the search phase (exploration or exploitation) should be selected. So a Math Optimizer 

Accelerated (MOA) function is a coefficient calculated by: 

 

Where MOA (C_Iter) denotes the function value at the tth iteration, C_Iterdenotes the current iteration, which is 

between 1 and the maximum number of iterations (M_Iter), Min and Max denote the minimum and maximum values 

of the accelerated function, respectively. The flowchart of the proposed BAOA algorithm is shown in Figure 2. 

 

4.1. The exploration phase 

In this section, the exploratory phase of the BAOA is presented. According to the role of mathematical calculations 

using either XOR logical operator (Division) operator or even XOR logical operator (AND) and operator in high 

distributed values or decisions the arithmetic operators, the exploration search mechanism has been committed. This 

issue must be considered; the target could not be easily approached by the operators (D and M) due to their high 

dispersion, unlike other operators (S and A)[22].So the exploration operators (D and M) were applied to support the 

other stage (exploitation) through enhanced communication between them. To go to the exploration phase, a variable 

Math Optimizer Probability (MOP) is needed, which is a coefficient is obtained by: 𝑀𝑂𝑃(𝐶_𝐼𝑡𝑒𝑟) = 1 − 𝐶_𝐼𝑡𝑒𝑟1 ∝⁄𝑀_𝐼𝑡𝑒𝑟1 ∝⁄  
(4) 

Where MOP (C_Iter) denotes the function value at the tth iteration, C_Iter denotes the current iteration, and (M_Iter) 

denotes the maximum number of iterations. The ∝ is a sensitive parameter and defines the exploitation accuracy over 

MOA(C_Iter) = Min + C_Iter(
𝑀𝑎𝑥−𝑀𝑖𝑛𝑀−𝐼𝑡𝑒𝑟 ) (3) 
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the iterations, which is fixed equational to 5 according to the experiments. In this study, the sigmoid function is used 

to convert the MOP function to a binary function. Given that the range of sigmoid functions includes all real numbers 

and the return value of this function also changes uniformly from 0 to 1 or from 1 to -1 depending on the type of 

function. 

 
Figure 1. Flowchart of the proposed BAOA 

The pseudo-code of the proposed BAOA algorithm is presented as follows. To convert a continuous MOP variable to 

the binary variable, the following formulas are used: 

S (𝑀𝑂𝑃(𝐶_𝐼𝑡𝑒𝑟)) = 11−e−MOP(C_Iter) (5) 

 

 

The variable r2 is obtained to better examine the problem space, which is either 1 or 0, which is calculated by: 𝐼𝐹 = {𝜃 < 𝑆 (𝑀𝑂𝑃(𝐶𝐼𝑡𝑒𝑟))                                                                        𝑟2 = 1𝐸𝑙𝑠𝑒                                                                                                      𝑟2 = 0  (6) 

Where θ is a random variable. To achieve the binary exploration phase, the logical operators "Xor" and "And" are 

used instead of division and multiplication operators, respectively. So the search area is randomly explored to find the 

best solution based on "Xor" and "And" logical operators, which are presented in Equation 7. 
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𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = {𝑏𝑒𝑠𝑡(𝑥𝑗) 𝑥𝑜𝑟 (𝑀𝑂𝑃 + 𝜀)                                                                𝑟2 = 1𝑏𝑒𝑠𝑡(𝑥𝑗) 𝑎𝑛𝑑 𝑀𝑂𝑃                                                                           𝑟2 = 0 (7) 

Where 𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) denotes the ith solution in the next iteration, and best (xj) is the position in the best-obtained solution 

so far. ϵ is a small integer number. 

 

4.2. The exploitation phase 

In this section, the Exploitation phase of binary BAOA is presented; either Subtraction (S) or Addition (A) got high-

dense results in mathematical calculations. Because of the low dispersion of the operators (S and A), the target could 

be easily approached. The variable r3 is obtained to better examine the problem space, which is either 1 or 0, which 

is calculated by: 𝐼𝐹 = {𝜃 < 𝑆 (𝑀𝑂𝑃(𝐶𝐼𝑡𝑒𝑟))                                                             𝑟3 = 1𝐸𝑙𝑠𝑒                                                                                           𝑟3 = 0  (8) 

Where θ is a random variable. To achieve the binary exploitation phase, the logical operators OR and Not are used 

instead of Subtraction (S) or Addition (A) operators, respectively. So the search area is deeply explored to find the 

best solution based on "XOR" and "And" logical operators, which are modeled in Equation 9. 𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = {𝑏𝑒𝑠𝑡(𝑥𝑗)𝑁𝑜𝑡 𝑀𝑂𝑃                                                                                    𝑟3 = 1𝑏𝑒𝑠𝑡(𝑥𝑗) 𝑂𝑟 𝑀𝑂𝑃                                                                                     𝑟3 = 0  (9) 

This process, besides exploration search strategies, assists to find the optimal solution so that the variety of problem 

solutions is satisfied. Algorithm 1 indicates the pseudo-code of the proposed BAOA algorithm. 

 

5. Binary quantum arithmetic optimization algorithm 

Quantum computing is a new theory that is the result of computer science and quantum mechanics. The primary 

purpose of quantum computing is to examine all possible solutions that the computer can access if provided by the 

laws of quantum mechanics. Over the past decade, quantum computing has received more attention than classical 

computing and has shown that it can be used as an efficient tool in problem-solving. It should be noted that if quantum 

mechanics is considered, the trajectory sentence is meaningless. Because 𝑋𝑖,𝑑𝑡 , and 𝑉𝑖,𝑑𝑡  of a particle cannot be 

determined simultaneously according to the uncertainty principle[44]. 

Therefore, if the particles in a system behave quantum, the efficiency will be far removed from the classical 

AOA[22].Clerk and Kennedy have proposed a trajectory analysis in research[45], according to which it can be said 

that convergence in algorithms such as PSO occurs when each particle converges to its local adsorbent. Local charms 

are displayed with 𝑝𝑖 , so 𝑝𝑖  is: 

 

And 𝜑𝑑𝑡  is calculated by: 

 

Where C1 and C2 are two constant acceleration coefficients and 𝑟𝑖,𝑑𝑡  and 𝑅𝑖,𝑑𝑡  are two random numbers with normal 

distributions in the range of 0 and 1. So every 𝑝𝑖is calculated as follows: 

 

 

 

 

 

 

 

 

(10 ) 𝑝𝑖 = (𝑝𝑖 . 𝑝1. 𝑝2. … . 𝑝𝑖  . 𝐷) 
(11 ) 𝜑𝑑𝑡 = 𝐶1𝑟𝑖 .𝑑𝑡 /(𝐶1𝑟𝑖 .𝑑𝑡 + 𝐶2𝑅𝑖 .𝑑𝑡 ) 

(12 ) 𝑝𝑖 = 𝜑𝑑𝑡 ∗ 𝑃𝑏𝑒𝑠𝑡𝑖 .𝑑𝑡 + (1 − 𝜑𝑑𝑡 ) ∗ 𝑥∗𝑡 
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Algorithm 1:Pseudo-code of the proposed BAOA algorithm 

:  Initialize the Binary Arithmetic Optimization Algorithm parameters 

2:  Initialize the population randomly.  

3:  while (C_Iter < M_Iter) do 

4:   Find the Fitness Function (F F) for solutions 

5:   Find the best solution. 

6:   Find the MOA parameter using Equation. (3). 

7:   Find the MOP value using Equation. (4). 

8:   for (i=1 to Solutions) do 

9:    for ( j=1 to Positions) do 

10:    Find random numbers[0, 1] (r1, r2, and r3) 

11:     if r1 >MOA then 

12:      Exploration phase 

13:      if r2 =1 then 

14:      (1) Apply the Xor logical operator (XOR) 

15:       Update the ith solutions’ positions  
16:      else 

17:       (2) Apply the AND  logical operator (AND) 

18:      Update the ith solutions’ positions  
19:      end if 

20:     else 

21:      Exploitation phase 

22:      if r3 =1 then 

23:       (1) Apply the OR math operator (OR). 

24:       Update the ith solutions’ positions 

25:      else 

26:       (2) Apply the NOT math operator (NOT). 

27:       Update the ith solutions’ positions 

28:      end if 

29:     end if 

30:    end for 

31:   end for 

32:   C_Iter=C_Iter+1 

33:  end while 

34: Return the best solution (x). 

Where 𝑃𝑏𝑒𝑠𝑡𝑖,𝑑𝑡  refers to the best position the candidate i has ever had, and 𝑥∗𝑡  refers to the global best candidate until 

itis repeated. Also, every single candidate in BQAOA is treated as a spin-less one moving in quantum space, and the 

probability of the candidates appearing at the position in the search iteration is determined from a probability density 

function. Employing the Monte Carlo method, each candidate behaviors with the following rules: 

 𝑚𝑏𝑒𝑠𝑡𝑑𝑡 = 1𝑁∑𝑝𝑏𝑒𝑠𝑡𝑖.𝑑𝑡𝑁
𝑖=1  

(13) 

𝛼 = 𝛼1 (𝑇 − 𝑡) ∗ (𝛼0 − 𝛼1)𝑇  
(14) 

Where 𝛼0 and 𝛼1 are the initial and final values 𝛼, respectively; t is the maximum number of iterations; t is the current 

search iteration number. 
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 (15) 

 

If randv>= 0.5 

𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = {  
  𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = 𝜑𝑑𝑡 + 𝛼|(𝑏𝑒𝑠𝑡(𝑥𝑗) 𝑋𝑜𝑟 𝑀𝑂𝑃) −𝑚𝑏𝑒𝑠𝑡|𝑙𝑛 ( 1𝑢𝑖.𝑑𝑡 )          𝑟2 = 1𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = 𝜑𝑑𝑡 + 𝛼|(𝑏𝑒𝑠𝑡(𝑥𝑗) 𝐴𝑛𝑑  𝑀𝑂𝑃) − 𝑚𝑏𝑒𝑠𝑡|𝑙𝑛 ( 1𝑢𝑖.𝑑𝑡 )          𝑟2 = 0 

Else randv< 0.5 

𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = {  
  𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = 𝜑𝑑𝑡 − 𝛼|(𝑏𝑒𝑠𝑡(𝑥𝑗) 𝑋𝑜𝑟 𝑀𝑂𝑃) −𝑚𝑏𝑒𝑠𝑡|𝑙𝑛 ( 1𝑢𝑖.𝑑𝑡 )          𝑟2 = 1𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = 𝜑𝑑𝑡 − 𝛼|(𝑏𝑒𝑠𝑡(𝑥𝑗) 𝐴𝑛𝑑  𝑀𝑂𝑃) − 𝑚𝑏𝑒𝑠𝑡|𝑙𝑛 ( 1𝑢𝑖.𝑑𝑡 )          𝑟2 = 0 

 

 

(16) 

 

If randv>= 0.5 

𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = {  
  𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = 𝜑𝑑𝑡 + 𝛼|(𝑏𝑒𝑠𝑡(𝑥𝑗) 𝑁𝑜𝑡 𝑀𝑂𝑃) − 𝑚𝑏𝑒𝑠𝑡|𝑙𝑛 ( 1𝑢𝑖.𝑑𝑡 )          𝑟3 = 1𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = 𝜑𝑑𝑡 + 𝛼|(𝑏𝑒𝑠𝑡(𝑥𝑗) 𝑂𝑟  𝑀𝑂𝑃) − 𝑚𝑏𝑒𝑠𝑡|𝑙𝑛 ( 1𝑢𝑖.𝑑𝑡 )          𝑟3 = 0  

Else randv< 0.5 

𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = {  
  𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = 𝜑𝑑𝑡 − 𝛼|(𝑏𝑒𝑠𝑡(𝑥𝑗) 𝑁𝑜𝑡 𝑀𝑂𝑃) − 𝑚𝑏𝑒𝑠𝑡|𝑙𝑛 ( 1𝑢𝑖.𝑑𝑡 )          𝑟3 = 1𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = 𝜑𝑑𝑡 − 𝛼|(𝑏𝑒𝑠𝑡(𝑥𝑗) 𝑂𝑟  𝑀𝑂𝑃) − 𝑚𝑏𝑒𝑠𝑡|𝑙𝑛 ( 1𝑢𝑖.𝑑𝑡 )          𝑟3 = 0  

To provide the quantum version of the AOA, Equation 7 with Equation 15 and Equation 9 with Equation 16 are 

exchanged . 
 

6. Proposed offloading scheme 

The main steps of the proposed offloading schemes are shown in Figure 2. As shown in this figure, first a binary and 

quantum version AOA algorithm denoted as BQAOA are presented. In the second step, task offloading problem is 

formulated in the considered 3-tier architecture, in which various factors and constraints are used in this process. In 

the third step, a Markov model is presented for network bandwidth between IoT and MEC, which helps us in 

computing the average bandwidth between IoT and MEC. Then  

 
 

Figure 2. The steps of BQAOA 
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6.1. Architecture 

This research assumes that the computational application is processed first in the MDs themselves. If their 

computational requirements are not met in the MDs, the application is offloaded to the nearest computational server 

to small cell base stations (SBSs) antennas. Assuming that the computational power of sMEC, the closest server to 

SBSs, is not sufficient to process computational tasks, the processing power of mMEC, the nearest server to macro-

base stations (MBSs), is used, which is at the edge of cloud computing and has more computational power. In this 

study, the advantages of MEC as architecture of edge computing are used to solve the lack of computational resources 

in MDs. In this way, the maximum processing resources available in both MDs and the nearest servers of MDs are 

used to reduce costs and time. Otherwise, the nearest processing server in edge computing is used using offloading 

solutions. Indeed for the lack of processing resources on MDs, the offloading solution is compensated[27, 46, 47]. So 

that once the processing tasks are offloaded to the nearest processing sMEC server and then to the processing servers 

in the nearest fog computing mMEC server. The main goal of these approaches is to perform a placement in a way 

that usage of computational resources in edge computing in the hybrid computing resources is convenient, the waste 

of them can be decreased, and the high QoS to meet the user's computational requirements is satisfied[48-51]. The 

outline of the conceptual model is shown in Figure 3. 
 

 
Figure 3. Task offloading in MEC-based 3-tier architecture 

6.2. The problem formulation 

In this study, multi-access edge computing in the 5G Heterogeneous network is assumed that the set of SBSs is 

connected to MBSs via optical fiber links, and MDs are connected to SBS via wireless links. According to the 

importance of reducing energy consumption on the part of MDs and increasing users' side QoS, two types of 

implementation models can be assumed to implement computational tasks.  

• User-side processing: If the user's processing resources were sufficient to perform the computational tasks, 

the computational tasks would be executed on the MDs. 

• Offloading schemes: If the computational tasks with high computational resource requirements that could 

not be satisfied by MDs processing capability: 

• Offloading to SBS: If the user's processing resources were not sufficient to perform the 

computational tasks, the computational tasks would be executed on the mMEC connected two SBSs 

via wireless links. 

• Offloading to MBS: If the computing resources on the SBS side were limited, the computing tasks 

would be offloaded to MBS connected to SBS via optical fiber links. 

An integrated set of SBSs, MBSs, and MEC servers are assumed that computational Tasks could be served. SBSs and 

SMEs, MBS and mMEC are co-located, respectively. The connection between MDs and SBSs leads the reducing 

latency and increasing the transfer rate. So this assumption that the MDs were connected directly to the MBS is not 

considered. Because the MEC server has a deficiency of computing potency, large task offloading requests could 

make the SBS overloaded; in this case, the mMEC server will be another choice for available computational resources 
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[29]. The MDs are a set of M = {1,2,… M} and SBS as a set of N = {1,2,...N}. Each MD has one computing task to 

execute that can be executed on MD, sMEC, or mMEC, respectively. The computational task of MD can be offloaded 

to sMEC or be redirected to mMEC. The MD's computational tasks are indivisible and automated. The computational 

task is displayed as follows.  𝑇𝑚 = {𝐶𝑚. 𝐷𝑚}.𝑚 𝜖𝑀 (19) 

Where Cm, Dm are the total computations by the CPU cycle and the size of a computational task data, respectively. 

 

6.2.1. Local execution model 

In general, the energy consumption of smart devices is considered in four aspects, including sensing, actuation, 

processing, communication, and standby mode. Therefore, the energy consumption of each device is calculated using 

the following formula. 

Pstdis the energy required to stay in Standby mode, and Sd(t) is the energy required to receive and store data, Td(t) is 

the energy required to transmit data at time t, and Cd(t) is the energy used to process the data. By integrating the above 

relation, the total energy consumed during the operation of the device is calculated through the following two formulas. 

EdTotalis the total energy consumption in each device and j = {1,…, N} and K={1,..,N} and M={1,…,N} and t is the 
operating time of each device. To meet the QoS, energy consumption and completion time parameters are considered. 

The local completion time for executing task Tm is calculated as follows. 𝑇𝑚𝑙 = 𝐶𝑚𝑓𝑚𝑙  
(27) 

Where𝐶𝑚,𝑓𝑚𝑙  are the total numbers of computational by the CPU cycle and local computability of MDm, respectively. 

The 𝐸𝑚𝑙  is the energy consumption of MDm Task Tm is performed locally. 

 𝐸𝑚𝑙 =∝ 𝐶𝑚(𝑓𝑚𝑙 )2 (28) 

The ∝ is the coefficient associated with the chip considered for energy consumption. 

 

6.2.2. Computation-offloading Model 

The offloading strategy is categorized into two schemes for offloading computational tasks via sMEC or via mMEC 

servers. This section discusses the total power consumption to complete the computational tasks, including offloading 

for the task execution on the MEC servers and returning the result data. The improvement is considered from the user's 

vision, so, except for the amount of performing offloading, the energy consumption of MEC servers is not 

considered[52]. 

 

6.2.2.1. sMEC Offloading 

The completion time 𝑇𝑚𝑛𝑠𝑏𝑠  for execution task,Im on sMEC servers via wireless links is the sum of transfer time 𝑇𝑚𝑛𝑡  of 

task Im to sMEC and remote computation time 𝑇𝑚𝑛𝑒𝑠 . The wireless transfer time when MDm transmits its tasks to sMEC 

is calculated as follows. 𝑇𝑚𝑛𝑡 = 𝐷𝑚𝑅𝑚𝑛 
(29) 

Where Dm , Rmn  is the size of a computational task data and the communication model, respectively. The 

computational time required to execute computational Tasks on sMEC n is given by: 

(23) Pd(t) ≜ Sd(t) + Td(t) + Cd(t) + Pstd 

(24) ESd ≜ ∫ Sd(t)dtNtsd  ,ETd ≜ ∫ Td(t)dtNtTd , ECd ≜ ∫ Cd(t)dtNtCd  

(25) Ed(t) ≜ ESd + ETd + ECd + Estd 

(26) EdTotal ≜∑ESdjN
j +∑ETdK +N

k ∑ECdmN
j + Estd 
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𝑇𝑚𝑛𝑒𝑠 = 𝐶𝑚𝑓𝑚𝑛 
(30) 

Where Cm , fmn are the total computational numbersby the CPU cycle and the computational resource allocated to 

MDm via sMEC. According to formulas 21 and 22, the completion time of 𝑇𝑚𝑛𝑠𝑏𝑠 can be calculated as follows: 

 𝑇𝑚𝑛𝑠𝑏𝑠 = 𝑇𝑚𝑛𝑡 + 𝑇𝑚𝑛𝑒𝑠 = 𝐷𝑚𝑅𝑚𝑛 + 𝐶𝑚𝑓𝑚𝑛 
(31) 

As mentioned, the power consumption required to load the Computational Task Im to run in sMECn is 𝐸𝑚𝑛𝑡 Where is 

the power consumption required to transfer the Task Im from MDm to SBSn. 𝐸𝑚𝑛𝑠𝑏𝑠 = 𝐸𝑚𝑛𝑡 = 𝑝𝑚𝑇𝑚𝑛𝑡 = 𝑝𝑚 𝐷𝑚𝑅𝑚𝑛 
(32) 

Where pm is constant transmission power and Tmnt  is calculated in formula 17 

 

Table 2. Notations 

Description Item 

The computational task 𝑇𝑚 

The size of a computational task data  𝐷𝑚 

The total number of computational by the CPU cycle 𝐶𝑚 

Channel bandwidth w 

Constant transmission power 𝑝𝑚 

Channel gain between MDm and SBSm ℎ𝑚𝑛 

The noise power 𝑛0 

The inter-cell interface 𝑄𝑚𝑛 

Local computability of MDm[34] 𝑓𝑚𝑙  

The coefficient associated with the chip ∝ 

via sMEC nmcomputational resource allocated to MDThe  𝑓𝑚𝑛 

The computational resource allocated by mMEC to each MD is considered to be fixed and unique for all 

MDFs 

𝑓0 

The communication model 𝑅𝑚𝑛 

The local completion time 𝑇𝑚𝑙  

mThe energy consumption of MD 𝐸𝑚𝑙  

The transfer time of task Im to sMEC 𝑇𝑚𝑛𝑡  

The remote computation time 𝑇𝑚𝑛𝑒𝑠 𝑇𝑚𝑛𝑒𝑠  

on sMEC servers  mThe execution time for the task I 𝑇𝑚𝑛𝑠𝑏𝑠 
nto run in sMEC mal Task IThe power consumption required to load the Computation 𝐸𝑚𝑛𝑠𝑏𝑠 

The power consumption required to transfer the Task Im from MDm to SBSn 𝐸𝑚𝑛𝑡  

to mMEC servers ncomputational tasks migrate from SBS mThe transmission time when I 𝑇𝑚𝑛𝑡𝑚 

The Computation time for Computational Task on mMEC server 𝑇𝑚𝑛𝑒𝑚 

The completion time when the computational task m is executed on mMEC servers 𝑇𝑚𝑛𝑚𝑏𝑠 

nto run in sMEC mThe power consumption required to load the Computational Task I 𝐸𝑚𝑛𝑚𝑏𝑠 

 

6.2.2.2. mMEC offloading 

Computational tasks can be performed on the mMEC servers by migrating from the SBS connected to MBS via the 

fiber optic link. The 𝑇𝑚𝑛𝑡𝑚, the transmission time when Im computational tasks migrate from SBSn to mMEC servers is 

calculated by: 𝑇𝑚𝑛𝑡𝑚 = 𝐷𝑚𝛽  
(33) 

Where Dm, β are the size of a computational task data and the fiber link transfer rate between each SBS and MBS, 

respectively. The 𝑇𝑚𝑛𝑡𝑚 is the computation time for Computational Task on mMEC server is given by: 
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𝑇𝑚𝑛𝑒𝑚 = 𝐶𝑚𝑓0  
(34) 

Where f0is considered the computational resource allocated by mMEC to each MD intended for offloading, which is 

fixed and unique for all MDFs [52]. Cm is the total number of computational by the CPU cycle. When the 

computational task m is executed on mMEC servers, the completion time 𝑇𝑚𝑛𝑚𝑏𝑠 is the sum of the transmission time 𝑇𝑚𝑛𝑡  ,𝑇𝑚𝑛𝑡𝑚, and 𝑇𝑚𝑛𝑒𝑚 as given by: 𝑇𝑚𝑛𝑚𝑏𝑠 = 𝑇𝑚𝑛𝑡 + 𝑇𝑚𝑛𝑡𝑚 + 𝑇𝑚𝑛𝑒𝑚 = 𝐷𝑚𝑅𝑚𝑛 + 𝐷𝑚𝛽 + 𝐶𝑚𝑓0  
(35) 

Similarly, the energy consumption of Task Im offloaded to mMEC server is the energy consumption of 𝐸𝑚𝑛𝑡  and can 

be calculated as follows: 𝐸𝑚𝑛𝑚𝑏𝑠 = 𝐸𝑚𝑛𝑡 = 𝑝𝑚 𝐷𝑚𝑅𝑚𝑛 
(36) 

Where pm is constant transmission power and Emnt  is the power consumption required to transfer the task Im from 

MDm to SBSn. 

 

6.2.3. Communication model 

In this section, the communication model is presented with Rmnfor offloading tasks to sMEC or mMEC. The MD's 

computational task can be offloaded to the local MD and the MEC servers according to their computational capacity. 

The orthogonal frequency division multiple accesses for communication between MDs and SBSs is assumed in this 

study. The transfer rate of the computational task from MDm to SBSn is calculated as follows.  Rmn = wlog2( 1+ pmhmnn0+Qmn) (20) 

Where 𝑝𝑚,ℎ𝑚𝑛, 𝑛0, 𝑄𝑚𝑛 , and w are constant transmission power, Channel gain between MDm and SBSm, noise 

power, inter-cell interface, and channel bandwidth, respectively. During time, network bandwidth between MDs and 

MEC servers varies. In this study, a Markov model is used to achieve the average amount of bandwidth. In the 

proposed Markov model, the sets S = {S1, S2, S3} denote the existence states, in which each state denoted to the 

different level of bandwidth. Figure 4 depicts the transition diagram of the applied Markov model for network 

bandwidth Markov model to show the sequence of decision-making outcomes. It is also possible to navigate between 

states by a probability distribution represented by the form of the transition matrix with three transition states as 

unknown parameters. The probability matrix can be written as follows: 𝑃 = [𝑝11 𝑝12 𝑝13𝑝21 𝑝22 𝑝23𝑝31 𝑝32 𝑝33] (21) 

According to the above discussion, the Markov model could be defined as the model A=(S, P) and the sequence S= 

S1, S2, S3∈S .In the Markov model, generally, this questions should be answered: 

 

✓ Having the sequence S and the model A, what is the optimal sequence of T = S1, …,S3? to answer this question, 

the QABOA algorithm is generally applied. 

 
Figure 4: The transition diagram applied Markov model for network bandwidth 

 

In this scheme, we compute the average available bandwidth between local MDs, sMEC, and mMEC server by using 

Equation 22. 
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𝜋 = ([𝑝11 𝑝12 𝑝13𝑝21 𝑝22 𝑝23𝑝31 𝑝32 𝑝33])
𝑛

 

𝜋 = (𝜋1, 𝜋2, 𝜋3) 
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = ∑𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑘3

𝑘=1 ∗ 𝜋𝑘       𝑤ℎ𝑒𝑟𝑒  ∑𝜋𝑘 = 13
𝑘=1  

(22) 

In which, 𝜋 is obtained by successive multiplication of matrix P, bandwidthk indicates the bandwidth of the kth state 

also, in this equation; 𝜋𝑘 is the probability of the ith state of the proposed Markov model. By solving the energy 

consumption Markov model for each local MDs, sMEC, and mMEC server, we can compute the average available 

bandwidth for a cloud environment. The Markov model is applied to predict the best offloading path between the 

states according to the following state to achieve better resource management. 

 

6.2.4. Fitness function 

The offloading decision determines the execution location for computational tasks such as sMEC offloading or mMEC 

offloading. Therefore, the decision has two phases based on the computational offloading scheme. The first involves 

offloading tasks to the MEC server via SBS, and the second involves offloading tasks from sMEC or mMEC. Let 

consider 𝛾 as a decision-offloading matrix,  𝛾 = {𝑦𝑚𝑛|𝑚 ∈ 𝑀. 𝑛 ∈ 𝑁} (37) 

Each 𝑦𝑚𝑛 can be computed as follows: 𝑦𝑚𝑛 = {1.  𝑖𝑓 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑎𝑠𝑘𝑠 𝑜𝑓𝑓𝑙𝑜𝑎𝑑 𝑡𝑜 𝑠𝑀𝐸𝐶𝑛0.                                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (38) 

Because the task is offloaded to at least one MEC server, this condition must be met.  ∑𝑦𝑚𝑛 ≤ 1.  ∀𝑚 ∈ 𝑀𝑁
𝑛=1  

(39) 

:mlocation matrix for task I-Let consider z an offloading 𝑧 = {𝑧𝑚𝑛|𝑚 ∈ 𝑀. 𝑛 ∈ 𝑁} (40) 

And each element 𝑧𝑚𝑛 is calculated by: 𝑧𝑚𝑛 = { 1. 𝐼𝑓 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝐼𝑚 𝑖𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑜𝑛 𝑠𝑀𝐸𝐶 𝑛0.  𝑖𝑓 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝐼𝑚 𝑖𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑜𝑛 𝑚𝑀𝐸𝐶 𝑛 
(41) 

The following condition ensures that each task must execute on at least one MEC server. 

 ∑𝑧𝑚𝑛 ≤ 1.  ∀𝑚 ∈ 𝑀𝑁
𝑛=1  

(42) 

Consider 𝑀𝑜𝑓𝑓 as a set of MDs which tasks are offloaded to sMECs and 𝑀𝑜𝑓𝑓 = {𝑚 ∈ 𝑀. 𝑛 ∈ 𝑀 |𝑦𝑚𝑛 = 1. 𝑧𝑚𝑛 = 1} (43) 

And 𝑀𝑛 is considered a set of MDs which tasks are offloaded to sMECm.  𝑀𝑛 = {𝑚 ∈ 𝑀 |𝑦𝑚𝑛 = 1. 𝑧𝑚𝑛 = 1} (44) 

Finally, we consider the computational resource matrix F for sMEC. 𝐹 = {𝑓𝑚𝑛|𝑚 ∈ 𝑀. 𝑛 ∈ 𝑁} (45) 

Where 𝑓𝑚𝑛 > 0 is the resource allocation of sMECs to computational task𝐼𝑚. Because of the lack of computational 

resources, the following condition must be met. ∑𝑚 ∈ 𝑀𝑛. 𝑓𝑚𝑛 ≤ 𝑓𝑛𝑚𝑎𝑥 . ∀𝑛 ∈ 𝑁 (46) 
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Where 𝑓𝑛𝑚𝑎𝑥 is the maximum computational capability of sMECn. This condition shows sMECm does not allocate 

any computational resource to MDm. 𝑓𝑚𝑛 = 0 𝑖𝑓 𝑚 ∈ 𝑀𝑛 (47) 

is given by: mTotal completion time for execution task I 𝑇𝑚 = ∑𝑦𝑚𝑛𝑁
𝑛=1 (𝑇𝑚𝑛𝑡 + 𝑧𝑚𝑛𝑇𝑚𝑛𝑒𝑠 + (1 − 𝑧𝑚𝑛)(𝑇𝑚𝑛𝑡𝑚 + 𝑇𝑚𝑛𝑒𝑚)) + (1 −∑ 𝑦𝑚𝑛𝑁𝑛=1 ) 𝑇𝑚𝑙  

(48) 

is calculated by mThe total energy consumption required to complete Task I 𝐸𝑚 = ∑𝑦𝑚𝑛𝑁
𝑛=1 (𝑧𝑚𝑛𝐸𝑚𝑛𝑠𝑏𝑠 + (1 − 𝑧𝑚𝑛)𝐸𝑚𝑛𝑚𝑏𝑠) + (1 −∑ 𝑦𝑚𝑛𝑁𝑛=1 )𝐸𝑚𝑙  

(49) 

Therefore, the optimization problem can be shown as follows: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑌, 𝐹, 𝑍) ∑(ƞ𝑚𝑒 𝐸𝑚 + ƞ𝑚𝑡 𝑇𝑚)𝑀
𝑚=1  

C1: 𝑦𝑚𝑛 . 𝑧𝑚𝑛 ∈ {0,1}. ∀𝑚 ∈ 𝑀. ∀𝑛 ∈ 𝑁 

C2: ∑ 𝑦𝑚𝑛 ≤ 1.  ∀𝑚 ∈ 𝑀𝑁𝑛=1 
C3: ∑ 𝑧𝑚𝑛 ≤ 1.  ∀𝑚 ∈ 𝑀𝑁𝑛=1 
C4: ∑ 𝑦𝑚𝑛 ≤ 𝐻.  ∀𝑛 ∈ 𝑁𝑁𝑛=1 

C5:  𝑓𝑚𝑛 > 0. ∀𝑚 ∈ 𝑀𝑜𝑓𝑓. ∀𝑛 ∈ 𝑁 
C6: ∑ 𝑓𝑚𝑛𝑚∈𝑀𝑛 ≤ 𝑓𝑛𝑚𝑎𝑥  . ∀𝑛 ∈  𝑁 

(50) 

Where ƞ𝑚𝑒 + ƞ𝑚𝑡 = 1 and ƞ𝑚𝑒 . ƞ𝑚𝑡 ∈ [0,1]. Indicates weight by the energy consumption the completion time of MDm and 

H represents the number of sub-carriers. The C1 constraint is a binary offloading decision, and the C2 and C3 

constraints ensure that each MDm can select at least one SBS. Constraint 4 indicates that the number of Tasks uploaded 

to the MEC server must be less than the total number of subcarriers. Constraints 5 and 6 indicate that the total 

computational resources allocated to MDF offloading by each sMEC cannot exceed its computational capacity. 

Formula 40 and 41 is an MINLP problem of NP-hard complexity and cannot be solved in polynomial time [52]. 

However, global improvement can be used to find the optimal solution to this problem. Worst computational 

complexity limits the exponential nature of its applications to 5G wireless networks, leading to high levels of 

communication, heterogeneous QoS requirements, and highly dynamic wireless channels. In this study, an efficient, 

low-complexity algorithm can obtain a high-quality solution, and convergence guaranteed using the AOA is 

developed. 

 

6.3. The solution of BQAOA 

In this study, each solution is implemented by a three-dimensional matrix with a size of 𝑦(2,𝑚, 𝑛), where m indicates 

the number of MDs and n indicates the number of sMECs. The values of 𝑦(0,𝑚, 𝑛) can be zero or one. The number 

one means that information is offloaded to process on sMEC and the number zero means that tasks are processed 

locally on MDs. Also, the values of 𝑦(1,𝑚, 𝑛) can be zero or one. The number one means that the tasks should be 

offloaded on mMEC, and the number zero means tasks should be offloaded on sMEC. In this study, instead of 𝑦(0,𝑚, 𝑛) and 𝑦(1,𝑚, 𝑛), 𝑦(𝑚, 𝑛) and 𝑧(𝑚, 𝑛) are used respectively for easier understanding. 
 

 
 

Figure 5. The encoding of BQAOA’s solutions 

Figure 5 shows the encoding of each candidate solution. The number of both matrices' columns, Y and Z, is equal to 

N. The number of sMECs and m indicates the number of rows for matrices "Y and Z" and the number of MDs, 
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respectively. For row 0in the matrix Y, all columns are equal to zero, which means that tasks on mobile device 0 must 

be processed locally and in the mobile device 0 itself without offloading to any sMEC server. The Y[1,1]=1 and 

Z[1,1]=0 show that the task on mobile device 1 must be offloaded on sMEC 1 and processed at the same sMEC server. 

The following example, Y[2,1]=1, shows that the task on mobile device 2 must be offloaded to sMEC 1, and the 

Z[2,1]=1 shows that the task could not be processed on sMEC 1 and must be offloaded to mMEC server.  

 

7. Performance evaluation 

In this section, the performance of the BQAOA method is presented. The CloudSim5 simulator, a toolkit for modeling 

and simulating extensible clouds, evaluates the performance. As a completely customizable tool, cloudSim5 allows 

the extension and definition of policies in all the software stack components, making it a suitable research tool to 

handle the complexities arising from simulated environments[43]. In this study, two different scenarios are considered 

to simulate the 5G-Net environment. Scenario A is assumed to be small with 50 within a coverage area (250 × 250 

m2) MDs, 6 SBS, and 1 MBs connected to all SBSs, but Scenario B considers the problem space to be larger and the 

number of MDs, SBS, and MBS are considered 200 within a coverage area (1000× 1000 m2), 12 and 1 connected to 

all SBSs, respectively. Other standard simulation parameters used in both scenarios are shown in Table 3. 

 

7.1. Simulation results 

The performance of BQAOA has been compared with AOA, ICA, GA, and PSO, and Krill Herd algorithms in terms 

of energy consumption, processing time, and ESV, respectively. The energy consumption in this study refers to the 

electricity consumed by MDs, sMEC servers, which are the servers that are located next to the SBS, and also the 

electricity consumed by sMEC servers, the central cloud computing server. The purpose is to optimize the total set of 

energy consumed in these layers. Processing time refers to the time required to process all tasks on all MDs, sMEC 

servers, and mMEC servers, which is called makespan time. The ESV metric is also a parameter obtained by 

multiplying makespan time in energy consumption, calculated in Equation 49.  

There is a trade-off between energy consumption and processing time, that if servers are used too much, time decreases 

and energy increases, and if servers are used less, time increases and energy decreases. In order to be able to decide, 

despite this trade-off, whether reducing energy consumption harms processing time, the existence of the ESV 

parameter is essential. 
Table 3. Simulation parameters in Scenario A and B 

Parameter Value 

Channel-gain The path-loss model according to 140.7 + 36.7log10(d). where 

d (km) is the distance between the MD and the SBS 

The noise power n0= -100 dBm 

The number of MDs in Scenario A 10-45 

The number of MDs in Scenario B 20-200 

The number of tasks in Scenario A 10-45 

The number of tasks in Scenario B 20-200 

The transmit power of MD pm= 23 dBm 

The data rate of the fiber-optic link 𝛽= 1 Gbps 

The number of subcarriers H = 12 

The bandwidth of each sub-channel W = 3 MHz 

The input data size of the computational tasks [600, 1200] KB 

The number of CPU cycles Cm = [500, 1000] Megacycles 

The CPU speed of the mMEC f0= 3 GHz, 

The maximum CPU computing capacity sMEC fmax= 6 GHz 

The local computing power of the MDs {0.5, 0.8, 1}GHz , a = 5 × 10-27 

The weighting parameters of the computational task 0.5 

Maximum number of iterations (Tmax)  1000 

The size of the particle population (K) 30 

 

 

 

ESV=(Energy*makespan)/1000 (51) 
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7.1.1. Analysis BQAOA in terms of energy consumption in scenario A 

For the purpose of this study, energy consumption refers to the energy consumed by MDs and sMECs without 

considering mMEC. In Figure 6, the horizontal axis shows the number of MDs and the vertical axis shows the amount 

of energy consumption in watts per hour. 

 

 
Figure 6. The Energy Consumption in Scenario A 

The BQAOA algorithm has consumed less electricity than other algorithms in all cases and with any number of MDs 

while the genetic algorithm has consumed the highest amount of energy compared to other algorithms. As shown here, 

increased MDs was directly related to energy consumption which is due to an increase in the number of tasks as each 

mobile device has at least one task to perform. 
According to Figure 7, the performance of BQAOA was better than AOA, GA, ICA,PSO and Krill Herd regarding 

energy consumption. Improvement in energy consumption compared to other methods is shown in Figure 7 in which 

the horizontal axis indicates the number of MDs and the vertical axis indicates the percentage of improvement in 

energy consumption. 

The BQAOA algorithm showed the most significant improvement over the genetic algorithm. Furthermore, it is 

observed that with an increase in the number of MDs, improvement in the proposed algorithm becomes significantly 

better compared to other algorithms. This is due to the enlargement of problem space as, in larger problem spaces, the 

algorithms are optimally localized resulting in weaker performance. Still, the BQAOA algorithm was less involved in 

the local optimization. 

 
Figure 7. Improvement in energy consumption compared to the other methods in Scenario A 
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7.1.2. Analysis BQAOA in terms of energy consumption in scenario B 

In Figure 8, the vertical axis shows the amount of energy consumption in watts per hour. In scenario B, the BQAOA 

algorithm consumed less energy than the other algorithms. Moreover, the genetic algorithm and the imperialism 

competition algorithm showed the highest electricity consumption, respectively. In addition, with an increase in the 

number of MDs, difference in algorithms’ energy consumption becomes more significant which is due to the small 
size of the space problem when the number of MDs is low. 

According to Figure 9, the performance of BQAOA was better than AOA, GA, ICA and PSO in terms of energy 

consumption. Figure 9 shows improvement in energy consumption in which the horizontal axis indicates the number 

of MDs and the  vertical axis indicates the percentage of improvement in energy consumption compared to the other 

methods. Looking closely at Figure 9, the BQAOA algorithm showed the least improvement over the PSO and AOA 

algorithms because of the relatively good performance of these two algorithms compared to the other algorithms such 

as genetics, ICA, and KHA. In addition, the percentage of improvement will increase with an increase in the number 

of MDs. The difference in the performance of algorithms in a larger space could be seen better. 

 
Figure 8. Energy consumption in Scenario B 

 

 
Figure 9. Improvement in energy consumption of BQAOA compared to the other methods in Scenario B 
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7.1.3. Analysis of BQAOA in terms of Makespan in scenario A 

In this study, the makespan indicates full processing of all tasks on all MDs, whether locally or nor, on sMEC, or 

mMEC. Figure 10 shows the makespan time in which the horizontal axis indicates the number of MDs and the vertical 

axis indicates the makespan in milliseconds. Figure 11 shows an improvement in the processing time compared to the 

other methods where the horizontal axis indicates the number of MDs and the vertical graph indicates the percentage 

improvement in makespan.  

 

 
Figure 10. Makespan time in scenario A 

 

 
Figure 11. Improvement of makespan of BQAOA compared to the other methods in Scenario A 

 

As shown in Figure 11, the BQAOA makespan algorithm was timeless compared to the other algorithms. The ICA 

algorithm had more makespan time so the BQAOA algorithm performed better than the other algorithms due to the 

reduced makespan time and the ICA algorithm had a relatively weak performance. The BQAOA algorithm has 
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improved most in terms of makespan time compared to the genetic algorithm and ICA. This indicates the poor 

performance of these two algorithms in terms of makespan time. 

 

7.1.4. Analysis BQAOA in terms of Makespan in Scenario B 

In this section, the processing times is related to all tasks that are fully processed on all MDs, whether locally or not, 

on sMEC, or mMEC, . The horizontal axis indicates the number of MDs and the vertical axis shows the makespan 

time in milliseconds, as shown in Figure 12. 

In Scenario B, the BQAOA algorithm achieved less makespan than the other algorithms, and the genetic algorithm 

and ICA performed worse than the other algorithms. Besides, the makespan time achieved by them was higher than 

the other algorithms. It was also observed that with an increase in the number of MDs, the makespan time increases 

which is due to is the fact that every mobile device has at least one task to perform, and therefore with the increase in 

MDs, the number of tasks increases and as a result, makespan time increases. 

 
Figure 12.Makespan time in Scenario B 

Figure 13 shows an improvement in the processing time compared to the other methods in scenario B. The horizontal 

axis refers to the number of MDs and the vertical axis refers to the percentage improvement in the processing time. 

 
Figure 13. The makespan of BQAOA compared to the other methods in Scenario B 
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According to Figure 13, the lowest rate of improvement in the BQAOA algorithm compared to the other algorithms 

was related to the PSO algorithm. This indicated better performance of the PSO algorithm than the other algorithms 

after the BQAOA algorithm. Moreover, increased number of MDs improved the BQAOA algorithm more significantly 

than the other algorithms which was due to an increase in the problem space. 

 

7.1.5. Analysis of BQAOA in terms of ESV in scenario A 

Sometimes, reduced energy consumption may occur as a result of reduced number of processing elements, and in fact, 

this reduction in energy consumption increases the processing time. To measure  BQAOA efficiency in reducing 

energy consumption, a metric called ESV was used which is calculated in Equation 49. 

According to Figure 14, it can be argued that the performance of BQAOA in terms of ESV metric was better than 

AOA, genetic methods, ICA and PSO, and krill herd algorithms. Moreover, with an increase in the number of MDs, 

the BQAOA algorithm improves more than the other algorithms. Based on this, it is believed that the BQAOA 

algorithm affects improvement compared to the other algorithms in terms of both energy consumption and makespan 

time. 

 
Figure 14. Improvement in the makespan of BQAOA compared to the other methods in Scenario A 

Figure 14 shows the improvement of ESV compared to the other methods. The horizontal axis indicates the number 

of MDs, and the vertical axis shows the percentage of ESV recovery. According to Figure 14, the BQAOA algorithm 

had the best improvement in terms of ESV metrics compared to the genetic algorithm. Therefore, it can be concluded 

that the genetic algorithm generally showed less improvement than the other algorithms in terms of energy 

consumption and makespan time, and QBAO, AOA, and PSO algorithms had the best performances, respectively. 

 

 

7.1.6. Analysis of BQAOA in terms of ESV in Scenario B 

To measure the efficiency of BQAOA in reducing energy consumption, a metric called ESV was used according to 

Equation 51. Figure 15 shows performance of the BQAOA algorithm and the other algorithms in terms of ESV metrics 

in Scenario B. The horizontal axis represents the number of MDs and the vertical axis represents the metric value of 

ESV. The lower the ESV value, the better the performance of that algorithm in energy consumption and makespan 

time. According to Figure 15, it can be argued that the performance of BQAOA in terms of ESV metric was better 

than the AOA, genetic methods, ICA and PSO, and krill herd algorithms. 
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Figure 15. The ESV rate in Scenario B 

Figure 16 shows the improvement of ESV compared to the other methods. The horizontal axis indicates the number 

of MDs and the vertical axis indicates the percentage of ESV recovery. Looking closely at Figure 16, it can be argued 

that the BQAOA algorithm showed the least improvement compared to the AOA and PSO algorithms which may be 

due to the relatively better performance of these two algorithms compared to the other algorithms and a higher rate of 

the BQAOA algorithm’s improvement compared to the GA and KHA algorithms. The genetic algorithm and KHA 

performed worse in energy consumption and makespan time than the other algorithms in Scenario B. 

 

 
Figure 16. Comparison of BQAOA with other methods in terms of ESV rate improvement 
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8. Conclusion 

The growing speed of diverse applications and the increasing demands for powerful computing platforms have been 

raised as a challenge. One of the reasons for the emergence of edge computing is a straightforward and quick access 

to powerful computing resources, decreased response time and enhanced user satisfaction. Due to limitations of 

computational resources on the edge and implementation of users' favorite computational application with a minimum 

energy consumption and quick processing time, the offloading decision is needed to increase the performance. 

In this study, relying on MEC as an architectural concept of edge computing and offloading issue as an NP-complete 

problem, a new binary approach has been proposed based on AOA for offloading computational tasks to appropriate 

and efficient computational resources in terms of energy and response time. Two different scenarios have been used 

to evaluate the proposed offloaded scheme. The results showed that in the first scenario, BQAOA reduced the average 

energy consumption by about 3.94%, 6.58%, 15.64%, 20%, and 16.06% compared to the AOA, PSO, ICA, GA, and 

krill herd algorithms, respectively. The makespan time also decreased by about 4.6%, 5.7%, 12.8%, 16.52%, and 

11.86% compared to the AOA, PSO, ICA, GA, and krill herd algorithms, respectively. Regarding the ESV metrics, 

BQAOA improved about 12.77% compared to the PSO algorithm, 30.45% compared to the ICA algorithm, 39.86% 

compared to the genetic algorithm, and 29.81% compared to the genetic with the krill herd algorithm, and 8.7% 

compared to the AOA algorithm. The results showed that, in the second scenario, BQAOA reduced the average energy 

consumption by about 3.28%, 5.28%, 18.64%, 22.7%, and 17.24% compared to the AOA, PSO, ICA and GA, and 

krill herd algorithm, respectively. The Makespan time also decreased by about 9.21%, 11.2%, 16.3%, 18.3%, and 

19.7% compared to the AOA, PSO, ICA, GA, and krill herd algorithms, respectively. Regarding ESV metrics, 

BQAOA improved by about 17.17% compared to the PSO algorithm, 37.91% compared to the ICA algorithm, 45.05% 

compared to the genetic algorithm, and 40.12% compared to the genetic and krill herd algorithms, and 12.79% 

compared to the AOA algorithm. 

In future studies, the researchers can introduce a multi-objective version of the BQAOA algorithm and consider 

different factors such as trust and security-related ones in solving the offloading problem. 
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