
Energy-Aware Computation O�oading in Mobile
Edge Computing Using Quantum-Based Arithmetic
Optimization Algorithm
Mohammad Masdari

Islamic Azad University
Kambiz Majidzadeh

Islamic Azad University
Elahe Doustsadigh ( Edoostsadigh@gmail.com)

Islamic Azad University
Amin Babazadeh

Islamic Azad University
Reza Asemi

Islamic Azad University

Research Article

Keywords: O�oading, Mobile Edge Computing, Arithmetic Algorithm, Quantum, Energy consumption

Posted Date: November 3rd, 2022

DOI: https://doi.org/10.21203/rs.3.rs-2221212/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-2221212/v1
mailto:Edoostsadigh@gmail.com
https://doi.org/10.21203/rs.3.rs-2221212/v1
https://creativecommons.org/licenses/by/4.0/

1

Energy-Aware Computation Offloading in Mobile Edge Computing Using

Quantum-Based Arithmetic Optimization Algorithm

Mohammad Masdari1*, Kambiz Majidzadeh2, Elahe Doustsadigh3, Amin Babazadeh4, Reza Asemi5

Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran

M.masdari@Iaurmia.ac.ir1 , Kambiz.majidzadeh@iau.ac.ir2 , Edoostsadigh@gmail.com3 ,

bsamin2@liveutm.onmicrosoft.com4, r.asemi86@yahoo.com5

Abstract: The Internet of Things (IoT) has rapidly grown recently, and mobile devices (MDs) have

encountered widespread usage. All of these cause an increase in the demand for more powerful computing

resources. Meanwhile, a new concept called mobile edge computing (MEC) was introduced as a

promising technology to access powerful computing resources closer to the user side for a quick and

effective response, especially for time-intensive applications. Task offloading has emerged as a solution

to allocate resources among computing resources of smart devices or computational resources available

in MEC. This study presents a new binary quantum approach based on an arithmetic optimization

algorithm (BQAOA) for computational tasks offloading decisions on MDs with low complexity and

guaranteed convergence. However, since task offloading is an NP-hard problem, there is a need to use

methods that provide the optimal possible solution for various quality criteria, including response time

and energy consumption. Indeed, this is where the advantages of arithmetic optimization algorithms

(AOA) and quantum computing have been used to improve the performance of MDs. This paper

introduces a 2-tier architecture from the user to the cloud computing server-side. Also, a Markov model

is proposed to compute the average network bandwidth in the offloading problem. The proposed BQAOA

is compared with the best state-of-the-art algorithms in heuristic and meta-heuristic fields in different

scenarios. The simulation results showed 12.5%, 12%, and 26% improvement in energy consumption,

makespan, and Energy SLA Violations (ESV) optimization parameters, respectively.

Keywords: Offloading, Mobile Edge Computing, Arithmetic Algorithm, Quantum, Energy consumption.

1. Introduction

According to one definition, the IoT is a collection of interconnected devices, from simple sensors to smartphones and

wearable things. Devices on private or closed networks may interact with one another or the outside world using the

IoT. IoT empowers a more interconnected world since it allows gadgets to interact inside their own silos and across

other networking forms. In this scenario, as more and more sensors and devices are networked through IoT approaches,

the data generated by these sensors and devices will become enormous, necessitating further processing [1]. Moreover,

because the bulk of IoT devices has limited power, it is vital to balance power usage by allocating computation tasks

to devices with more sizable computing capability. It is also possible to decrease transmission time and power

consumption expenses by processing data in computing nodes most distant from the consumer [2-4].

It may sound necessary to offload apps needing extensive processing resources to a traditional centralized cloud to

improve the battery life of the MDs. Although this alternative is more cost-effective, it results in a considerable

execution delay due to the time spent moving apps to and from the cloud and the time spent on cloud computing.

Offloading is unsuitable for real-time applications because of its latency. A newly developed concept known as MEC

has arrived to deal with the delay issue. The MEC offers a variety of resources. Here, computation and storage

resources are brought to the edge of the mobile network. This new system will allow for the execution of the most

demanding apps on the MDs while adhering to stringent time-sensitive criteria [5]. MEC uses a smaller portion of the

network for its traffic. Thus, it can reduce network congestion. Also, MEC can be used in intelligent manufacturing

for local data analysis and storage and offers more stable connections [6]. After all, there is less competition for the

link to the edge node. Due to the limitation of computational resources on edge and the possibility of implementing

the user’s favorite computational application with minimum energy consumption and quick processing time,
increasing performance requires several policies [7]. One such policy is offloading to utilize the computation concept.

As developing recent applications require excessive computing power, there is a need to offload computational tasks

from intelligent devices to the edge layers and ultimately to cloud servers to increase the processing power of IoT

devices. This offloading, by nature, equal the practical implementation of application and efficient energy

consumption on the user side [8]. As a result, applications with high processing requirements can run on the user-side

mailto:M.masdari@Iaurmia.ac.ir1
mailto:Kambiz.majidzadeh@iau.ac.ir2
mailto:Kambiz.majidzadeh@iau.ac.ir2
mailto:Edoostsadigh@gmail.com3
mailto:bsamin2@liveutm.onmicrosoft.com4
mailto:r.asemi86@yahoo.com5

2

edge computing by placing IT resources closer to the end-user and outside a central data center or cloud environment.

MEC and 5G are tied together because the small cell deployments for urban environments are planned to have

computing capabilities [9].

Offloading solutions should address some issues to be effective in the MEC setting. The first issue relates to the

wireless channels, intermittent cloudlets, and cloud servers used for fault tolerance in offloading. As a result of these

mechanisms, handling offloading failures is critical. The second issue is protecting user data during transmission and

at the destination nodes not under the users’ control because of its transference to remote cloud servers. Third, since
the offloading process might change depending on a user’s location and context, an MD should evaluate and infer the

context information. Even when utilizing dynamic decision-making programs, the tasks that may be delegated are

identified during the development process. However, due to the high analysis costs, partitioning is undesirable during

program execution.

Offloading strategies can be categorized into two groups:

• Complete offloading: When a program is offloaded entirely, it goes to an offloading server rather than staying

on an MD. However, if the program’s size is more than the combined size of its components, it may result in

significant network overhead.

• Partial offloading: A section of a program or workflow will be offloaded when using partial offloading. The

sMEC server interaction overhead should be well-handled since it might offer a runtime overhead for a client

program.

In various cases, offloading systems can also use 3G, 4G, and 5G cellular networks. Additionally, channel availability

might be continuous or sporadic. Power management in offloading methods might be static, dynamic, or renewable.

Using techniques like DVFS, dynamic power management offloading systems seek to minimize energy usage on both

the MDs and destination sides. Although minimizing energy usage, the MDs or destination nodes will still fulfill QoS

standards. Offloading solutions may also explore using renewable energy at the destination sites, such as cloud DCs.

MDs can also use cloudlets, fog computing, or MCC to offload queries. The choice to unload might be taken locally

or globally.

Computational offloading is an NP-hard problem because of the complexity of resource allocation and discrete

offloading decisions [10-12]. Many offloading schemes for MEC have been proposed using different methods like

stochastic or meta-heuristic algorithms to deal with the offloading problems [13-15]. A meta-heuristic algorithmic

framework is a high-level, problem-independent algorithmic framework that offers a collection of principles or

methods for developing heuristic optimization algorithms. Some examples of meta-heuristic algorithms include

genetic/evolutionary algorithms [16], Tabu search [17], simulated annealing [18], variable neighborhood search[19],

ant colony optimization [20], among others. However, many others exist as well. In general, meta-heuristic algorithms

may be divided into the following categories [21]:

• Local search,

• Constructive,

• Population-based, and

• Hybrid.

In this paper, a new meta-heuristic method called the AOA is utilized. This method, among others, takes advantage of

the distribution behavior of the four principal arithmetic operators in mathematics: multiplication (M), division (D),

subtraction (S), and addition (A). To conduct the optimization procedures in extensive search areas, AOA is

theoretically modeled and implemented in a computer program [22].

This paper presented BQAOA, a new binary quantum-based AOA algorithm to deal with offloading problems. The

BQAOA is based on AOA Approach to find the best method using quantum algorithms exploiting quantum

entanglement; the offloading decision problem can be solved more efficiently than on classical peers. The rationale

for the binary version of BQAOA is that the final solution is a matrix problem of zeros and ones. Then, BQAOA can

solve NP problems with considerable time complexity to increase convergence and reduce constraints. Furthermore,

the resulting BQAOA approach’s energy consumption was reduced while maintaining the performance. Next, the
proposed BQAOA algorithm is utilized to optimize solutions with acceptable QoS parameters. Finally, the proposed

algorithm is compared with other state-of-the-art algorithms using various metrics to show its superiority.

The main contributions of this paper are as follows:

• A binary version is provided for the AOA algorithm to solve the offloading problem in MEC Systems within

the first stage; a solution had to be proposed for the AOA algorithm to work discretely. The Sigmund function

has been used in this research to transform the problem space of the AOA algorithm from continuous to

discrete.

3

• The Quantum strategy was embedded in BQAOA to select the appropriate solution from the problem space.

This study attempted to provide a quantum version of the binary AOA algorithm using quantum

computational theory to enhance the overall performance of the binary AOA algorithm. The purpose was to

converge binary AOA quicker and help escape local optimization, and ultimately the proposed BQAOA

algorithm was named.

• Balanced and efficiently distributed the processing load at exclusive processing levels. In this research,

through the BQAOA algorithm, the processing load has been attempted to distribute the tasks in a balanced

way at different levels: the lowest level of MDs and the best level of effective mMEC servers. The proposed

solution attempts to distribute the tasks the usage of the using the BQAOA algorithm such that the total

energy consumed in the mobile layer of devices, sBEC servers, and mMEC servers is minimal. It additionally

attempts to keep the makespan in optimal condition.

• Since the bandwidth is variable between IoT and MEC, a Markov model is considered to achieve an optimal

average bandwidth. This model can prevent over-estimating the network bandwidth and improves the

effectiveness of the proposed scheme.

• A comprehensive set of simulations are conducted to evaluate the performance of the proposed scheme

regarding different metrics.

This article is organized as follows: The previous works are described in section 2. In Section 3, the AOA algorithm

is presented. In Section 4, the problem with our proposed binary quantum AOA-based algorithm is formulated to

increase the performance of MDs and decrease the completion time and the total energy consumption. Section 5

describes the BQAOA algorithm. The proposed offloading scheme is described in section 6. The performance

evaluation and the numerical results are presented in Section 7. Finally, Section 8 concludes the paper.

2. Related works

In [23], Sun et al. introduced a resource scheduling method based on a non-dominated sorting genetic algorithm

(NSGA-II). The scheduling model has two-level performing scheduling among fog clusters as first-level performing

scheduling in the same fog cluster during the fog nodes. This approach helps service latency and improves stability.

Also, in[24], with emphasizing this fact that processing time is one of the vital factors in the IoT devices as QoS

parameters and with relying on the advantage of fog computing, which is one of the suitable options to solve the

scheduling problem in the IoT, two meta-heuristic algorithms, ACO and PSO are proposed to solve the problem of

scheduling computational tasks to be able to reduce response time and achieve a significant improvement in load

balancing. This approach helps improvement in response times and effective balances.

In [5], Bitam et al. presented a task scheduling scheme for fog computing that achieves less execution time and meets

the service computing needs of mobile users. It applies an optimization algorithm based on the bees life algorithm and

can reduce CPU execution time and the total amount of memory. This approach helps in execution time and allocated

memory. In [25], Du et al. provided an exploration on the interaction of cloud and fog in mobile computing to improve

the issue of loading services for smart devices that have inherently computational tasks. In fact, by proposing a mixed

cloud/fog model that can take advantage of both loading decisions and the issue of resource allocation in cloud

computing. A low-complexity sub-optimal algorithm is proposed where the semi-definite relaxation and

randomization implement offloading decisions, and also fractional programming theory and Lagrangian dual

decomposition obtain resource allocation. The benefit of this approach is cost conversation.

In [26], Abro et al. introduced a solution to deal with task scheduling in fog computation. The goal is to place local

and remote tasks on VMs in a fog environment, so the total energy consumption is combined with local energy fog

resources energy consumption. The joint energy-efficient task assignment (JEETA) is proposed on a new fog cloud

architecture that performs a novel algorithm, the dynamic application-partitioning algorithm (DAPTS), to decide the

offloading decision for achieving better results in energy consumption. This approach helps in remote task

performance and QoS. In [27], Gharehpasha et al. presented a new method based on a hybrid discrete multi-object

whale algorithm with a combination of chaotic functions to optimal offload decision in the cloud environment. This

study helps in scaling decisions.

In [28], Hazra et al. introduced a vision that the advent of MEC has reduced the latency of cloud services, as well as

the emergence of a term called cloudlet, which is a small scale of cloud infrastructure in the edge of the cloud

environment and the end-users side. The authors also refer that processing cloudlets on access points is costly, and

even the service provider may not be able to guarantee a delayed latency. So with this point, out that the problem is

NP-hard, a new method based on the capability of Mixed Integer Linear Programming (MILP) and Software-Defined

Network (SDN)-based framework and a bender decomposition-based algorithm are proposed. This study helps in

energy consumption and acceptance ratio.

4

Table 1.The properties of the offloading methods

Ref Algorithm/method

Environment

Simulation Metrics Shortcoming

F
o

g

E
d

g
e

C
o

m
p

u
ti

n
g

M
E

C

[23] Genetic Algorithm 
Service latency,

stability
It is not economical in terms of cost

[24] Ant Colony, PSO 
Response time,

Balance

It is not economical in terms of cost and tasks

dependencies

[5] bees swarm 
Execution time,

memory.
Does not support dynamic jobs

[25] CORA, BCRA  Energy, Delay The access period is not considered

[26]
A dynamic application

partitioning algorithm
 QoS, Energy

It is not economical in terms of response time

and energy

[28]
Benders

decomposition-based
  Energy consumption The queuing is not considered

[29] HOM  Total latency It is not economical in terms of cost

[30] The heuristic approach  Energy consumption It is not economical in terms of time

[27]
A machine learning-

based
  Time, CPU The accuracy is low

[31] The heuristic approach  Overhead It is not considered hierarchy

[32] JROPSO algorithm  Time, energy It is not compared to known methods

[33] greedy hill-climbing  Energy, time The scalability is not considered

[34]

MinHop, METComm,

MCTComm,

MinMinComm,

MaxMinComm,

SufferageComm

 
Makespan, Waiting

time,
It is not economical in terms of energy

[35]
Particle Swarm

Optimization
  Time The live migration is not considered

[36]
Gray wolf

optimization
  Energy The probability and real-time are not considered

[37] Ant-Bee Algorithm  Energy Online scheduling is not considered.

[38] (ACS-JS) 
Speed, Bandwidth,

Execution time
The workflow is not considered

[22] ACO & CMSACO  Time, Energy Only compared with the static algorithms.

[39] GKS algorithm 
Energy, Execution

cost
It is not economical in terms of cost

In [29], XUet al. provided an offloading method for edge computing to process and complete the tasks at the cloud

edge without sending them to the cloud core. This scheme applies deep learning and tries to reduce latency. This

approach’s advantage is to shorten the time delay. The offloading approach presented in [30] provides a hybrid model

of multiple servers MECs and multiple MDs. Tasks can be run on either MDs or one of the MECs servers. This scheme

tries to allocate tasks optimally and reduces their completion time. Also, a distributed heuristic algorithm to decide if

the task is executed in the same MD and the processing power is fast, so a small number of tasks will be offloaded.

Also, with the hope that the speed of communication links in 5G is getting higher, it can play an essential role in the

decision to transfer tasks from MD to MECs. The benefit of this study is random probabilities.

In [31, 40], Pham et al. presented a framework for the allocation of computational and communication resources. The

goal is to reduce computational overhead on multiple MEC Het-Net servers. A proposed method that has two parts is

5

the proposed computational loading decision and resource allocation connection. Two algorithms are considered. A

new method to find placement transfer power for users is based on the duality method and the intercellular

approximation method. The goal is to find the best processing resources for optimization. The advantage is the small

optimality gap. The offloading scheme presented in [32] applies the PSO algorithm for making optimal decisions

about offloading end-user applications in a multi-architecture, using multiple MEC servers in a 5G network. In the

proposed method, an attempt has been made to optimize the energy consumption of end-users. In this case, if the tasks

are executable on the end-user side, the task is processed on the end-user side. Otherwise, it is sent to the nearest server

close to the user range. If a large processing volume is required, the task is sent to the cloud core. The advantage is

high performance.

Enzai et al. [33],provided a new multi-site problem for mobile computation offloading, and a scheduler based on

greedy hill-climbing is proposed for computational tasks both in cloud providers and end-users with satisfying energy

consumption, task completion time, and charged prices. This study helps in good quality and achieving to a reasonable

time. In [34], Li et al. introduced a decision problem in mobile ad hoc cloud-based networks on a set of combination

batch and online scheduling heuristics methods. The idea is to find the best, more powerful cloudlet nodes. The six

heuristics are proposed to respect the user and system parameters, such as load balancing and waiting time. The

advantage is high performance in the online model. Guan et al. [35], presented a proactive cloudlet-based hybrid

offloading model based on PSO to serve the energy and execution time efficiency. The time series-based prediction

components are integrated to achieve proactive resource allocation.

In [36, 41], Veerappa et al. provided a multi-objective heterogeneous framework to increase the energy consumption

of MDs. A new meta-heuristic algorithm task offloading method based on Gray Wolf Optimization (GWO) is

described for offloading optimization problem. It reduces the cost of energy consumption between MDs and cloud

servers. The study helps in the execution of energy in an efficient mode. The advantages are energy cost and high

accuracy. In [38], Science et al. presented a queue-based and hybrid Ant Colony-Artificial Bee Colony Optimization

(Ant-Bee) algorithm for task offloading in a Mobile Cloud Computing. The major purpose is to find an accurate place

in the cloud or cloudlet. The combination of ACO with the ‘Queue Decision Generator’ implements the optimal
assignment of a task. The advantages are high performance in completion time and power consumption.

Arunet al. [22] presented new research in mobile computing offloading for choose computing services such as

computing time, energy consumption, and cost of using computing services for users' mobile tasks. A heuristic

algorithm known as the accelerated cuckoo search algorithm is proposed to share resources to access high transfer

rates in mobile processing computing. The study helps in multi-mode cloudlet performance. The [41], Guo provided

a thesis on mobile cloud computing with the premise that mobile cloud computing is a predictive paradigm to address

the growing demands of mobile users as users' processing needs increase as well as the number of sensitive

computational applications. The delay is increasing, then the solution ILP and an efficient heuristic algorithm are

proposed for offloading optimization problem. Experimental results have shown that the proposed method has

achieved acceptable profitability in scalable problems. In paper [37], the Cooperative Multi-tasks scheduling

algorithm based on Ant Colony Optimization algorithm (CMSACO) is proposed to solve the computational-intensive

task for the offloading problem. This study helps in energy consumption, load balance, and channel state.

In [39], Wang et al. presented two sub-problems of optimization based on stochastic optimization methods to reduce

the energy consumption of mobile users. Online task offloading is used to solve the problem, and the frequency scaling

for Energy Efficiency (TOFFEE) algorithm is proposed to solve the second sub-problem. To achieve a reduction in

power consumption, the authors have used both task allocation and CPU-cycle frequency. The advantage is high

performance in energy consumption. Jeong et al.[42], presented that computation-intensive deep neural network

(DNN) on MDs, so DNN requests are sent to the cloud core. Given that this is costly and time-consuming, trying to

reduce time using the proposed Incremental Offloading of Neural Network (IONN) method based on the partitioning

DNN offloading method. The IONN divides the user's DNN model into some partitions and then uploads them one

by one. A graph-based algorithm is also used to select the best partition. This study helps in query performance and

energy consumption.

3. The arithmetic optimization algorithm

In this study, a new meta-heuristic method called AOA is used that utilizes the main arithmetic operators in

mathematics[22]. These arithmetic operators are:

• Multiplication (M “ × ”),
• Division (D “ ÷ ”),
• Subtraction (S “ - ”)
• Addition (A “ + ”))

6

Considering the population-based algorithms processes begin with a set of stochastic candidate solutions, the AOA

starts the optimization process generating initial stochastic solutions in a matrix [43]. In each iteration, the best

candidate solution or early optimum so far is considered. This algorithm consists of two phases based on the

population-based optimization method process. Therefore, this algorithm uses two phases:

• exploration

• exploitation

The exploration phase is used to avoid local solutions according to extensive coverage. The exploitation is mainly

used for accuracy enhancement for obtained solutions in the exploration phase [42].

3.1. The exploration phase

The AOA has used the simplest rule to simulate the behavior of AOA operators. The equations for position updating

are as follows for the exploration section:

𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = {𝑏𝑒𝑠𝑡(𝑥𝑗) ÷ (𝑀𝑂𝑃 + 𝜀) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) ∗ µ + 𝐿𝐵𝑗) 𝑟2 < 0.5𝑏𝑒𝑠𝑡(𝑥𝑗) × 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) ∗ µ + 𝐿𝐵𝑗) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (1)

Where 𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) denotes the ith solution in the next iteration, 𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟)denotes the jth position of the ith solution at the

current iteration, and 𝑏𝑒𝑠𝑡(𝑥𝑗) is the jth position in the best-obtained solution so far. ϵ is a small integer number, 𝑈𝐵𝑗 ,
and 𝐿𝐵𝑗denote to the upper bound value and lower bound value of the jth position, respectively. µ is a control parameter

to adjust the search process, fixed to 0.5[22].

3.2. The exploitation phase

In AOA, the exploitation operators of AOA explore the search area deeply on several dense regions and approach to

find the best solution based on two search methods which are modeled as follows:

𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = {𝑏𝑒𝑠𝑡(𝑥𝑗) − 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) ∗ µ + 𝐿𝐵𝑗) 𝑟3 < 0.5𝑏𝑒𝑠𝑡(𝑥𝑗) + 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) ∗ µ + 𝐿𝐵𝑗) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (2)

4. The proposed binary AOA

In this section, a new binary version of the arithmetic algorithm is introduced, considering that in this research, the

offloading problem has been solved in the form of a binary problem. The exploration and exploitation mechanisms

are achieved by the arithmetic operators’ conception in math are presented by logical operators in the binary AOA.
Before starting the AOA, the search phase (exploration or exploitation) should be selected. So a Math Optimizer

Accelerated (MOA) function is a coefficient calculated by:

Where MOA (C_Iter) denotes the function value at the tth iteration, C_Iterdenotes the current iteration, which is

between 1 and the maximum number of iterations (M_Iter), Min and Max denote the minimum and maximum values

of the accelerated function, respectively. The flowchart of the proposed BAOA algorithm is shown in Figure 2.

4.1. The exploration phase

In this section, the exploratory phase of the BAOA is presented. According to the role of mathematical calculations

using either XOR logical operator (Division) operator or even XOR logical operator (AND) and operator in high

distributed values or decisions the arithmetic operators, the exploration search mechanism has been committed. This

issue must be considered; the target could not be easily approached by the operators (D and M) due to their high

dispersion, unlike other operators (S and A)[22].So the exploration operators (D and M) were applied to support the

other stage (exploitation) through enhanced communication between them. To go to the exploration phase, a variable

Math Optimizer Probability (MOP) is needed, which is a coefficient is obtained by: 𝑀𝑂𝑃(𝐶_𝐼𝑡𝑒𝑟) = 1 − 𝐶_𝐼𝑡𝑒𝑟1 ∝⁄𝑀_𝐼𝑡𝑒𝑟1 ∝⁄
(4)

Where MOP (C_Iter) denotes the function value at the tth iteration, C_Iter denotes the current iteration, and (M_Iter)

denotes the maximum number of iterations. The ∝ is a sensitive parameter and defines the exploitation accuracy over

MOA(C_Iter) = Min + C_Iter(
𝑀𝑎𝑥−𝑀𝑖𝑛𝑀−𝐼𝑡𝑒𝑟) (3)

7

the iterations, which is fixed equational to 5 according to the experiments. In this study, the sigmoid function is used

to convert the MOP function to a binary function. Given that the range of sigmoid functions includes all real numbers

and the return value of this function also changes uniformly from 0 to 1 or from 1 to -1 depending on the type of

function.

Figure 1. Flowchart of the proposed BAOA

The pseudo-code of the proposed BAOA algorithm is presented as follows. To convert a continuous MOP variable to

the binary variable, the following formulas are used:

S (𝑀𝑂𝑃(𝐶_𝐼𝑡𝑒𝑟)) = 11−e−MOP(C_Iter) (5)

The variable r2 is obtained to better examine the problem space, which is either 1 or 0, which is calculated by: 𝐼𝐹 = {𝜃 < 𝑆 (𝑀𝑂𝑃(𝐶𝐼𝑡𝑒𝑟)) 𝑟2 = 1𝐸𝑙𝑠𝑒 𝑟2 = 0 (6)

Where θ is a random variable. To achieve the binary exploration phase, the logical operators "Xor" and "And" are

used instead of division and multiplication operators, respectively. So the search area is randomly explored to find the

best solution based on "Xor" and "And" logical operators, which are presented in Equation 7.

8

𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = {𝑏𝑒𝑠𝑡(𝑥𝑗) 𝑥𝑜𝑟 (𝑀𝑂𝑃 + 𝜀) 𝑟2 = 1𝑏𝑒𝑠𝑡(𝑥𝑗) 𝑎𝑛𝑑 𝑀𝑂𝑃 𝑟2 = 0 (7)

Where 𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) denotes the ith solution in the next iteration, and best (xj) is the position in the best-obtained solution

so far. ϵ is a small integer number.

4.2. The exploitation phase

In this section, the Exploitation phase of binary BAOA is presented; either Subtraction (S) or Addition (A) got high-

dense results in mathematical calculations. Because of the low dispersion of the operators (S and A), the target could

be easily approached. The variable r3 is obtained to better examine the problem space, which is either 1 or 0, which

is calculated by: 𝐼𝐹 = {𝜃 < 𝑆 (𝑀𝑂𝑃(𝐶𝐼𝑡𝑒𝑟)) 𝑟3 = 1𝐸𝑙𝑠𝑒 𝑟3 = 0 (8)

Where θ is a random variable. To achieve the binary exploitation phase, the logical operators OR and Not are used

instead of Subtraction (S) or Addition (A) operators, respectively. So the search area is deeply explored to find the

best solution based on "XOR" and "And" logical operators, which are modeled in Equation 9. 𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = {𝑏𝑒𝑠𝑡(𝑥𝑗)𝑁𝑜𝑡 𝑀𝑂𝑃 𝑟3 = 1𝑏𝑒𝑠𝑡(𝑥𝑗) 𝑂𝑟 𝑀𝑂𝑃 𝑟3 = 0 (9)

This process, besides exploration search strategies, assists to find the optimal solution so that the variety of problem

solutions is satisfied. Algorithm 1 indicates the pseudo-code of the proposed BAOA algorithm.

5. Binary quantum arithmetic optimization algorithm

Quantum computing is a new theory that is the result of computer science and quantum mechanics. The primary

purpose of quantum computing is to examine all possible solutions that the computer can access if provided by the

laws of quantum mechanics. Over the past decade, quantum computing has received more attention than classical

computing and has shown that it can be used as an efficient tool in problem-solving. It should be noted that if quantum

mechanics is considered, the trajectory sentence is meaningless. Because 𝑋𝑖,𝑑𝑡 , and 𝑉𝑖,𝑑𝑡 of a particle cannot be

determined simultaneously according to the uncertainty principle[44].

Therefore, if the particles in a system behave quantum, the efficiency will be far removed from the classical

AOA[22].Clerk and Kennedy have proposed a trajectory analysis in research[45], according to which it can be said

that convergence in algorithms such as PSO occurs when each particle converges to its local adsorbent. Local charms

are displayed with 𝑝𝑖 , so 𝑝𝑖 is:

And 𝜑𝑑𝑡 is calculated by:

Where C1 and C2 are two constant acceleration coefficients and 𝑟𝑖,𝑑𝑡 and 𝑅𝑖,𝑑𝑡 are two random numbers with normal

distributions in the range of 0 and 1. So every 𝑝𝑖is calculated as follows:

(10) 𝑝𝑖 = (𝑝𝑖 . 𝑝1. 𝑝2. … . 𝑝𝑖 . 𝐷)
(11) 𝜑𝑑𝑡 = 𝐶1𝑟𝑖 .𝑑𝑡 /(𝐶1𝑟𝑖 .𝑑𝑡 + 𝐶2𝑅𝑖 .𝑑𝑡)

(12) 𝑝𝑖 = 𝜑𝑑𝑡 ∗ 𝑃𝑏𝑒𝑠𝑡𝑖 .𝑑𝑡 + (1 − 𝜑𝑑𝑡) ∗ 𝑥∗𝑡

9

Algorithm 1:Pseudo-code of the proposed BAOA algorithm

: Initialize the Binary Arithmetic Optimization Algorithm parameters

2: Initialize the population randomly.

3: while (C_Iter < M_Iter) do

4: Find the Fitness Function (F F) for solutions

5: Find the best solution.

6: Find the MOA parameter using Equation. (3).

7: Find the MOP value using Equation. (4).

8: for (i=1 to Solutions) do

9: for (j=1 to Positions) do

10: Find random numbers[0, 1] (r1, r2, and r3)

11: if r1 >MOA then

12: Exploration phase

13: if r2 =1 then

14: (1) Apply the Xor logical operator (XOR)

15: Update the ith solutions’ positions
16: else

17: (2) Apply the AND logical operator (AND)

18: Update the ith solutions’ positions
19: end if

20: else

21: Exploitation phase

22: if r3 =1 then

23: (1) Apply the OR math operator (OR).

24: Update the ith solutions’ positions

25: else

26: (2) Apply the NOT math operator (NOT).

27: Update the ith solutions’ positions

28: end if

29: end if

30: end for

31: end for

32: C_Iter=C_Iter+1

33: end while

34: Return the best solution (x).

Where 𝑃𝑏𝑒𝑠𝑡𝑖,𝑑𝑡 refers to the best position the candidate i has ever had, and 𝑥∗𝑡 refers to the global best candidate until

itis repeated. Also, every single candidate in BQAOA is treated as a spin-less one moving in quantum space, and the

probability of the candidates appearing at the position in the search iteration is determined from a probability density

function. Employing the Monte Carlo method, each candidate behaviors with the following rules:

 𝑚𝑏𝑒𝑠𝑡𝑑𝑡 = 1𝑁∑𝑝𝑏𝑒𝑠𝑡𝑖.𝑑𝑡𝑁
𝑖=1

(13)

𝛼 = 𝛼1 (𝑇 − 𝑡) ∗ (𝛼0 − 𝛼1)𝑇
(14)

Where 𝛼0 and 𝛼1 are the initial and final values 𝛼, respectively; t is the maximum number of iterations; t is the current

search iteration number.

10

 (15)

If randv>= 0.5

𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = {
 𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = 𝜑𝑑𝑡 + 𝛼|(𝑏𝑒𝑠𝑡(𝑥𝑗) 𝑋𝑜𝑟 𝑀𝑂𝑃) −𝑚𝑏𝑒𝑠𝑡|𝑙𝑛 (1𝑢𝑖.𝑑𝑡) 𝑟2 = 1𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = 𝜑𝑑𝑡 + 𝛼|(𝑏𝑒𝑠𝑡(𝑥𝑗) 𝐴𝑛𝑑 𝑀𝑂𝑃) − 𝑚𝑏𝑒𝑠𝑡|𝑙𝑛 (1𝑢𝑖.𝑑𝑡) 𝑟2 = 0

Else randv< 0.5

𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = {
 𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = 𝜑𝑑𝑡 − 𝛼|(𝑏𝑒𝑠𝑡(𝑥𝑗) 𝑋𝑜𝑟 𝑀𝑂𝑃) −𝑚𝑏𝑒𝑠𝑡|𝑙𝑛 (1𝑢𝑖.𝑑𝑡) 𝑟2 = 1𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = 𝜑𝑑𝑡 − 𝛼|(𝑏𝑒𝑠𝑡(𝑥𝑗) 𝐴𝑛𝑑 𝑀𝑂𝑃) − 𝑚𝑏𝑒𝑠𝑡|𝑙𝑛 (1𝑢𝑖.𝑑𝑡) 𝑟2 = 0

(16)

If randv>= 0.5

𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = {
 𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = 𝜑𝑑𝑡 + 𝛼|(𝑏𝑒𝑠𝑡(𝑥𝑗) 𝑁𝑜𝑡 𝑀𝑂𝑃) − 𝑚𝑏𝑒𝑠𝑡|𝑙𝑛 (1𝑢𝑖.𝑑𝑡) 𝑟3 = 1𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = 𝜑𝑑𝑡 + 𝛼|(𝑏𝑒𝑠𝑡(𝑥𝑗) 𝑂𝑟 𝑀𝑂𝑃) − 𝑚𝑏𝑒𝑠𝑡|𝑙𝑛 (1𝑢𝑖.𝑑𝑡) 𝑟3 = 0

Else randv< 0.5

𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = {
 𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = 𝜑𝑑𝑡 − 𝛼|(𝑏𝑒𝑠𝑡(𝑥𝑗) 𝑁𝑜𝑡 𝑀𝑂𝑃) − 𝑚𝑏𝑒𝑠𝑡|𝑙𝑛 (1𝑢𝑖.𝑑𝑡) 𝑟3 = 1𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟+1) = 𝜑𝑑𝑡 − 𝛼|(𝑏𝑒𝑠𝑡(𝑥𝑗) 𝑂𝑟 𝑀𝑂𝑃) − 𝑚𝑏𝑒𝑠𝑡|𝑙𝑛 (1𝑢𝑖.𝑑𝑡) 𝑟3 = 0

To provide the quantum version of the AOA, Equation 7 with Equation 15 and Equation 9 with Equation 16 are

exchanged .

6. Proposed offloading scheme

The main steps of the proposed offloading schemes are shown in Figure 2. As shown in this figure, first a binary and

quantum version AOA algorithm denoted as BQAOA are presented. In the second step, task offloading problem is

formulated in the considered 3-tier architecture, in which various factors and constraints are used in this process. In

the third step, a Markov model is presented for network bandwidth between IoT and MEC, which helps us in

computing the average bandwidth between IoT and MEC. Then

Figure 2. The steps of BQAOA

11

6.1. Architecture

This research assumes that the computational application is processed first in the MDs themselves. If their

computational requirements are not met in the MDs, the application is offloaded to the nearest computational server

to small cell base stations (SBSs) antennas. Assuming that the computational power of sMEC, the closest server to

SBSs, is not sufficient to process computational tasks, the processing power of mMEC, the nearest server to macro-

base stations (MBSs), is used, which is at the edge of cloud computing and has more computational power. In this

study, the advantages of MEC as architecture of edge computing are used to solve the lack of computational resources

in MDs. In this way, the maximum processing resources available in both MDs and the nearest servers of MDs are

used to reduce costs and time. Otherwise, the nearest processing server in edge computing is used using offloading

solutions. Indeed for the lack of processing resources on MDs, the offloading solution is compensated[27, 46, 47]. So

that once the processing tasks are offloaded to the nearest processing sMEC server and then to the processing servers

in the nearest fog computing mMEC server. The main goal of these approaches is to perform a placement in a way

that usage of computational resources in edge computing in the hybrid computing resources is convenient, the waste

of them can be decreased, and the high QoS to meet the user's computational requirements is satisfied[48-51]. The

outline of the conceptual model is shown in Figure 3.

Figure 3. Task offloading in MEC-based 3-tier architecture

6.2. The problem formulation

In this study, multi-access edge computing in the 5G Heterogeneous network is assumed that the set of SBSs is

connected to MBSs via optical fiber links, and MDs are connected to SBS via wireless links. According to the

importance of reducing energy consumption on the part of MDs and increasing users' side QoS, two types of

implementation models can be assumed to implement computational tasks.

• User-side processing: If the user's processing resources were sufficient to perform the computational tasks,

the computational tasks would be executed on the MDs.

• Offloading schemes: If the computational tasks with high computational resource requirements that could

not be satisfied by MDs processing capability:

• Offloading to SBS: If the user's processing resources were not sufficient to perform the

computational tasks, the computational tasks would be executed on the mMEC connected two SBSs

via wireless links.

• Offloading to MBS: If the computing resources on the SBS side were limited, the computing tasks

would be offloaded to MBS connected to SBS via optical fiber links.

An integrated set of SBSs, MBSs, and MEC servers are assumed that computational Tasks could be served. SBSs and

SMEs, MBS and mMEC are co-located, respectively. The connection between MDs and SBSs leads the reducing

latency and increasing the transfer rate. So this assumption that the MDs were connected directly to the MBS is not

considered. Because the MEC server has a deficiency of computing potency, large task offloading requests could

make the SBS overloaded; in this case, the mMEC server will be another choice for available computational resources

12

[29]. The MDs are a set of M = {1,2,… M} and SBS as a set of N = {1,2,...N}. Each MD has one computing task to

execute that can be executed on MD, sMEC, or mMEC, respectively. The computational task of MD can be offloaded

to sMEC or be redirected to mMEC. The MD's computational tasks are indivisible and automated. The computational

task is displayed as follows. 𝑇𝑚 = {𝐶𝑚. 𝐷𝑚}.𝑚 𝜖𝑀 (19)

Where Cm, Dm are the total computations by the CPU cycle and the size of a computational task data, respectively.

6.2.1. Local execution model

In general, the energy consumption of smart devices is considered in four aspects, including sensing, actuation,

processing, communication, and standby mode. Therefore, the energy consumption of each device is calculated using

the following formula.

Pstdis the energy required to stay in Standby mode, and Sd(t) is the energy required to receive and store data, Td(t) is

the energy required to transmit data at time t, and Cd(t) is the energy used to process the data. By integrating the above

relation, the total energy consumed during the operation of the device is calculated through the following two formulas.

EdTotalis the total energy consumption in each device and j = {1,…, N} and K={1,..,N} and M={1,…,N} and t is the
operating time of each device. To meet the QoS, energy consumption and completion time parameters are considered.

The local completion time for executing task Tm is calculated as follows. 𝑇𝑚𝑙 = 𝐶𝑚𝑓𝑚𝑙
(27)

Where𝐶𝑚,𝑓𝑚𝑙 are the total numbers of computational by the CPU cycle and local computability of MDm, respectively.

The 𝐸𝑚𝑙 is the energy consumption of MDm Task Tm is performed locally.

 𝐸𝑚𝑙 =∝ 𝐶𝑚(𝑓𝑚𝑙)2 (28)

The ∝ is the coefficient associated with the chip considered for energy consumption.

6.2.2. Computation-offloading Model

The offloading strategy is categorized into two schemes for offloading computational tasks via sMEC or via mMEC

servers. This section discusses the total power consumption to complete the computational tasks, including offloading

for the task execution on the MEC servers and returning the result data. The improvement is considered from the user's

vision, so, except for the amount of performing offloading, the energy consumption of MEC servers is not

considered[52].

6.2.2.1. sMEC Offloading

The completion time 𝑇𝑚𝑛𝑠𝑏𝑠 for execution task,Im on sMEC servers via wireless links is the sum of transfer time 𝑇𝑚𝑛𝑡 of

task Im to sMEC and remote computation time 𝑇𝑚𝑛𝑒𝑠 . The wireless transfer time when MDm transmits its tasks to sMEC

is calculated as follows. 𝑇𝑚𝑛𝑡 = 𝐷𝑚𝑅𝑚𝑛
(29)

Where Dm , Rmn is the size of a computational task data and the communication model, respectively. The

computational time required to execute computational Tasks on sMEC n is given by:

(23) Pd(t) ≜ Sd(t) + Td(t) + Cd(t) + Pstd

(24) ESd ≜ ∫ Sd(t)dtNtsd ,ETd ≜ ∫ Td(t)dtNtTd , ECd ≜ ∫ Cd(t)dtNtCd

(25) Ed(t) ≜ ESd + ETd + ECd + Estd

(26) EdTotal ≜∑ESdjN
j +∑ETdK +N

k ∑ECdmN
j + Estd

13

𝑇𝑚𝑛𝑒𝑠 = 𝐶𝑚𝑓𝑚𝑛
(30)

Where Cm , fmn are the total computational numbersby the CPU cycle and the computational resource allocated to

MDm via sMEC. According to formulas 21 and 22, the completion time of 𝑇𝑚𝑛𝑠𝑏𝑠 can be calculated as follows:

 𝑇𝑚𝑛𝑠𝑏𝑠 = 𝑇𝑚𝑛𝑡 + 𝑇𝑚𝑛𝑒𝑠 = 𝐷𝑚𝑅𝑚𝑛 + 𝐶𝑚𝑓𝑚𝑛
(31)

As mentioned, the power consumption required to load the Computational Task Im to run in sMECn is 𝐸𝑚𝑛𝑡 Where is

the power consumption required to transfer the Task Im from MDm to SBSn. 𝐸𝑚𝑛𝑠𝑏𝑠 = 𝐸𝑚𝑛𝑡 = 𝑝𝑚𝑇𝑚𝑛𝑡 = 𝑝𝑚 𝐷𝑚𝑅𝑚𝑛
(32)

Where pm is constant transmission power and Tmnt is calculated in formula 17

Table 2. Notations

Description Item

The computational task 𝑇𝑚

The size of a computational task data 𝐷𝑚

The total number of computational by the CPU cycle 𝐶𝑚

Channel bandwidth w

Constant transmission power 𝑝𝑚

Channel gain between MDm and SBSm ℎ𝑚𝑛

The noise power 𝑛0

The inter-cell interface 𝑄𝑚𝑛

Local computability of MDm[34] 𝑓𝑚𝑙

The coefficient associated with the chip ∝

via sMEC nmcomputational resource allocated to MDThe 𝑓𝑚𝑛

The computational resource allocated by mMEC to each MD is considered to be fixed and unique for all

MDFs

𝑓0

The communication model 𝑅𝑚𝑛

The local completion time 𝑇𝑚𝑙

mThe energy consumption of MD 𝐸𝑚𝑙

The transfer time of task Im to sMEC 𝑇𝑚𝑛𝑡

The remote computation time 𝑇𝑚𝑛𝑒𝑠 𝑇𝑚𝑛𝑒𝑠

on sMEC servers mThe execution time for the task I 𝑇𝑚𝑛𝑠𝑏𝑠
nto run in sMEC mal Task IThe power consumption required to load the Computation 𝐸𝑚𝑛𝑠𝑏𝑠

The power consumption required to transfer the Task Im from MDm to SBSn 𝐸𝑚𝑛𝑡

to mMEC servers ncomputational tasks migrate from SBS mThe transmission time when I 𝑇𝑚𝑛𝑡𝑚

The Computation time for Computational Task on mMEC server 𝑇𝑚𝑛𝑒𝑚

The completion time when the computational task m is executed on mMEC servers 𝑇𝑚𝑛𝑚𝑏𝑠

nto run in sMEC mThe power consumption required to load the Computational Task I 𝐸𝑚𝑛𝑚𝑏𝑠

6.2.2.2. mMEC offloading

Computational tasks can be performed on the mMEC servers by migrating from the SBS connected to MBS via the

fiber optic link. The 𝑇𝑚𝑛𝑡𝑚, the transmission time when Im computational tasks migrate from SBSn to mMEC servers is

calculated by: 𝑇𝑚𝑛𝑡𝑚 = 𝐷𝑚𝛽
(33)

Where Dm, β are the size of a computational task data and the fiber link transfer rate between each SBS and MBS,

respectively. The 𝑇𝑚𝑛𝑡𝑚 is the computation time for Computational Task on mMEC server is given by:

14

𝑇𝑚𝑛𝑒𝑚 = 𝐶𝑚𝑓0
(34)

Where f0is considered the computational resource allocated by mMEC to each MD intended for offloading, which is

fixed and unique for all MDFs [52]. Cm is the total number of computational by the CPU cycle. When the

computational task m is executed on mMEC servers, the completion time 𝑇𝑚𝑛𝑚𝑏𝑠 is the sum of the transmission time 𝑇𝑚𝑛𝑡 ,𝑇𝑚𝑛𝑡𝑚, and 𝑇𝑚𝑛𝑒𝑚 as given by: 𝑇𝑚𝑛𝑚𝑏𝑠 = 𝑇𝑚𝑛𝑡 + 𝑇𝑚𝑛𝑡𝑚 + 𝑇𝑚𝑛𝑒𝑚 = 𝐷𝑚𝑅𝑚𝑛 + 𝐷𝑚𝛽 + 𝐶𝑚𝑓0
(35)

Similarly, the energy consumption of Task Im offloaded to mMEC server is the energy consumption of 𝐸𝑚𝑛𝑡 and can

be calculated as follows: 𝐸𝑚𝑛𝑚𝑏𝑠 = 𝐸𝑚𝑛𝑡 = 𝑝𝑚 𝐷𝑚𝑅𝑚𝑛
(36)

Where pm is constant transmission power and Emnt is the power consumption required to transfer the task Im from

MDm to SBSn.

6.2.3. Communication model

In this section, the communication model is presented with Rmnfor offloading tasks to sMEC or mMEC. The MD's

computational task can be offloaded to the local MD and the MEC servers according to their computational capacity.

The orthogonal frequency division multiple accesses for communication between MDs and SBSs is assumed in this

study. The transfer rate of the computational task from MDm to SBSn is calculated as follows. Rmn = wlog2(1+ pmhmnn0+Qmn) (20)

Where 𝑝𝑚,ℎ𝑚𝑛, 𝑛0, 𝑄𝑚𝑛 , and w are constant transmission power, Channel gain between MDm and SBSm, noise

power, inter-cell interface, and channel bandwidth, respectively. During time, network bandwidth between MDs and

MEC servers varies. In this study, a Markov model is used to achieve the average amount of bandwidth. In the

proposed Markov model, the sets S = {S1, S2, S3} denote the existence states, in which each state denoted to the

different level of bandwidth. Figure 4 depicts the transition diagram of the applied Markov model for network

bandwidth Markov model to show the sequence of decision-making outcomes. It is also possible to navigate between

states by a probability distribution represented by the form of the transition matrix with three transition states as

unknown parameters. The probability matrix can be written as follows: 𝑃 = [𝑝11 𝑝12 𝑝13𝑝21 𝑝22 𝑝23𝑝31 𝑝32 𝑝33] (21)

According to the above discussion, the Markov model could be defined as the model A=(S, P) and the sequence S=

S1, S2, S3∈S .In the Markov model, generally, this questions should be answered:

✓ Having the sequence S and the model A, what is the optimal sequence of T = S1, …,S3? to answer this question,

the QABOA algorithm is generally applied.

Figure 4: The transition diagram applied Markov model for network bandwidth

In this scheme, we compute the average available bandwidth between local MDs, sMEC, and mMEC server by using

Equation 22.

15

𝜋 = ([𝑝11 𝑝12 𝑝13𝑝21 𝑝22 𝑝23𝑝31 𝑝32 𝑝33])
𝑛

𝜋 = (𝜋1, 𝜋2, 𝜋3)
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = ∑𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑘3

𝑘=1 ∗ 𝜋𝑘 𝑤ℎ𝑒𝑟𝑒 ∑𝜋𝑘 = 13
𝑘=1

(22)

In which, 𝜋 is obtained by successive multiplication of matrix P, bandwidthk indicates the bandwidth of the kth state

also, in this equation; 𝜋𝑘 is the probability of the ith state of the proposed Markov model. By solving the energy

consumption Markov model for each local MDs, sMEC, and mMEC server, we can compute the average available

bandwidth for a cloud environment. The Markov model is applied to predict the best offloading path between the

states according to the following state to achieve better resource management.

6.2.4. Fitness function

The offloading decision determines the execution location for computational tasks such as sMEC offloading or mMEC

offloading. Therefore, the decision has two phases based on the computational offloading scheme. The first involves

offloading tasks to the MEC server via SBS, and the second involves offloading tasks from sMEC or mMEC. Let

consider 𝛾 as a decision-offloading matrix, 𝛾 = {𝑦𝑚𝑛|𝑚 ∈ 𝑀. 𝑛 ∈ 𝑁} (37)

Each 𝑦𝑚𝑛 can be computed as follows: 𝑦𝑚𝑛 = {1. 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑎𝑠𝑘𝑠 𝑜𝑓𝑓𝑙𝑜𝑎𝑑 𝑡𝑜 𝑠𝑀𝐸𝐶𝑛0. 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (38)

Because the task is offloaded to at least one MEC server, this condition must be met. ∑𝑦𝑚𝑛 ≤ 1. ∀𝑚 ∈ 𝑀𝑁
𝑛=1

(39)

:mlocation matrix for task I-Let consider z an offloading 𝑧 = {𝑧𝑚𝑛|𝑚 ∈ 𝑀. 𝑛 ∈ 𝑁} (40)

And each element 𝑧𝑚𝑛 is calculated by: 𝑧𝑚𝑛 = { 1. 𝐼𝑓 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝐼𝑚 𝑖𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑜𝑛 𝑠𝑀𝐸𝐶 𝑛0. 𝑖𝑓 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝐼𝑚 𝑖𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑜𝑛 𝑚𝑀𝐸𝐶 𝑛
(41)

The following condition ensures that each task must execute on at least one MEC server.

 ∑𝑧𝑚𝑛 ≤ 1. ∀𝑚 ∈ 𝑀𝑁
𝑛=1

(42)

Consider 𝑀𝑜𝑓𝑓 as a set of MDs which tasks are offloaded to sMECs and 𝑀𝑜𝑓𝑓 = {𝑚 ∈ 𝑀. 𝑛 ∈ 𝑀 |𝑦𝑚𝑛 = 1. 𝑧𝑚𝑛 = 1} (43)

And 𝑀𝑛 is considered a set of MDs which tasks are offloaded to sMECm. 𝑀𝑛 = {𝑚 ∈ 𝑀 |𝑦𝑚𝑛 = 1. 𝑧𝑚𝑛 = 1} (44)

Finally, we consider the computational resource matrix F for sMEC. 𝐹 = {𝑓𝑚𝑛|𝑚 ∈ 𝑀. 𝑛 ∈ 𝑁} (45)

Where 𝑓𝑚𝑛 > 0 is the resource allocation of sMECs to computational task𝐼𝑚. Because of the lack of computational

resources, the following condition must be met. ∑𝑚 ∈ 𝑀𝑛. 𝑓𝑚𝑛 ≤ 𝑓𝑛𝑚𝑎𝑥 . ∀𝑛 ∈ 𝑁 (46)

16

Where 𝑓𝑛𝑚𝑎𝑥 is the maximum computational capability of sMECn. This condition shows sMECm does not allocate

any computational resource to MDm. 𝑓𝑚𝑛 = 0 𝑖𝑓 𝑚 ∈ 𝑀𝑛 (47)

is given by: mTotal completion time for execution task I 𝑇𝑚 = ∑𝑦𝑚𝑛𝑁
𝑛=1 (𝑇𝑚𝑛𝑡 + 𝑧𝑚𝑛𝑇𝑚𝑛𝑒𝑠 + (1 − 𝑧𝑚𝑛)(𝑇𝑚𝑛𝑡𝑚 + 𝑇𝑚𝑛𝑒𝑚)) + (1 −∑ 𝑦𝑚𝑛𝑁𝑛=1) 𝑇𝑚𝑙

(48)

is calculated by mThe total energy consumption required to complete Task I 𝐸𝑚 = ∑𝑦𝑚𝑛𝑁
𝑛=1 (𝑧𝑚𝑛𝐸𝑚𝑛𝑠𝑏𝑠 + (1 − 𝑧𝑚𝑛)𝐸𝑚𝑛𝑚𝑏𝑠) + (1 −∑ 𝑦𝑚𝑛𝑁𝑛=1)𝐸𝑚𝑙

(49)

Therefore, the optimization problem can be shown as follows: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑌, 𝐹, 𝑍) ∑(ƞ𝑚𝑒 𝐸𝑚 + ƞ𝑚𝑡 𝑇𝑚)𝑀
𝑚=1

C1: 𝑦𝑚𝑛 . 𝑧𝑚𝑛 ∈ {0,1}. ∀𝑚 ∈ 𝑀. ∀𝑛 ∈ 𝑁

C2: ∑ 𝑦𝑚𝑛 ≤ 1. ∀𝑚 ∈ 𝑀𝑁𝑛=1
C3: ∑ 𝑧𝑚𝑛 ≤ 1. ∀𝑚 ∈ 𝑀𝑁𝑛=1
C4: ∑ 𝑦𝑚𝑛 ≤ 𝐻. ∀𝑛 ∈ 𝑁𝑁𝑛=1

C5: 𝑓𝑚𝑛 > 0. ∀𝑚 ∈ 𝑀𝑜𝑓𝑓. ∀𝑛 ∈ 𝑁
C6: ∑ 𝑓𝑚𝑛𝑚∈𝑀𝑛 ≤ 𝑓𝑛𝑚𝑎𝑥 . ∀𝑛 ∈ 𝑁

(50)

Where ƞ𝑚𝑒 + ƞ𝑚𝑡 = 1 and ƞ𝑚𝑒 . ƞ𝑚𝑡 ∈ [0,1]. Indicates weight by the energy consumption the completion time of MDm and

H represents the number of sub-carriers. The C1 constraint is a binary offloading decision, and the C2 and C3

constraints ensure that each MDm can select at least one SBS. Constraint 4 indicates that the number of Tasks uploaded

to the MEC server must be less than the total number of subcarriers. Constraints 5 and 6 indicate that the total

computational resources allocated to MDF offloading by each sMEC cannot exceed its computational capacity.

Formula 40 and 41 is an MINLP problem of NP-hard complexity and cannot be solved in polynomial time [52].

However, global improvement can be used to find the optimal solution to this problem. Worst computational

complexity limits the exponential nature of its applications to 5G wireless networks, leading to high levels of

communication, heterogeneous QoS requirements, and highly dynamic wireless channels. In this study, an efficient,

low-complexity algorithm can obtain a high-quality solution, and convergence guaranteed using the AOA is

developed.

6.3. The solution of BQAOA

In this study, each solution is implemented by a three-dimensional matrix with a size of 𝑦(2,𝑚, 𝑛), where m indicates

the number of MDs and n indicates the number of sMECs. The values of 𝑦(0,𝑚, 𝑛) can be zero or one. The number

one means that information is offloaded to process on sMEC and the number zero means that tasks are processed

locally on MDs. Also, the values of 𝑦(1,𝑚, 𝑛) can be zero or one. The number one means that the tasks should be

offloaded on mMEC, and the number zero means tasks should be offloaded on sMEC. In this study, instead of 𝑦(0,𝑚, 𝑛) and 𝑦(1,𝑚, 𝑛), 𝑦(𝑚, 𝑛) and 𝑧(𝑚, 𝑛) are used respectively for easier understanding.

Figure 5. The encoding of BQAOA’s solutions

Figure 5 shows the encoding of each candidate solution. The number of both matrices' columns, Y and Z, is equal to

N. The number of sMECs and m indicates the number of rows for matrices "Y and Z" and the number of MDs,

17

respectively. For row 0in the matrix Y, all columns are equal to zero, which means that tasks on mobile device 0 must

be processed locally and in the mobile device 0 itself without offloading to any sMEC server. The Y[1,1]=1 and

Z[1,1]=0 show that the task on mobile device 1 must be offloaded on sMEC 1 and processed at the same sMEC server.

The following example, Y[2,1]=1, shows that the task on mobile device 2 must be offloaded to sMEC 1, and the

Z[2,1]=1 shows that the task could not be processed on sMEC 1 and must be offloaded to mMEC server.

7. Performance evaluation

In this section, the performance of the BQAOA method is presented. The CloudSim5 simulator, a toolkit for modeling

and simulating extensible clouds, evaluates the performance. As a completely customizable tool, cloudSim5 allows

the extension and definition of policies in all the software stack components, making it a suitable research tool to

handle the complexities arising from simulated environments[43]. In this study, two different scenarios are considered

to simulate the 5G-Net environment. Scenario A is assumed to be small with 50 within a coverage area (250 × 250

m2) MDs, 6 SBS, and 1 MBs connected to all SBSs, but Scenario B considers the problem space to be larger and the

number of MDs, SBS, and MBS are considered 200 within a coverage area (1000× 1000 m2), 12 and 1 connected to

all SBSs, respectively. Other standard simulation parameters used in both scenarios are shown in Table 3.

7.1. Simulation results

The performance of BQAOA has been compared with AOA, ICA, GA, and PSO, and Krill Herd algorithms in terms

of energy consumption, processing time, and ESV, respectively. The energy consumption in this study refers to the

electricity consumed by MDs, sMEC servers, which are the servers that are located next to the SBS, and also the

electricity consumed by sMEC servers, the central cloud computing server. The purpose is to optimize the total set of

energy consumed in these layers. Processing time refers to the time required to process all tasks on all MDs, sMEC

servers, and mMEC servers, which is called makespan time. The ESV metric is also a parameter obtained by

multiplying makespan time in energy consumption, calculated in Equation 49.

There is a trade-off between energy consumption and processing time, that if servers are used too much, time decreases

and energy increases, and if servers are used less, time increases and energy decreases. In order to be able to decide,

despite this trade-off, whether reducing energy consumption harms processing time, the existence of the ESV

parameter is essential.
Table 3. Simulation parameters in Scenario A and B

Parameter Value

Channel-gain The path-loss model according to 140.7 + 36.7log10(d). where

d (km) is the distance between the MD and the SBS

The noise power n0= -100 dBm

The number of MDs in Scenario A 10-45

The number of MDs in Scenario B 20-200

The number of tasks in Scenario A 10-45

The number of tasks in Scenario B 20-200

The transmit power of MD pm= 23 dBm

The data rate of the fiber-optic link 𝛽= 1 Gbps

The number of subcarriers H = 12

The bandwidth of each sub-channel W = 3 MHz

The input data size of the computational tasks [600, 1200] KB

The number of CPU cycles Cm = [500, 1000] Megacycles

The CPU speed of the mMEC f0= 3 GHz,

The maximum CPU computing capacity sMEC fmax= 6 GHz

The local computing power of the MDs {0.5, 0.8, 1}GHz , a = 5 × 10-27

The weighting parameters of the computational task 0.5

Maximum number of iterations (Tmax) 1000

The size of the particle population (K) 30

ESV=(Energy*makespan)/1000 (51)

18

7.1.1. Analysis BQAOA in terms of energy consumption in scenario A

For the purpose of this study, energy consumption refers to the energy consumed by MDs and sMECs without

considering mMEC. In Figure 6, the horizontal axis shows the number of MDs and the vertical axis shows the amount

of energy consumption in watts per hour.

Figure 6. The Energy Consumption in Scenario A

The BQAOA algorithm has consumed less electricity than other algorithms in all cases and with any number of MDs

while the genetic algorithm has consumed the highest amount of energy compared to other algorithms. As shown here,

increased MDs was directly related to energy consumption which is due to an increase in the number of tasks as each

mobile device has at least one task to perform.
According to Figure 7, the performance of BQAOA was better than AOA, GA, ICA,PSO and Krill Herd regarding

energy consumption. Improvement in energy consumption compared to other methods is shown in Figure 7 in which

the horizontal axis indicates the number of MDs and the vertical axis indicates the percentage of improvement in

energy consumption.

The BQAOA algorithm showed the most significant improvement over the genetic algorithm. Furthermore, it is

observed that with an increase in the number of MDs, improvement in the proposed algorithm becomes significantly

better compared to other algorithms. This is due to the enlargement of problem space as, in larger problem spaces, the

algorithms are optimally localized resulting in weaker performance. Still, the BQAOA algorithm was less involved in

the local optimization.

Figure 7. Improvement in energy consumption compared to the other methods in Scenario A

19

7.1.2. Analysis BQAOA in terms of energy consumption in scenario B

In Figure 8, the vertical axis shows the amount of energy consumption in watts per hour. In scenario B, the BQAOA

algorithm consumed less energy than the other algorithms. Moreover, the genetic algorithm and the imperialism

competition algorithm showed the highest electricity consumption, respectively. In addition, with an increase in the

number of MDs, difference in algorithms’ energy consumption becomes more significant which is due to the small
size of the space problem when the number of MDs is low.

According to Figure 9, the performance of BQAOA was better than AOA, GA, ICA and PSO in terms of energy

consumption. Figure 9 shows improvement in energy consumption in which the horizontal axis indicates the number

of MDs and the vertical axis indicates the percentage of improvement in energy consumption compared to the other

methods. Looking closely at Figure 9, the BQAOA algorithm showed the least improvement over the PSO and AOA

algorithms because of the relatively good performance of these two algorithms compared to the other algorithms such

as genetics, ICA, and KHA. In addition, the percentage of improvement will increase with an increase in the number

of MDs. The difference in the performance of algorithms in a larger space could be seen better.

Figure 8. Energy consumption in Scenario B

Figure 9. Improvement in energy consumption of BQAOA compared to the other methods in Scenario B

20

7.1.3. Analysis of BQAOA in terms of Makespan in scenario A

In this study, the makespan indicates full processing of all tasks on all MDs, whether locally or nor, on sMEC, or

mMEC. Figure 10 shows the makespan time in which the horizontal axis indicates the number of MDs and the vertical

axis indicates the makespan in milliseconds. Figure 11 shows an improvement in the processing time compared to the

other methods where the horizontal axis indicates the number of MDs and the vertical graph indicates the percentage

improvement in makespan.

Figure 10. Makespan time in scenario A

Figure 11. Improvement of makespan of BQAOA compared to the other methods in Scenario A

As shown in Figure 11, the BQAOA makespan algorithm was timeless compared to the other algorithms. The ICA

algorithm had more makespan time so the BQAOA algorithm performed better than the other algorithms due to the

reduced makespan time and the ICA algorithm had a relatively weak performance. The BQAOA algorithm has

21

improved most in terms of makespan time compared to the genetic algorithm and ICA. This indicates the poor

performance of these two algorithms in terms of makespan time.

7.1.4. Analysis BQAOA in terms of Makespan in Scenario B

In this section, the processing times is related to all tasks that are fully processed on all MDs, whether locally or not,

on sMEC, or mMEC, . The horizontal axis indicates the number of MDs and the vertical axis shows the makespan

time in milliseconds, as shown in Figure 12.

In Scenario B, the BQAOA algorithm achieved less makespan than the other algorithms, and the genetic algorithm

and ICA performed worse than the other algorithms. Besides, the makespan time achieved by them was higher than

the other algorithms. It was also observed that with an increase in the number of MDs, the makespan time increases

which is due to is the fact that every mobile device has at least one task to perform, and therefore with the increase in

MDs, the number of tasks increases and as a result, makespan time increases.

Figure 12.Makespan time in Scenario B

Figure 13 shows an improvement in the processing time compared to the other methods in scenario B. The horizontal

axis refers to the number of MDs and the vertical axis refers to the percentage improvement in the processing time.

Figure 13. The makespan of BQAOA compared to the other methods in Scenario B

22

According to Figure 13, the lowest rate of improvement in the BQAOA algorithm compared to the other algorithms

was related to the PSO algorithm. This indicated better performance of the PSO algorithm than the other algorithms

after the BQAOA algorithm. Moreover, increased number of MDs improved the BQAOA algorithm more significantly

than the other algorithms which was due to an increase in the problem space.

7.1.5. Analysis of BQAOA in terms of ESV in scenario A

Sometimes, reduced energy consumption may occur as a result of reduced number of processing elements, and in fact,

this reduction in energy consumption increases the processing time. To measure BQAOA efficiency in reducing

energy consumption, a metric called ESV was used which is calculated in Equation 49.

According to Figure 14, it can be argued that the performance of BQAOA in terms of ESV metric was better than

AOA, genetic methods, ICA and PSO, and krill herd algorithms. Moreover, with an increase in the number of MDs,

the BQAOA algorithm improves more than the other algorithms. Based on this, it is believed that the BQAOA

algorithm affects improvement compared to the other algorithms in terms of both energy consumption and makespan

time.

Figure 14. Improvement in the makespan of BQAOA compared to the other methods in Scenario A

Figure 14 shows the improvement of ESV compared to the other methods. The horizontal axis indicates the number

of MDs, and the vertical axis shows the percentage of ESV recovery. According to Figure 14, the BQAOA algorithm

had the best improvement in terms of ESV metrics compared to the genetic algorithm. Therefore, it can be concluded

that the genetic algorithm generally showed less improvement than the other algorithms in terms of energy

consumption and makespan time, and QBAO, AOA, and PSO algorithms had the best performances, respectively.

7.1.6. Analysis of BQAOA in terms of ESV in Scenario B

To measure the efficiency of BQAOA in reducing energy consumption, a metric called ESV was used according to

Equation 51. Figure 15 shows performance of the BQAOA algorithm and the other algorithms in terms of ESV metrics

in Scenario B. The horizontal axis represents the number of MDs and the vertical axis represents the metric value of

ESV. The lower the ESV value, the better the performance of that algorithm in energy consumption and makespan

time. According to Figure 15, it can be argued that the performance of BQAOA in terms of ESV metric was better

than the AOA, genetic methods, ICA and PSO, and krill herd algorithms.

23

Figure 15. The ESV rate in Scenario B

Figure 16 shows the improvement of ESV compared to the other methods. The horizontal axis indicates the number

of MDs and the vertical axis indicates the percentage of ESV recovery. Looking closely at Figure 16, it can be argued

that the BQAOA algorithm showed the least improvement compared to the AOA and PSO algorithms which may be

due to the relatively better performance of these two algorithms compared to the other algorithms and a higher rate of

the BQAOA algorithm’s improvement compared to the GA and KHA algorithms. The genetic algorithm and KHA

performed worse in energy consumption and makespan time than the other algorithms in Scenario B.

Figure 16. Comparison of BQAOA with other methods in terms of ESV rate improvement

24

8. Conclusion

The growing speed of diverse applications and the increasing demands for powerful computing platforms have been

raised as a challenge. One of the reasons for the emergence of edge computing is a straightforward and quick access

to powerful computing resources, decreased response time and enhanced user satisfaction. Due to limitations of

computational resources on the edge and implementation of users' favorite computational application with a minimum

energy consumption and quick processing time, the offloading decision is needed to increase the performance.

In this study, relying on MEC as an architectural concept of edge computing and offloading issue as an NP-complete

problem, a new binary approach has been proposed based on AOA for offloading computational tasks to appropriate

and efficient computational resources in terms of energy and response time. Two different scenarios have been used

to evaluate the proposed offloaded scheme. The results showed that in the first scenario, BQAOA reduced the average

energy consumption by about 3.94%, 6.58%, 15.64%, 20%, and 16.06% compared to the AOA, PSO, ICA, GA, and

krill herd algorithms, respectively. The makespan time also decreased by about 4.6%, 5.7%, 12.8%, 16.52%, and

11.86% compared to the AOA, PSO, ICA, GA, and krill herd algorithms, respectively. Regarding the ESV metrics,

BQAOA improved about 12.77% compared to the PSO algorithm, 30.45% compared to the ICA algorithm, 39.86%

compared to the genetic algorithm, and 29.81% compared to the genetic with the krill herd algorithm, and 8.7%

compared to the AOA algorithm. The results showed that, in the second scenario, BQAOA reduced the average energy

consumption by about 3.28%, 5.28%, 18.64%, 22.7%, and 17.24% compared to the AOA, PSO, ICA and GA, and

krill herd algorithm, respectively. The Makespan time also decreased by about 9.21%, 11.2%, 16.3%, 18.3%, and

19.7% compared to the AOA, PSO, ICA, GA, and krill herd algorithms, respectively. Regarding ESV metrics,

BQAOA improved by about 17.17% compared to the PSO algorithm, 37.91% compared to the ICA algorithm, 45.05%

compared to the genetic algorithm, and 40.12% compared to the genetic and krill herd algorithms, and 12.79%

compared to the AOA algorithm.

In future studies, the researchers can introduce a multi-objective version of the BQAOA algorithm and consider

different factors such as trust and security-related ones in solving the offloading problem.

References

[1] D. Rahbari and M. Nickray, "Low-latency and energy-efficient scheduling in fog-based IoT applications,"

Turkish Journal of Electrical Engineering & Computer Sciences, vol. 27, no. 2, pp. 1406-1427, 2019.

[2] O. H. Ahmed, J. Lu, A. M. Ahmed, A. M. Rahmani, M. Hosseinzadeh, and M. Masdari, "Scheduling of

scientific workflows in multi-fog environments using Markov models and a hybrid Salp swarm algorithm,"

IEEE Access, vol. 8, pp. 189404-189422, 2020.

[3] M. Masdari and H. Khezri, "Efficient offloading schemes using Markovian models: a literature review,"

Computing, vol. 102, no. 7, 2020.

[4] M. Masdari and A. Khoshnevis, "A survey and classification of the workload forecasting methods in cloud

computing," Cluster Computing, vol. 23, no. 4, pp. 2399-2424, 2020.

[5] S. Yang, F. Li, M. Shen, X. Chen, X. Fu, and Y. Wang, "Cloudlet placement and task allocation in mobile

edge computing," IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5853-5863, 2019.

[6] A. Hazra, M. Adhikari, T. Amgoth, and S. N. Srirama, "Joint computation offloading and scheduling

optimization of IoT applications in fog networks," IEEE Transactions on Network Science and Engineering,

vol. 7, no. 4, pp. 3266-3278, 2020.

[7] X. Deng, Z. Sun, D. Li, J. Luo, and S. Wan, "User-centric computation offloading for edge computing," IEEE

Internet of Things Journal, 2021.

[8] K. Akherfi, M. Gerndt, and H. Harroud, "Mobile cloud computing for computation offloading: Issues and

challenges," Applied computing and informatics, vol. 14, no. 1, pp. 1-16, 2018.

[9] Z. Kuang, Z. Ma, Z. Li, and X. Deng, "Cooperative computation offloading and resource allocation for delay

minimization in mobile edge computing," Journal of Systems Architecture, vol. 118, p. 102167, 2021.

[10] P. Mach and Z. Becvar, "Mobile edge computing: A survey on architecture and computation offloading,"

IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1628-1656, 2017.

[11] R. Mahmud, R. Kotagiri, and R. Buyya, "Fog computing: A taxonomy, survey and future directions," in

Internet of everything: Springer, 2018, pp. 103-130.

[12] S. Gharehpasha, M. Masdari, and A. Jafarian, "Virtual machine placement in cloud data centers using a

hybrid multi-verse optimization algorithm," Artificial Intelligence Review, vol. 54, no. 3, pp. 2221-2257,

2021.

25

[13] A. Shakarami, M. Ghobaei-Arani, M. Masdari, and M. Hosseinzadeh, "A survey on the computation

offloading approaches in mobile edge/cloud computing environment: a stochastic-based perspective,"

Journal of Grid Computing, vol. 18, no. 4, pp. 639-671, 2020.

[14] G. Peng, H. Wu, H. Wu, and K. Wolter, "Constrained Multi-objective Optimization for IoT-enabled

Computation Offloading in Collaborative Edge and Cloud Computing," IEEE Internet of Things Journal,

2021.

[15] M. Huang, Q. Zhai, Y. Chen, S. Feng, and F. Shu, "Multi-Objective Whale Optimization Algorithm for

Computation Offloading Optimization in Mobile Edge Computing," Sensors, vol. 21, no. 8, p. 2628, 2021.

[16] S. Mirjalili, "Genetic algorithm," in Evolutionary algorithms and neural networks: Springer, 2019, pp. 43-

55.

[17] D. Costa, "A tabu search algorithm for computing an operational timetable," European Journal of

Operational Research, vol. 76, no. 1, pp. 98-110, 1994.

[18] P. J. Van Laarhoven and E. H. Aarts, "Simulated annealing," in Simulated annealing: Theory and

applications: Springer, 1987, pp. 7-15.

[19] N. Mladenović and P. Hansen, "Variable neighborhood search," Computers & operations research, vol. 24,

no. 11, pp. 1097-1100, 1997.

[20] M. Dorigo, M. Birattari, and T. Stutzle, "Ant colony optimization," IEEE computational intelligence

magazine, vol. 1, no. 4, pp. 28-39, 2006.

[21] S. I. Gass and C. M. Harris, "Encyclopedia of operations research and management science," Journal of the

Operational Research Society, vol. 48, no. 7, pp. 759-760, 1997.

[22] L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, and A. H. Gandomi, "The arithmetic optimization

algorithm," Computer methods in applied mechanics and engineering, vol. 376, p. 113609, 2021.

[23] S. Bitam, S. Zeadally, and A. Mellouk, "Fog computing job scheduling optimization based on bees swarm,"

Enterprise Information Systems, vol. 12, no. 4, pp. 373-397, 2018.

[24] J. Du, L. Zhao, J. Feng, and X. Chu, "Computation offloading and resource allocation in mixed fog/cloud

computing systems with min-max fairness guarantee," IEEE Transactions on Communications, vol. 66, no.

4, pp. 1594-1608, 2017.

[25] X. Xu, D. Li, Z. Dai, S. Li, and X. Chen, "A heuristic offloading method for deep learning edge services in

5G networks," IEEE Access, vol. 7, pp. 67734-67744, 2019.

[26] R. Singh, S. Armour, A. Khan, M. Sooriyabandara, and G. Oikonomou, "Heuristic Approaches for

Computational Offloading in Multi-Access Edge Computing Networks," in 2020 IEEE 31st Annual

International Symposium on Personal, Indoor and Mobile Radio Communications, 2020: IEEE, pp. 1-7.

[27] I. B. Lahmar and K. Boukadi, "Resource allocation in fog computing: A systematic mapping study," in 2020

Fifth International Conference on Fog and Mobile Edge Computing (FMEC), 2020: IEEE, pp. 86-93.

[28] Q.-V. Pham, T. Leanh, N. H. Tran, B. J. Park, and C. S. Hong, "Decentralized computation offloading and

resource allocation for mobile-edge computing: A matching game approach," IEEE Access, vol. 6, pp. 75868-

75885, 2018.

[29] C. Swain et al., "Meto: Matching theory based efficient task offloading in iot-fog interconnection networks,"

IEEE Internet of Things Journal, 2020.

[30] L. N. Huynh, Q.-V. Pham, X.-Q. Pham, T. D. Nguyen, M. D. Hossain, and E.-N. Huh, "Efficient computation

offloading in multi-tier multi-access edge computing systems: A particle swarm optimization approach,"

Applied Sciences, vol. 10, no. 1, p. 203, 2020.

[31] N. I. M. Enzai and M. Tang, "A heuristic algorithm for multi-site computation offloading in mobile cloud

computing," Procedia Computer Science, vol. 80, pp. 1232-1241, 2016.

[32] S. Guan, A. Boukerche, and A. Loureiro, "Novel Sustainable and Heterogeneous Offloading Management

Techniques in Proactive Cloudlets," IEEE Transactions on Sustainable Computing, vol. 6, no. 2, pp. 334-

346, 2020.

[33] E. V. D. Subramaniam and V. Krishnasamy, "Energy aware smartphone tasks offloading to the cloud using

gray wolf optimization," Journal of Ambient Intelligence and Humanized Computing, pp. 1-9, 2020.

[34] M. Adhikari, S. N. Srirama, and T. Amgoth, "Application offloading strategy for hierarchical fog

environment through swarm optimization," IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4317-4328,

2019.

[35] V. Sundararaj, "Optimal task assignment in mobile cloud computing by queue based ant-bee algorithm,"

Wireless Personal Communications, vol. 104, no. 1, pp. 173-197, 2019.

26

[36] P. COMPUTING, "An efficient job sharing strategy for prioritized tasks in mobile cloud computing

environment using acs-js algorithm," Journal of Theoretical and Applied Information Technology, vol. 97,

no. 4, 2019.

[37] T. Wang, X. Wei, C. Tang, and J. Fan, "Efficient multi-tasks scheduling algorithm in mobile cloud computing

with time constraints," Peer-to-Peer Networking and Applications, vol. 11, no. 4, pp. 793-807, 2018.

[38] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W. Wu, and X. S. Shen, "TOFFEE: Task offloading and frequency

scaling for energy efficiency of mobile devices in mobile edge computing," IEEE Transactions on Cloud

Computing, 2019.

[39] Y. Zhang and J. Fu, "Energy-efficient computation offloading strategy with tasks scheduling in edge

computing," Wireless Networks, vol. 27, no. 1, pp. 609-620, 2021.

[40] B. Li, Y. Pei, H. Wu, and B. Shen, "Heuristics to allocate high-performance cloudlets for computation

offloading in mobile ad hoc clouds," The Journal of Supercomputing, vol. 71, no. 8, pp. 3009-3036, 2015.

[41] J. Zhang, H. Guo, J. Liu, and Y. Zhang, "Task offloading in vehicular edge computing networks: A load-

balancing solution," IEEE Transactions on Vehicular Technology, vol. 69, no. 2, pp. 2092-2104, 2019.

[42] H.-J. Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon, "IONN: Incremental offloading of neural network

computations from mobile devices to edge servers," in Proceedings of the ACM Symposium on Cloud

Computing, 2018, pp. 401-411.

[43] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya, "CloudSim: a toolkit for modeling

and simulation of cloud computing environments and evaluation of resource provisioning algorithms,"

Software: Practice and experience, vol. 41, no. 1, pp. 23-50, 2011.

[44] J. J. Moghaddam and A. Bagheri, "Suppressing vibration in a multilayers composite material plate using

quantum-behaved particle swarm optimization and sliding mode control system," Proceedings of the

Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 229, no. 11, pp. 2095-

2105, 2015.

[45] M. Clerc and J. Kennedy, "The particle swarm-explosion, stability, and convergence in a multidimensional

complex space," IEEE transactions on Evolutionary Computation, vol. 6, no. 1, pp. 58-73, 2002.

[46] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, and P. Mohapatra, "Edge cloud offloading algorithms:

Issues, methods, and perspectives," ACM Computing Surveys (CSUR), vol. 52, no. 1, pp. 1-23, 2019.

[47] Y. Sun, F. Lin, and H. Xu, "Multi-objective optimization of resource scheduling in Fog computing using an

improved NSGA-II," Wireless Personal Communications, vol. 102, no. 2, pp. 1369-1385, 2018.

[48] M. Masdari and M. Zangakani, "Green cloud computing using proactive virtual machine placement:

challenges and issues," Journal of Grid Computing, pp. 1-33, 2019.

[49] M. Masdari, S. Gharehpasha, M. Ghobaei-Arani, and V. Ghasemi, "Bio-inspired virtual machine placement

schemes in cloud computing environment: taxonomy, review, and future research directions," Cluster

Computing, pp. 1-31, 2019.

[50] M. Masdari and M. Zangakani, "Efficient task and workflow scheduling in inter-cloud environments:

challenges and opportunities," The Journal of Supercomputing, vol. 76, no. 1, pp. 499-535, 2020.

[51] B. Mao, F. Tang, Y. Kawamoto, and N. Kato, "Optimizing Computation Offloading in Satellite-UAV-Served

6G IoT: A Deep Learning Approach," IEEE Network, vol. 35, no. 4, pp. 102-108, 2021.

[52] L. N. Huynh, et al, "Efficient computation offloading in multi-tier multi-access edge computing systems: A

particle swarm optimization approach," Applied Sciences vol. 10.1, p. 203, 2020.

