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Urban/Rural Spatial Price Discrimination with Online
Competition

Abstract

We contribute to the previous offline spatial price discrimination by adding an online

entrant that results in partially equalized prices, and the urban (rural) segments are served

by the offline (online) firms. Online competition induces the offline firms to move closer

to the market center, which causes the equilibrium locations to no longer be the social

optimum due to the online price distortion. The greater the online advantage is, the

higher the online price, the less dispersed the offline locations, and the lower the offline

prices will be in urban areas. Finally, zoning policies and two extensions of online price

discrimination and multiple offline firms with free entry are offered.

Keywords: Online firm, price discrimination, urban/rural markets, location, zoning.

JEL Classification Numbers. R30, L13

1 Introduction

Spatial price discrimination means that firms can set locational discriminatory prices, which

has been studied by Hoover (1937), followed by Hurter and Lederer (1985), Thisse and Vives

(1988) and Vogel (2011), and this classical issue recently has attracted the attention of policy

makers due to the rapid development of online-offline competition in the past two decades.1

We explore the issue in further depth by incorporating online competition and establishing a

novel urban/rural framework to explore the relocation tendency of offline retailers and partially

equalized price patterns, as well as corresponding zoning implications.

Consider an urban/rural economy where the total population is distributed along a unit-

length linear market with the highest population density at the market center (urban area), and

lower population density appears in two end segments (rural areas). Two offline firms (retailers)

engage in spatial price discrimination, and bear the delivery costs. They also face competition

1The influence of online competition on geographical price variations has received public attention. For

instance, the US Federal Trade Commission (FTC) previously found that at Staples, prices were 12% higher

with only one office superstore in 1997 after the Staples/Office Depot merger, but now the FTC has less concern

over the same merger, because most of the variation in prices has been reduced due to the presence of online

retailing.
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from the entry of a location-irrelevant online firm. Our setting highlights two major practical

online-offline differences. First, online firms usually enact uniform pricing, while offline firms

may choose spatially discriminatory pricing with less opposition from customers.2,3 Second,

consumers will suffer an additional distaste cost in an online transaction.4 The entry of an

online retailer is shown to reduce the locational price differentiation and result in equalized

pricing except in the most urban area, which has seldom been discussed in previous studies

to the best of our knowledge. The urban consumers will benefit from lower offline prices

due to competition between less dispersed offline firms after the online entry, while the rural

consumers also benefit from the above equalized lower price.

Our price pattern explains the empirical evidence in Brynjolfsson and Smith (2000), who

analyzed the prices of two homogenous products of books and CDs and found that price

dispersion is lower in internet channels than in conventional channels. Our theory shows that

a newly entering online retailer not only plays a role as a new competitor, but also brings

in locational irrelevant pricing, leading to a kinked equilibrium price pattern in the urban

area. This thus shows a considerable reduction in overall price levels, and a reduction in price

variations as well.

We assume the online firm has different market power in setting prices compared to the

offline firms, because it must set its prices uniformly for consumers across areas. This pricing

behavior is empirically observed and has decisively changed the nature of traditional spatial

price competition, where the online-offline economy does not follow the traditional discrimi-

2Online retailing tends to be locational irrelevant for consumers due to the nature of cyberspace, in contrast

to offline transactions, in which distance is relevant for consumers. Technically, data mining on personal

geographical information could allow online firms to enact spatial price discrimination. However, our setting

can be justified, because in practice online spatial price discrimination is limited for various reasons: consumers

can easily compare and see through discriminatory prices on line, consumer loyalty may be eroded if they

discover they are the targets of such discrimination, and there may be governmental regulations in place to

restrict data processing and profiling due to privacy and data protection which discourage or disallow such

discrimination.
3We also provide an alternative analysis in Subsection 4.1 where the online firm enacts spatial price discrim-

ination, with an assumption that it will not irritate customers due to unfair treatment.
4Consumers are unable to fully inspect products in person beforehand, could suffer from transaction risks,

normally have to wait longer, sometimes much longer, for delivery, and are usually subject to shipping and

handling fees, all of which are summarized as a distaste cost for online transactions in our framework. On the

other hand, online firms may provide broader and faster search and comparisons between prices and quality of

products (in addition to lower prices due to lower overhead, wider product ranges, and even generous return

policies to offset the online purchasing distaste cost), which are not embedded in the current model for simplicity.

See Goldfarb and Tucker (2019) for reviewing studies on other online-offline differences.
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natory price rule, namely that the lowest-cost firm sets its price equal to the second-lowest

firm’s marginal cost. Our comparative statics reveals that the less the online distaste cost is,

the higher the online price is, the closer the offline firms are, and the lower/higher the offline

prices in urban/non-urban areas are. Intuitively, a greater online advantage induces offline

firms to move closer to the market center to avoid online vs offline competition, and thus the

online price increases because of the raised demand. Moreover, after the online entry, the

urban offline prices decline due to competition between more concentrated offline firms, but

the non-urban offline prices increase due to the increased online price.

Our online-offline competition is shown to have new implications for socially optimal loca-

tions and zoning policies. The traditional wisdom in Hurter and Lederer (1985) and Lederer

and Hurter (1986) is that the equilibrium locations are socially optimal under spatial price

discrimination when the social welfare is the sum of firms’ profits and consumer surplus with

equal weights. We find that this property is no longer valid with online competition, because

of the online price distortion effect, in which the online firm has market power to set a dis-

torted uniform price which induces the equilibrium locations to be less far apart than the

social optimum.

When the social welfare has a large weight in firms’ profits, in addition to the offline

vs offline competition avoidance in previous offline studies, we reveal the other two opposite

influences of the online firm, namely that online price distortion appears, and that the waste of

delivery cost is reduced for the remote consumers from offline locations. Since the relationship

between the social weight on consumer surplus and the optimal offline locations is no longer

monotone, we obtain different zoning policies from various numerical illustrations. The optimal

zoning policies will depend on the social optimal offline locations and relocation tendency,

which depend on the above two opposite influences. For instance, when the social planner

only cares about firms’ profits, the optimal zoning policy may restrict offline firms to locate

in the urban area and leave the rural consumers to be served by the online firm if the online

advantage is not large, contrary to the previous pure offline frameworks where the optimal

zoning is setting two end-point locations for firms. This is because the online firm has some

market power and sets an above-cost price, so the offline prices can also rise, at the same

time, less dispersed offline locations can reduce the waste delivery costs for remote consumers,

because they are now served by the online firm. Our results will be associated with online-

offline and offline-offline competition and the trade-off between the distaste cost and delivery

costs. It can be compared with the previous finding in Bárcena-Ruiz and Casado-Izaga (2014)

that restricting offline firms in the most urban area is beneficial to consumers due to more
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intense competition.5 In our online vs offline and urban vs rural framework, it may be optimal

to limit the location of the offline firms to moderately rural areas, which creates more intense

competition between online and offline firms, which is mostly beneficial to consumers.

Among the literature on spatial price discrimination with oligopoly competition, Hurter

and Lederer (1985) and Lederer and Hurter (1986) further included a location stage with

duopolistic competition, and show that one firm will locate at the first quartile, and the other

firm locates at the third quartile in equilibrium. In a sequential entry game, Heywood and

Ye (2009) revealed that a public firm can restrict its market in order to induce earlier private

entrants to locate near the welfare-maximizing points. Vogel (2011) further considered an

entry game with heterogeneous-cost firms to demonstrate that more productive firms will be

more isolated. In contrast to the previous location and pricing patterns, we demonstrate less

dispersed locations and more equalized prices after the online entry. Another related issue

is to compare spatial price discrimination with simple mill pricing, given firms located at

the endpoints of a Hotelling line or uniformly distributed in a circular market. For instant,

Thisse and Vives (1988) examined the pricing strategies among firms and suggested that

spatial discriminatory pricing is the unique Nash equilibrium, which provides lower prices and

higher consumer surplus in comparison with simple mill pricing. Taylor and Wagman (2014)

further discussed the privacy implication and revealed that some consumers near the firms

could be worse off without privacy. Esteves and Shuai (2022) considered an elastic demand

and demonstrated that spatial price discrimination (personalized pricing) reduces consumer

surplus when the demand elasticity is not small.

Numerous studies have addressed the influences of online competition. Balasubramanian

(1998) constructed a circular model and analyzed price competition among one direct channel

(mail order) and conventional offline stores. The shipping cost is locationally irrelevant and

fixed for the direct channel, while it increases with distance for conventional offline stores.

He found that the direct channel may choose partial coverage when sending its catalog to

consumers, and each retailer can compete with the direct channel instead of its nearby retailers.

Loginova (2009) analyzed the price and welfare among offline retailers and competitive online

retailers with addition of the stipulation that consumers may visit offline stores to collect

information and come back home for their online purchasing. She showed that conventional

5The optimal zoning analysis under oligopoly competition was investigated using different frameworks, such

as the Hotelling model (Lai and Tsai, 2004; Matsumura and Matsushima, 2011; Bárcena-Ruiz and Casado-Izaga,

2014), Cournot competition (Chen and Lai, 2008; Colombo, 2012), circular model (Hamondi and Risueno, 2012),

and connected cities (Bárcena-Ruiz and Casado-Izaga, 2017, 2018, 2020).
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stores may raise their prices unexpectedly in response to the entry of online firms. Recently,

Guo and Lai (2017) constructed a location and non-discriminatory pricing game, and found

that online competition induces offline retailers to move toward urban areas, occupying non-

overlapping and contiguous market segments, and the online retailer serves the remote rural

areas. Chen et al. (2017) endogenized firms’ online-offline market choices according to product

quality and suggested that an entrant firm with a higher/lower quality may sell online/offline.

Guo and Lai (2022) further revealed that third-degree online price discrimination under online-

offline competition may improve social welfare when the online-offline cross-demand parameter

is large. Moreover, there are various empirical studies on competition between offline stores

and online firms such as Clay et al. (2002), Brynjolfsson and Smith (2000), Goolsbee (2001),

Forman et al. (2009) and Duch-Brown et al. (2017). The current paper complements this

stream of literature by providing the first analysis of the role of online competition in the

classical framework of spatial price discrimination.

The rest of this paper is organized as follows. Section 2 describes the model, and the bench-

mark scenario without online competition is presented in Section 3.1. Section 3.2 discusses the

equilibrium locations and prices, and the socially optimal locations are also offered. Moreover,

the analysis on average price level and price variation are provided. The implied various zoning

policies are presented in Section 3.3. Two extensions allowing online price discrimination and

multiple offline firms with free entry are discussed in Section 4. We provide some empirical

and policy implications in Section 4.3. Some concluding remarks are offered in Section 5. All

proofs are listed in the Appendix.

2 The Model

Suppose there are two offline firms (1 and 2) producing homogeneous goods and engaging in

spatial price discrimination on consumers who are non-uniformly distributed along a linear

market (urban in the central area and rural in the remaining areas) with a unit length, and

these two firms locate at x1 ∈ [0, 1] and x2 ∈ [0, 1] with x1 ≤ x2, respectively. For tractability,

let the population density be f(x) = a − b|2x − 1|, which is symmetric around the market

center, where b represents the spatial gradient of population density with 0 < b ≤ 2 to

ensure non-negative population segments in the whole market, and a = b
2 + 1 to normalize

the total population mass as one unit.6 Denote the shipping rate and the price for firm 1 (2)

6If the population density is uniform along a linear market, an online firm entering the market will make

offline firms be indifferent about where, within some ranges of the linear market, to locate their stores, and
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Figure 1: The equilibrium prices with online competition under various location dispersions.
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as t and p1 (p2), respectively, and the delivery costs are paid by offline firms. Suppose each

consumer has inelastic demand for one unit of the product and yields a constant reservation

price v̄, which is large enough to ensure that each consumer buys one from the firm with

the lowest price. A consumer who is indifferent between firm 1 and firm 2 is denoted by

x̂. It is worth mentioning that asymmetric locations are allowed, although our following

figures describe symmetric locations just for convenience. Assume both offline firms have zero

production cost for simplicity. Consider a two-stage game as a benchmark scenario in which

firms simultaneously choose their locations in the first stage, while prices are simultaneously

set in the second stage.

Next, consider the entry of an online firm with zero production cost which has no location

choice and sets a uniform price (p0) for all consumers in the first stage. That is, p0, x1, and x2

are determined in the first stage, while p1(x) and p2(x) are set in the second stage. Any online

buyer suffers an overall distaste cost λ that includes a constant shipping fee, the inconvenience

of checking the product quality beforehand, transaction risks, and waiting several days for

shipping.7,8 Assume that λ is not too large (0 < λ < t/4), to ensure the entry of an online

firm. The setting of our game structure can be justified by two reasons. First, in general, the

online firm may be a dominant firm in a specific industry, such as Amazon, which is the largest

online firm in the global book market. Second, online price discrimination is not overwhelming

in reality, because consumers can see through the discrimination easily. If the online firm is

multiple uniform price equilibria appear. This location pattern has been discussed in Guo and Lai (2014), where

firms set mill prices as in typical Hotelling models.
7When the online firm sets its price in the second stage, we will encounter an undercutting problem and

then there exists no price equilibrium in the second stage in this alternative setting. Specifically, if the online

firm sets a positive price p0 and the offline firm i occupies a positive market share and sets a constant price

pi = p0 + λ, then the online firm can benefit from reducing its price a little to undercut the offline firms in the

intervals where the serving cost for consumers p0+λ is between the two providing costs of offline firms t|x−x1|

and t|x−x2|. In order to rule out the above undercutting, in equilibrium the online firm should not set positive

prices. However, a zero online price is not optimal for the online firm, since it can set a positive price to keep

some positive market share and get a positive profit. Therefore, there appears no equilibrium in this alternative

scenario.
8Practically, an online firm (say Amazon) may charge the same shopping cost to any place inside a city. In

fact, Amazon posted that the shipping costs in apparel, beauty, jewelry and watches, were 8.99 per shipment

and 0.99 per item equally inside the mainland USA as of June 2022. We follow Balasubramanian (1998) and

Guo and Lai (2014, 2017) to assume that there is a fixed distaste cost paid by consumers in any location of the

market for online purchasing. The above settings can be justified by the fact that the online business has scale

economy and can control the cost of shipping, and specifically has an advantage for some electronic versions of

products such as music, books, and software.
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allowed to set up discriminatory prices in the second stage, then the equilibrium prices become

a simple pattern where the lowest-cost firm (including the online firm) at each point sets its

price equal to the cost of the second-lowest firm, which will be discussed in Subsection 4.1.

3 The Equilibrium Analysis

3.1 The benchmark scenario without online competition

We first solve the price equilibrium in the second stage. Spatial price discrimination under

duopoly competition results in an equilibrium price pattern such that at any geographical

point, the firm with the lowest delivery cost sets up a discriminatory price equal to the delivery

cost of its rival. The equilibrium prices are p1(x) = t|x−x2| for x ∈ [0, x̂] and p2(x) = t|x−x1|
for x ∈ [x̂, 1]; recall that x̂ is the indifferent consumer. The profit functions for firm 1 and firm

2 are:

π1 =

∫ x̂

0
(p1(x)− t|x− x1|) f(x)dx,

π2 =

∫ 1

x̂
(p2(x)− t|x− x2|) f(x)dx.

Then, solving ∂π1/∂x1 = 0 and ∂π2/∂x2 = 0 simultaneously in the first stage yields the equilib-

rium locations. The consumer surplus is defined as CS =
∫ 1
0 (v̄ −min{p1(x), p2(x)}) f(x)dx,

and the social welfare (W ) is defined as the weighted sum of profits and consumer surplus

with a weighted parameter α, W = α(π1 + π2) + (1 − α)CS. The larger the value of α, the

more concern of the social planner on the interests of firms. We can solve ∂W/∂x1 = 0 and

∂W/∂x2 = 0 simultaneously for the socially optimal locations xw1 and xw2 . Notably, the case

α = 1/2 represents the typical setting for the social welfare, meaning equal weights on firms

and consumers. The following result provides several benchmark properties without online

competition which are generally consistent with the previous findings in Hurter and Lederer

(1985) and Bárcena-Ruiz and Casado-Izaga (2014), while our setting is more general than their

models by considering urban/rural population distributions.

Benchmark results. (1) In the benchmark scenario where there are only two competing of-

fline firms in the market, there exists a unique location equilibrium (x∗1, x
∗
2) = (14+

√
b2+4−2
4b , 1−

x∗1). (2) The socially optimal locations are
(
(xw1 (α) = 1

4 − 1
2b +

√

4α(α+b−2αb)+α2b2

4αb , xw2 (α) =

1 − xw1 (α)
)

when 1/3 < α < 1, and minimal location differentiation (xw1 (α) = xw2 (α) = 1/2)

appears when α ≤ 1/3. Maximal location differentiation (xw1 = 1 − xw2 = 0) appears only
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when α = 1. (3) The socially optimal locations are less (more) diverse than the equilibrium

locations when α < 1/2 (α > 1/2). When α = 1/2, the equilibrium locations are also socially

desirable. (4) When α 6= 1/2, the socially optimal locations can be achieved by restricting

firms’ locations in the middle point xw1 (α) = xw2 (α) = 1/2 if α ≤ 1/3, allowing firms’ locations

only within the area [xw1 (α), x
w
2 (α)] if 1/3 < α < 1/2, and forcing firms to locate outside the

area (xw1 (α), x
w
2 (α)) if α > 1/2.

Benchmark result (1) shows that the location equilibrium is unique and symmetric, but is

not socially desirable except α = 1/2. When α = 1/2, the equivalence between the equilibrium

and social optimum is consistent with Hurter and Lederer (1985), even though we consider a

nonuniform population distribution here. Notably, b converges to zero and α = 1/2, locations

converge to x∗1 = xw1 = 1/4 and x∗2 = xw2 = 3/4 in Hurter and Lederer (1985). Our equilibrium

locations herein are x∗1 = 1
4 +

√
b2+4−2
4b ∈ [14 ,

1
2 ] and x∗2 = 1− x∗1, by the assumption b ∈ (0, 2],

and ∂x∗1/∂b > 0, because of higher population densities in areas near the market center.

Intuitively, when population distribution becomes more uneven, the central market is more

attractive, inducing offline firms to move closer to the market center.

Benchmark results (2)–(3) also demonstrate the inconsistency between the equilibrium lo-

cations and the socially optimal locations when α 6= 1/2, which departs from the findings

in Hurter and Lederer (1985) and Lederer and Hurter (1986), due to different social weights

of consumers and firms. The social optimum xw1 (α) converges to xw1 (α) = 1
4 + 1−2α

4α as in

Bárcena-Ruiz and Casado-Izaga (2014) when b converges to zero. When α = 1/2, the equilib-

rium locations are also socially desirable, in line with the traditional understanding, because

consumers are always served by the lowest-cost firms, and allowing general population distri-

butions herein does not change this. The socially optimal locations (xw1 (α), x
w
2 (α)) are less

dispersed than the equilibrium locations when α < 1/2, and more dispersed than the equi-

librium locations when α > 1/2. Intuitively, when α < 1/2, meaning that the social planner

places more weight on consumer surplus than producer surplus, it forces firms to choose closer

locations that enhance competition and lead to lower prices and thus benefits consumers.

Notably, when α ≤ 1/3, the socially optimal locations agglomerate at the center point. In

contrast, when α > 1/2, meaning that the social planner more cares about the interests of

firms, the offline firms are allowed to choose more dispersed locations to avoid competition

and increase their profits and prices. Moreover, comparative statics reveal
∂xw

1
(α)

∂α < 0 and
∂xw

1
(α)

∂b > 0 when α > 1/3. In the degenerated case, that b converges to zero, xw1 (α) converges

to zero when α approaches 1, which is maximally differentiated. Notably, whenever α < 1,
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xw1 (α) is always positive, meaning that the socially optimal locations are finitely differenti-

ated. Moreover, when the population distribution becomes more uneven, the socially optimal

locations clearly become less dispersed.

Benchmark result (4) suggests some implication on zoning policies which are consistent

with Bárcena-Ruiz and Casado-Izaga (2014), but our uneven population distribution is a

more general setting than theirs. Specifically, when b converges to zero, our model will be

degenerated to Bárcena-Ruiz and Casado-Izaga (2014). Our optimal zoning policy depends

on the parameters α and b. To be precise, limiting locations to the center of the market,

restricting them within an interval, and allowing them only in an outside interval are socially

optimal zoning policies for α ≤ 1/3, 1/3 < α < 1/2, and α > 1/2, respectively. Note

that the corresponding zoning ranges will be affected by parameter b. Since
∂xw

1
(α)

∂b > 0, the

optimal locations become less dispersed as b increases, because the population distribution is

more concentrated at the market center, so the socially optimal locations are also closer to the

market center. Therefore, when 1/3 < α < 1/2, the zoning interval [xw1 (α), 1−xw1 (α)] becomes

narrower as the population distribution becomes more uneven. However, when α > 1/2, the

zoning intervals
{
[0, xw1 (α)], [1− xw1 (α), 1]

}
become wider as b increases.

3.2 Price discrimination with online competition

Now we analyze the equilibrium when there is an online firm (denoted by a subscript “0”)

entering the market and both offline firms are free to change their locations. There exist three

types of spatial discriminatory prices in the second-staged equilibria described by symmetric

cases for convenience in Figure 1, where the online firm occupies the rural markets (Figure

1(a)), both the most urban market and the rural markets (Figure 1(b)), and only the urban

market (Figure 1(c)), respectively. These three types sequentially correspond to less dispersed

offline locations, moderately dispersed locations, and most dispersed locations. The spatial

price patterns (red lines) are different from the traditional wisdom and are either partially

equalized or fully equalized across locations due to online competition.

Among the above three types, we may find the unique symmetric subgame perfect equilib-

rium type described in Figure 1(a). Precisely, the online firm will take the market segments in

[0, x1L] and [x2R, 1] with a uniform price p0 + λ, where x1L = x1 − p0+λ
t and x2R = x2 +

p0+λ
t

are the consumers who are indifferent between online and offline purchases. The most urban

areas (x2L, x1R) are served by offline firms with different spatial prices equal to the offline

rival’s delivery cost, and the two non-urban segments [x1L, x2L] and [x1R, x2R] are also served
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by offline firms but priced uniformly as p0 + λ. The profits of firms become:

π0 =

∫ x1L

0
p0f(x)dx+

∫ 1

x2R

p0f(x)dx, (1)

π1 =

∫ x2L

x1L

(p0 + λ− t|x− x1|)f(x)dx+

∫ x̂

x2L

t(|x− x2| − |x− x1|)f(x)dx, (2)

π2 =

∫ x2R

x1R

(p0 + λ− t|x− x2|)f(x)dx+

∫ x1R

x̂
t(|x− x1| − |x− x2|)f(x)dx. (3)

The profits for Figure 1(b) and 1(c) can be calculated similarly, provided in the appendix

(page 29). For the case in Figure 1(a), solving ∂π0/∂p0 = 0, ∂π1/∂x1 = 0, and ∂π2/∂x2 = 0

simultaneously yields the implicit equilibrium functions

p̃0 =
2t(1 + 2bx̃1)− b(t+ 4λ)−

√
φ1

6b
, (4)

x̃1 = 1− x̃2 =
−t(2− b)− 4b(p̃0 + λ) +

√
t2(b+ 2)2 + 32b2(p̃0 + λ)2

4bt
, (5)

where φ1 = 2t2b2x̃1(2x̃1 − 1) + t2(2 − b)2 + 2b
(
2t2x̃1 − (2− b)tλ− 2bλ(2tx̃1 − λ)

)
, and x̃2 =

1 − x̃1; the “∼” superscript represents the symmetric equilibrium in this online-offline sce-

nario. Notably, the above equilibrium locations and the online price have no simple analytical

solutions. With online competition, the socially optimal locations are solved by maximizing

the social welfare W = α(π1 + π2 + π0) + (1 − α)CS. Assume the government has a limited

calculation ability such that its socially optimal locations policy is only related to the locations

of offline firms for simplicity. The social optimum is solved by a Nash equilibrium between the

government and the online firm.9 We will discuss the robustness later for the case when the

government may fully consider the reaction of the online price p0(x1, x2), which is generally

consistent with the major equilibrium properties.

The following proposition describes the influence of online competition on the equilibrium

and social optimum.

Proposition 1. (1) There exists a unique type of equilibrium (x̃∗1, x̃
∗
2 = 1 − x̃∗1, p̃

∗
0) such that

the online firm occupies two end segments, and offline firms enact discriminatory pricing in

the central (urban) area, while their prices are equalized as p∗0+λ for the less densely populated

(rural) segments. (2) The equilibrium locations are generally not socially desirable even when

α = 1/2. In the standard case, α = 1/2, the socially optimal locations are more agglomerated

than the equilibrium under the sufficient condition that b is not large and λ is not small.

9Solving the social optimum by a Nash equilibrium is also adopted by minimum quality standard literature

such as Ecchia and Lambertini (1997).
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(3) The equilibrium locations are neither minimal nor maximal differentiation. However, the

socially optimal locations are minimally differentiated when α is small, while when α is close

to 1, the social optimum is (not) maximal differentiation when λ is small (large). (4) Online

competition induces offline firms to move closer to the market center and causes all prices to

decline, and consumers living in the urban area will pay even lower prices than the prices in

other areas.

Proposition 1(1) shows Figure 1(a) as a unique type of equilibrium that is symmetric in

which the online firm occupies two end segments of the market, and the offline firms engage

in discriminatory pricing for consumers living in the center segment. The equilibrium prices

are equalized for some areas, as there are lower prices in the center market, and a uniform

price p̃0 + λ for other segments. The intuition is that the offline delivery costs for the end

segments are relatively high and will be occupied by the online firm. Moreover, offline firms

have locational advantages for their nearby consumers, and this advantage is enlarged in the

central area, because this area is highly populated. Those cases in Figure 1(b) and 1(c) cannot

be equilibria, because the offline firms have the incentive to move slightly toward the market

center to serve more densely clustered consumers.

Proposition 1(2) describes the distortion appearing in both the location and price stages.

The socially optimal price pattern is that each consumer x is served by the firm with the

lowest unit cost among t|x − x1|, t|x − x2|, and λ for two offline firms and the online firm,

respectively. If the online price is given as zero, it represents the case with no online price

distortion. When α = 1/2 and p0 = 0, the socially optimal locations will be equivalent to

minimizing the total shipping costs t|x− x1| or t|x− x2| for offline purchases and the distaste

cost λ for online purchases and yield

x1 = 1− x2 =
1

4
− 1

2b
− λ

t
+

√
t2(b+ 2)2 + 32b2λ2

4tb
, (6)

which is increasing in b. This will be the case of Figure 1(a). This implies the equilibrium

locations obtained from Eq. (5) will be equal to the socially optimal locations in Eq. (6)

when α = 1/2 and there is no online price distortion (p0 = 0), which is consistent with Hurter

and Lederer (1985) and Lederer and Hurter (1986). However, the equilibrium online price is

always positive because of its market power, and thus the equilibrium locations are not socially

desirable, even when α = 1/2. When α 6= 1/2, the equilibrium locations are also generally

not socially desirable due to both the online price distortion and different social weights of

consumers and firms. This result can be compared to Benchmark result (3). Moreover, in
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the standard case α = 1/2, Proposition 1(2) also reveals that the socially optimal locations

are more agglomerated than the equilibrium, which contrasts with the previous spatial pricing

models and our benchmark result that the equilibrium locations are socially desirable without

online competition. Notably, although we need the sufficient condition that b is not large to

prove this property, various numerical calculations suggest that this finding generally holds for

all b ∈ [0, 2].

Intuitively, for the other two types in Figure 1(b) and Figure 1(c), less dispersed locations

always reduce the summation of delivery costs and distaste cost, because more urban consumers

are served by the offline firms, which can reduce their delivery costs, relative to the change in

distaste cost. When α is not close to 1, the optimal location pattern is that offline firms serve

the urban area, while the online firm serves two separated rural areas, because the shipping

costs for those consumers sufficiently close to offline firms are less than the distaste cost (λ).

Recall that the pricing rule in the traditional spatial price discrimination literature (with

α = 1/2) is that the lowest-cost firm in any market point sets its price equal to the second-

lowest cost, which induces socially optimal locations, because all consumers are served by the

associated lowest-cost firms. In contrast, the online firm does not follow the above pricing

rule, but sets its prices uniformly for all consumers, which results in consumers belonging to

segments I, II, and III in Figure 1(a) not being served by the lowest-cost firms. For example,

the consumers belonging to segment I are distant from both offline firms, so t|x−x1| > λ, and

they are still served by firm 1 at a price p0 + λ. Moreover, segment II in Figure 1(a) describes

those consumers living in the urban area who are served by offline firms with a shipping cost

t|x− xi| that is higher than the distaste cost λ for purchasing online.

Proposition 1(3) suggests that the equilibrium locations are neither minimal nor maximal

differentiation, because of the location result in Proposition 1(1). Moreover, the socially op-

timal locations depend on the social weight α. When α is small, the social optimum requires

minimal differentiation in locations, because consumer surplus is best enhanced by increasing

offline competition. However, when α is close to 1, the social optimum depends on the param-

eter λ. If λ is small, maximal differentiation is socially optimal, while if λ is large, the social

optimum is never maximal differentiation. Intuitively, large location differentiation induces

less competition between offline firms and among online and offline firms that raises the total

profits of firms, but reduces consumer surplus. The associated social optimum will be the case

in Figure 1(c). Two effects appear as the locations become more and more differentiated. The

first effect is competition avoidance among firms, which is greater when λ is small, because the

online firm can setup a higher online price that benefits all firms due to overall price increases.
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Competition avoidance benefits firms but hurts consumers, and may either increase or decrease

the social welfare, depending on the parameter α. The second effect is the waste of additional

shipping costs, because the offline firms must pay for shipping costs that are less than the dis-

taste costs for consumers close to the offline firms. For instance, those consumers in segments

I and V in Figure 1(c) should be served by online firm from the social perspective, but are

served by offline firms in this case. That is, when locations become more differentiated, the

sum of total shipping costs and the distaste costs increase due to the urban-rural population

distribution. The second effect reduces the social welfare. Henceforth, when λ is large, the

second effect is large and the social optimum cannot be maximal differentiation. However,

when λ is small, the second effect is small, and maximal differentiation is socially desirable.

This result is different from our Benchmark result (3).

Compared with the benchmark case, introducing the online firm also results in the above

two effects on offline locations. With online competition, the offline firms move closer to

the urban area due to the online vs offline competition avoidance. Moreover, the wasting

shipping costs comes from online price distortion, a market power to set a uniform distorted

price (instead of the second lowest delivery cost for offline prices) that is associated with more

dispersed offline locations. We find that the above roles result in neither maximal non-minimal

differentiation in the equilibrium, but either maximal/minimal or non-maximal/non-minimal

differentiation in the social optimum. In the benchmark case, maximal differentiation is socially

desirable only when α = 1, because the dispersed locations are associated with higher offline

prices due to that the competition avoidance effect leads to the highest profits for firms.

Therefore, only the extreme case α = 1, when the social interest setting does not take into

account the welfare of consumers at all, will lead to maximal differentiation. With online

competition, the socially optimal locations are still minimally differentiated when α is small,

but may be either maximal or non-maximal differentiation when α is close to one. The above

second part is different from the benchmark result, depending on the online disadvantage (λ).

Proposition 1(4) reveals that online competition induces all prices to be lower than that

under the benchmark scenario. The online firm plays a role as the third competitor and induces

a more competitive environment in the spatial price discrimination framework. Since the cost

of the online firm must be lower than at least one offline firm, and the equilibrium spatial price

discrimination is determined as the second highest cost, the online entry reduces all prices.

Moreover, offline firms move toward the market center after the online entry, which induces a

further price reduction, because both offline firms are less separated and competition is thus

more intense than that under the benchmark scenario. Therefore, all consumers are better off
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due to lower prices resulting from online competition.10

The following proposition demonstrates comparative statics for the distaste parameter λ:

Proposition 2. When λ decreases, given that b is not large, (1) offline firms become more

concentrated; (2) the equilibrium online price p̃∗0 becomes higher, but p̃∗0+λ becomes lower; (3)

the offline prices become lower in urban areas, but higher in other areas.

Intuitively, the above results reveal that when the online firm has more advantage, offline

firms will move closer to the market center in order to avoid the competition from the online

firm. Hence, the online firm benefits from higher demand due to reducing the distaste cost

for consumers, and from the higher concentration of the offline firms. Both induce the online

firm to set a higher price because of the increased market power. However, the increase of

the online price only partially offset the decrease in λ, leading to a lower p∗0 + λ. In contrast,

the offline prices in the urban area decline due to competition between more concentrated

offline firms, and also decreased in the non-urban areas due to the decreased p̃∗0 + λ. This

price pattern is shown as the green line in Figure 1(a). Notably, while Proposition 2 requires

the sufficient condition that b is not large to ensure the above property of comparative statics

for convenience of technical derivation, our various numerical illustrations reveal that this

property is still valid for all b ≤ 2.

Proposition 2 suggests that the offline firms move closer to the market center as the online

distaste cost becomes lower, because the online advantage is increased. In reality, the online

distaste cost has been, in general, decreasing in recent years due to the fast development of

logistics technology, so offline firms tend to move closer to the market center and concentrate in

densely populated areas (for instance, Guo and Lai (2017) described the bookstore phenomenon

in the USA).

The comparison between the equilibrium and the social optimum with online competition

is complicated. Overall numerical illustrations will be shown later in Table 1, where Panel A

includes cases under exogenous p0 and Panel B includes cases under endogenous p0(x1). The

social optimum when α = 1/2 (cases 6, 7, and 8 in Table 1) is equivalent to minimizing the

10This finding is based on the assumption that shipping costs are paid by firms. Consumers only care about

the offered prices plus their online distate costs. However, when consumers must pay the shipping costs, Guo

and Lai (2017) showed that some consumers may be worse off after the online entry, because the distance

between consumers and offline firms increases due to either relocation of the survived offline firms or the exit

of those high-cost offline firms.
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total online distaste costs, and offline shipping costs:

min
x1

2

[∫ x1L

0
λf(x)dx+

∫ 1

2

x1L

t|x− x1|f(x)dx
]
, (7)

where x1L = x1 − p0(x1)+λ
t is a function of x1 and p0, which are complicated and there are

no analytical solutions. Therefore, numerical analysis on social optimal locations and zoning

policies will be employed later in Table 1, where the social optimal locations for offline firms

may be either more agglomerated (eg. cases 7A and 7B) or more dispersed (eg. cases 6A and

6B) than the equilibrium locations. Our finding is different from that in Hurter and Lederer

(1985), where their equilibrium locations are socially desirable. Intuitively, Proposition 1(2)

and Figure 1(a) show that the consumers in segments I, II, and III are not efficiently served

by the lowest-cost firms. For instance, when b is small and λ is large as in cases 7A and

7B, segment II becomes large, and the more agglomerated socially optimal locations than the

equilibrium locations will reduce the inefficiency from segment II.

Moreover, the online price in the equilibrium can be lower or higher than that of the social

optimum. Our numerical illustrations reveal the influence of parameters λ and b. Intuitively,

when λ decreases, the online firm’s advantage becomes more significant, and thus offline firms

become more concentrated (see a comparison between cases 1A, 2A, and 3A in Table 1), so

the online price becomes higher. That is, a lower distaste cost implies a larger online market

share from the social interest function in Eq.(7). However, the effect of λ on the socially

optimal locations for offline firms are mixed. Locations may be more concentrated (comparing

8A with 7A, or 8B with 7B when the optimal pattern remains as in Figure 1(a)), although

there appears another price effect in which p0 increases along a smaller λ that leads to a lower

p0 + λ and smaller offline market shares. Nevertheless, this price effect is dominated by the

previous location effect from more agglomerated locations of the offline firms. Locations may

also be more separated when the optimal pattern switches from Figure 1(a) to Figure 1(b)

(see a comparison between 7A and 6A, or 7B and 6B). This is because a small λ gives more

online advantage to serve urban consumers from a social aspect. In the case of Figure 1(b),

both the most urban consumers and rural consumers are served by the online firm, because

the online distaste cost (λ) is smaller than the offline transportation costs.

When b increases, consumers are more agglomerated at the central area, inducing offline

firms to locate closer to the market center both in the equilibrium and the social optimum

cases. However, the influence of b on p0 has two contrary effects. As b increases, the first

effect is from a lower demand in rural areas that clearly induces the online firm to set a lower
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price, while the second effect is from competition with offline firms who choose less dispersed

locations due to more concentrated urban consumers, which results in less competition between

the online and offline channels, and thus the online price increases. Our result reveals that the

first effect dominates the second one and thus p0 decreases as b increases (see a comparison

between 2A and 3A in Table 1). We also find that the socially optimal locations become more

concentrated as b increases if the optimal pattern remains as in Figure 1(a).

The above results are generally robust if we consider an alternative three-stage game struc-

ture such that offline firms choose their locations in the first stage, then the online firm sets

its price in the second stage p0(x1, x2), and finally two offline firms engage in spatial price

discrimination in the third stage.11 Intuitively, offline firms have more strategic incentive to

choose less dispersed locations in stage one under this setting, because the more concentrated

location pattern leaves a larger online market share in the rural markets, which induces the

online firm to set a higher price that is beneficial to the offline firms eventually. Therefore, the

optimal locations in this setting are less dispersed than those in the previous two-stage game.

Under our two-staged game with p0, x1, and x2 are decided simultaneously. We further

compare the population-weighted average price (EP) and the standard division of price (SD):

EP =
∫ 1
0 p(x) · f(x)dx and SD2 =

∫ 1
0 (p − EP)2f(x)dx, where p(x) is the equilibrium prices.

In the benchmark case, the EP and SD2 are: EP = t
2 − t

(
b2 + 6(

√
b2 + 4 − 2)

)
/24b and

SD2 = − t2(b2−12)
576 . The average price and price variation will both be greatly reduced when the

competition is more intense due to the online participation. Numerical illustration using t = 1,

b = 1, .., 2, λ = 0.1, .., 0.3 reveals EP and SD drop by 15%–48%, and 50%–99%, respectively.

This result provides an empirical implication to test the influence of online competition on

the average price level and price variations. Our theoretical results might be consistent with,

but are not directly implied by previous empirical studies such as Brynjolfsson and Smith

(2000), which compared price patterns between internet channels and conventional channels,

and showed that price dispersion is lower in internet channels.

11In detail, the offline firms have no incentives to choose overly dispersed locations such that the online firm

occupies the urban area described as in Figures 1(b) and 1(c). The optimal online price p0 is equal to the

reaction function (5). However, there appears an additional strategic incentive for offline firms in the first stage,

which considers the reaction of the online price in the second stage.
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Table 1: Illustrations for zoning policy (p0 is given / p0(x1) is considered).

Panel A: when p0 is given

Cases Parameter values x∗

1 p∗0 x̃w
1 (= 1− x̃w

2 ) p̃0
∂π1

∂x1

Zoning policy

1A α ≤ 0.381, b = 1,
0.335 0.085 0.5 0.153 −0.363 x1 = x2 = 1/2λ = 0.15

(λ is large) (Figure 1(a))

2A α = 0, b = 1,
0.346 0.111 0.5 0.173 −0.335 x1 = x2 = 1/2λ = 0.1

(λ is small) (Figure 1(a))

3A α = 0, b = 1.5,
0.363 0.106 0.5 0.154 −0.348 x1 = x2 = 1/2λ = 0.1

(λ is small) (Figure 1(a))

4A α = 1, b = 1,
0.351 0.121 0 0.227 0.247 x1 ≤ 0, x2 ≥ 1λ = 0.08

(λ is very small) (Figure 1(c))

5A α = 1, b = 1.9,
0.358 0.053 0.315 0.039 0.104 x1 ∈ [0, 0.315], x2 ∈ [0.685, 1]λ = 0.21

(b is large and λ is large) (Figure 1(a))

6A α = 1/2, b = 1,
0.346 0.111 0.345 0.055 0.048 x1 ∈ [0, 0.345], x2 ∈ [0.655, 1]λ = 0.1

(λ is small) (Figure 1(b))

7A α = 1/2, b = 1,
0.335 0.085 0.373 0.101 −0.075 x1, x2 ∈ [0.373, 0.627]λ = 0.15

(λ is moderate) (Figure 1(a))

8A α = 1/2, b = 1,
0.326 0.059 0.349 0.070 −0.046 x1, x2 ∈ [0.349, 0.651]λ = 0.2

(λ is large) (Figure 1(a))

Panel B: when p0(x1) is considered

1B α ≤ 0.0423, b = 1,
0.335 0.085 0.5 0.153 −0.363 x1 = x2 = 1/2λ = 0.15

(λ is large) (Figure 1(a))

2B α = 0, b = 1,
0.346 0.111 0.326 0.059 0.050 x1 ∈ [0, 0.326], x2 ∈ [0.674, 1]λ = 0.1

(λ is small) (Figure 1(b))

3B α = 0, b = 1.5,
0.363 0.106 0.336 0.049 0.067 x1 ∈ [0, 0.336], x2 ∈ [0.664, 1]λ = 0.1

(λ is small) (Figure 1(b))

4B α = 1, b = 1,
0.351 0.121 0 0.215 0.257 x1 ≤ 0, x2 ≥ 1λ = 0.08

(λ is very small) (Figure 1(c))

5B α = 1, b = 1.9,
0.358 0.053 0.315 0.039 0.104 x1 ∈ [0, 0.315], x2 ∈ [0.685, 1]λ = 0.21

(b is large and λ is large) (Figure 1(a))

6B α = 1/2, b = 1,
0.346 0.111 0.326 0.059 0.050 x1 ∈ [0, 0.326], x2 ∈ [0.674, 1]λ = 0.1

(λ is small) (Figure 1(b))

7B α = 1/2, b = 1,
0.335 0.085 0.355 0.094 −0.039 x1, x2 ∈ [0.355, 0.645]λ = 0.15

(λ is moderate) (Figure 1(a))

8B α = 1/2, b = 1,
0.326 0.059 0.337 0.065 −0.023 x1, x2 ∈ [0.337, 0.663]λ = 0.2

(λ is large) (Figure 1(a))
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3.3 Zoning policies

This section provides the implication of zoning policies when the online retailer is included.

Now consider the case where a regulator enacts his zoning policy at stage 0.12 We can find the

optimal zoning policy is to restrict the offline locations in some areas in order to maximize the

social welfare function W (α). However, the optimal zoning is complicated and behaves non-

monotonically relatively to our benchmark case. The complication is because zoning policies

can be enacted as industrial instruments to balance multiple aspects on the trade-off between

urban and rural, online and offline, and consumers and firms in order to raise the social welfare.

Proposition 3. Given p0 is exogenous for social optimum. (1) When α is small, (i.e., the

regulator cares more about consumers), the optimal zoning policy is limiting both firms to locate

in the middle of the market. (2) When α is close to one and λ is small, the optimal zoning

policy is to force firms to locate outside the interval (0, 1). (3) When α is around 1/2, the

social optimal locations are finitely differentiated, and the optimal zoning policy can be either

allowing firms’ locations to be only within a middle interval or limiting both firms to locate

outside a middle interval, depending on parameter settings.

The above proposition reveals that our result is consistent with Bárcena-Ruiz and Casado-

Izaga (2014) when α is small. That is, the optimal zoning is restricting offline firms to be

located at the market center. However, when α is not small, the socially optimal locations and

the implied zoning policy are generally complicated, and we are unable to obtain analytical

solutions. When α is close to 1, the socially optimal locations and the zoning policy depend

on the online disadvantage parameter (λ). If λ is small, we find that the socially optimal

locations are maximal differentiation and the zoning policy is restricting them outside the

market interval [0, 1], which is consistent with previous studies such as Bárcena-Ruiz and

Casado-Izaga (2014). However, if λ is not small, the socially optimal locations may be finitely

differentiated and the zoning policy is restricting them outside the urban area such that x1 ∈
[0, xw1 ] and x2 ∈ [xw2 , 1] in the 5A and 5B cases in Table 1. For other cases of α, we find various

zoning policies. For instance, when α = 1/2, if λ is not small, and Figure 1(a) is thus the

socially optimal pattern, the zoning policy is restricting them to locating inside the urban area

such that x1, x2 ∈ [xw1 , x
w
2 ], because xw1 > x∗1. Moreover, if λ is small such that Figure 1(b) is

12In order to emphasize the impacts on the strategic interactions in an oligopoly market, the zoning policy

herein does not include the negative production externalities of firms such as the impact of pollution and noise

on the resident environment. If we consider the effect of non-extremely negative externalities on neighboring

consumers, then the socially optimal locations of firms will be even more remote.
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socially desirable, then the zoning policy is restricting them outside the urban area such that

x1 ∈ [0, xw1 ] and x2 ∈ [xw2 , 1].

Intuitively, when the regulator is very concerned about the consumer surplus (α is small),

the socially optimal zoning is to create competition among these three firms by proper reg-

ulations on firms’ locations; that is, the social optimum is to restrict two offline retailers

agglomerated at the center point, which is consistent with the optimal locations in Bárcena-

Ruiz and Casado-Izaga (2014) and our benchmark scenario in the Benchmark result. However,

when α approaches one, meaning that the regulator mostly cares about the profits of firms, we

find that maximal differentiation may not be socially optimal when the online disadvantage

parameter λ is not small. For moderate α, either restricting offline firms inside or outside the

urban area could be possible. In particular, when λ is small enough to induce a socially desir-

able outcome as in Figure 1(b), in which the most urban area is served by the online firm, and

thus the offline firms have an incentive to move toward to the market center. Therefore, the

zoning policy should restrict the location of offline firms to outside the urban interval [xw1 , x
w
2 ].

Proposition 4 reveals the robustness of our zoning policy when p0(x1) is considered by the

government. However, the welfare analysis for general α is complicated.

Proposition 4. Given p0 is a function of x for social optimum. (1) When α is small (i.e.,

the regulator cares more about consumers), the optimal zoning policy will be to limit both firms

to locate in the middle of the market. (2) When α is close to one and λ is small, the optimal

zoning policy is to force firms to locate outside the interval (0, 1).

We can summarize several cases along α. First, when α is small, the social planner will

enforce offline firms to be agglomerated that create drastic competition between offline firms

and benefits consumers. Second, when α is close to one and λ is small, the social planner

will regulate the offline firm to be out of the market, so the offline locations are maximal

differentiated and all firms are benefited from a market with less competitive environment

overally. These two cases are consistent with our benchmark case. Third, when α is moderate,

the optimal trade-off between the interests of firms and consumers may result in moderately

separated locations as Figure 1(b) by numerical calculations. The optimal zoning has no simple

solution, depending on relative values of parameters. The full patterns of the zoning regulation

and associated internal interaction effects under a moderate α cannot be clearly characterized.

Table 1 reports the socially optimal locations and zoning policies, which illustrates our

findings in Propositions 3 and 4. First, the optimal locations and zoning show different pat-

terns from those in Hurter and Lederer (1985) and Bárcena-Ruiz and Casado-Izaga (2014).
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Since the equilibrium locations are not socially desirable, the socially optimal locations can be

either more agglomerated (in cases 7A and 7B) or more separated (in cases 6A and 6B) than

the equilibrium locations, even when α = 1/2, consistent with Proposition 1(2). Second, when

the social weight on firms (α) is small, the optimal locations in the cases under exogenous p0

are agglomerated and the zoning policies are to restrict firms at the market center (in 1A, 2A,

and 3A cases) in order to maximize competition between offline firms. However, when p0(x1)

is considered by the social planner, the cases 2B and 3B reveal the possibility that the socially

optimal locations are not agglomerated when λ is small. This is because the strong online

advantage may dominate the previous argument of maximizing offline competition. This novel

finding highlights how digital business may affect the zoning policy. Third, when α = 1,

meaning that the social planner maximizes the interest of firms, the previous studies suggest

that maximal offline differentiation appears due to competition avoidance. With online com-

petition, we find that maximal differentiation may not be optimal when λ is large, specifically

online competition is considered in 5A and 5B. However, when λ is small, maximal differenti-

ation is still socially desirable. Intuitively, when the online firm has a strong advantage (λ is

small), letting the online firm serve the central market is proper for the social optimum.

4 Extensions

4.1 Online price discrimination

Online firms recently have gained an advantage due to their ability to collect data and use data

mining, one use of which could be to enact spatial price discrimination.13 However, online price

discrimination may not be overwhelming, because consumers may discover and see through

online firms’ price discrimination, and react negatively if they discover they are the recipients

of unequal treatment. In this subsection, we consider a modified game structure, where offline

firms choose their locations in the first stage, and then in the second stage, all three firms (one

online and two offline firms) engage in spatial price discrimination. The price equilibrium in

the second stage herein can be described as in Figure 2(a) (12 − λ
t < x1 ≤ 1

2) and Figure 2(b)

(0 ≤ x1 ≤ 1
2 − λ

t ). In particular, the case in Figure 2(b) describes less dispersed offline firms

and that the online firm has no advantage in the urban area when λ > t|12 − xi|. According

to this modified setting, the socially optimal locations are determined before price choices.

13Firms may also use it to earn profits from selling data to advertisers, to suggest related products or those

which might be of interest to consumers, and so on, which can be further discussed in a framework of two-sided

market.
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(where

the blue-dotted lines represent the case when x1 = 1− x2 = 0).

Figure 2: Online spatial price discrimination.
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The following proposition demonstrates that Figure 2(a) is the only equilibrium pattern, and

describes the influence of online competition on the equilibrium prices, locations, and the social

optimum when the online firm engages in spatial price discrimination. Note that a superscript

“≈” represents the cases with online price discriminatory.

Proposition 5. (1) In the equilibrium with online price discrimination, the online firm occu-

pies two end segments, and offline firms enact discriminatory pricing in the central area. The

equilibrium prices are piecewise decreasing as they approach to the market center. (2) There

exists a unique location equilibrium ˜̃x∗1 =
−2t+tb−4bλ+

√

t2(b+2)2+32b2λ2

4bt , ˜̃x∗2 = 1 − x̂∗1, which is

less dispersed than in the benchmark scenario. (3) The equilibrium locations are (not) so-

cially desirable, when α = 1/2 (α 6= 1/2). (4) When α ≤ 1/2, the socially optimal locations

(˜̃x∗w1 , ˜̃x∗w2 = 1−x̂∗w1 ) are interior solutions such that the online firm occupies two end segments,

and offline firms enact discriminatory pricing in the central area. When α ≥ 2/3, the socially

optimal locations are maximally differentiated.

In this scenario, the consumers in the remote areas pay higher prices and are served by the

online firm, while the consumers in the central area benefit from the competition between offline

firms with lower prices. Proposition 5(1) suggests a modified finding that the online/offline

firms occupy rural/urban segments, respectively. Proposition 5(2) reveals that allowing the

online firm to enact spatial price discrimination will reduce the offline price p∗0+λ to λ for the

consumers in (x1L, x2L) and (x1R, x2R) due to more competition between the online firm and

each offline firm. However, for the most rural areas, competition will be reduced and prices

are raised due to online price discrimination as shown in the comparison between Figure 1(a)

and Figure 2(b). Henceforth, both offline firms tend to move closer to the market center to

compete for the dense customers and the locations of firms are less dispersed than those in

the benchmark scenario. That is, ˜̃x∗1 > x∗1. Proposition 5(3) confirms that the equilibrium

locations are not socially desirable for α 6= 1/2, which is consistent with Proposition 1(2).

However, in the case α = 1/2, the equilibrium locations are socially desirable. This is because

when the online firm is allowed to set spatially discriminatory prices, the inefficient segments

(I, II, III) in Figure 1(a) no longer exist. That is, online spatial discrimination does not

lead to online price distortion in Subsection 4.1, and when α = 1/2, the socially optimal

locations are equivalent to the equilibrium locations, which is consistent with Hurter and

Lederer (1985) in this scenario. This is because when the online firm can also engage in spatial

price discrimination, it is equivalent to the case of three offline firms who all engage in spatial

price discrimination.
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Proposition 5(4) demonstrates that the maximal differentiation (˜̃x∗1 = 0, x̂∗2 = 1) can be

socially optimal under the sufficient condition of α ≥ 2/3, which can be compared with the

benchmark scenario of α = 1. Intuitively, the online firm plays a role of reducing the prices

when the offline firms are not too dispersed. When α is large (α ≥ 2/3), the social planner

is more concerned about the profits of firms, and locational maximal differentiation for the

offline firms induces higher prices, which can be described similarly as in Figure 2(b). This price

increasing effect from locational dispersion is higher than the benchmark scenario, in which no

online firm enters the market. The socially optimal locations in other cases for 1/2 < α < 3/2

depend on the values of parameters. This finding can be compared to our previous analysis

in Section 3.2, where the online firm cannot engage in price discrimination. In Section 3.2,

the socially optimal locations are maximally differentiated when α is close to 1. This is

because the price-increasing effect is small when we compare Figure 1(c) and Figure 2(b).

That is, when the online firm cannot enact spatial price discrimination, more dispersed offline

locations cannot increase prices greatly, because the online firm occupies the urban area and

sets a uniform online price. However, Proposition 5(4) reveals that when α is large (α > 2/3),

in contrast to α being close to 1 in Proposition 3, where finite differentiation is possible when

λ is not small, the socially optimal locations herein are always maximally differentiated, which

leads to much higher prices described as the blue-dotted lines in Figure 2(b) and the online

firm occupying most market areas except the two end segments. That is, the range of α for

maximal differentiation as the social optimum here is larger than that without online price

discrimination in Section 3. Notably, our optimal locations are the same as Bárcena-Ruiz and

Casado-Izaga (2014) when α approaches one. Both their result and ours are due to avoiding

competition between offline firms. The implied optimal zoning policy also depends on the

value of α. When α = 1/2, the equilibrium locations are socially desirable, and zoning is

unnecessary. When α ≥ 2/3, the socially optimal locations are maximal differentiation (as

the blue-dotted lines in Figure 2(b)), and the optimal zoning policy is restricting firms at the

boundaries x1 = 0 and x2 = 1. However, when α < 1/2, various numerical illustrations suggest

that the zoning policies may be either restricting both firms in the urban segment or in the

two rural segments, depending on the values of parameters.

4.2 Multiple offline firms with free entry

In the above discussion, we only analyzed duopolistic offline firms, but the intuition of how

online competition affects strategic spatial price discrimination may be extended to the case
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of multiple firms. Consider a modified framework following Vogel (2011), where there exist

numerous potential heterogenous offline firms, i = 1, 2, . . . , N , with associated different unit

production cost, c1 < c2 < . . . < cN , which will enter the market if their expected profits are

non-negative. Let c0 be the unit cost of the online firm. In contrast to the uneven distribution

of consumers in previous sections, we have assumed the consumers with a mass of one are

uniformly distributed in a circular market à la Salop (1979). Further analysis can show the

equilibrium pattern similar to the case of Figure 1(b). The profit function of the online firm

becomes

π0 =

(
1−

N∗∑

i=1

|xiR − xiL|
)
(p0 − c0) =

(
1−

N∗∑

i=1

2(p0 + λ− ci)

t

)
(p0 − c0),

where N∗ is the equilibrium number of offline firms, which are allowed to enter the market

freely. There appear multiple location equilibria due to the assumption of uniform population

density such that each offline firm occupies a separate market segment and only competes

directly with the online firm.14 This setting leads to completely equalized prices p∗0 + λ for

all offline firms, which are generally much lower than the case without online competition.

Further calculations from the first-order condition ∂π0/∂p0 = 0 show

p∗0 =
1

2
(c0 − λ) +

1

4N∗ t+
1

2N∗

N∗∑

i=1

ci.

The profit of firm i becomes

πi =

∫ xiR

xiL

(p∗0 + λ− ci − t|x− xi|)dx =
(p∗0 + λ− ci)

2

t
.

Therefore, N∗ is the number satisfying p∗0 + λ − cN∗ ≥ 0 and p∗0 + λ − cN∗+1 < 0. The

low-cost offline firms occupy larger market segments than those of the high-cost firms. The

online firm takes over those consumers who live away from neighboring offline firms, which are

spatially discrete segments along the circular market. Further comparative statics will reveal

that the more the online advantage (λ is smaller) there is, the fewer the offline firms will exist,

and the lower the market shares and profits are. Moreover, we find that ∂p∗0/∂λ < 0 and

∂(p∗0+λ)/∂λ > 0 when N∗ is unchanged. That is, when the online firm has more competition

advantage, it can set a higher price, but p∗0 + λ becomes lower due to an inelastic demand

assumption in this model.

14Since we have uniformly distributed consumers in this modified framework, online competition plays a role

to equalize the equilibrium price, and then a slight move of location for each firm does not change market shares

and profits. Therefore, there exist infinitely multiple location equilibria.
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4.3 Empirical and policy implications

This subsection attempts to provide numerous implications for how online competition may

affect both spatial price discrimination and zoning policy from our theoretical findings. The

proposed theory predicts that online competition induces more equalized and lower prices

across rural and urban regions, which leads to empirical implications that the entry of online

retailers may induce more price convergence, either across areas or along the time periods, and

may induce significantly lower prices.

The rural consumers who are orginally far away from offline locations greatly benefit from

falling prices which were previously much higher than that in the urban area before the online

entry. The urban consumers also benefit from lower prices due to more competition between

offline firms, who become more concentrated in the urban area after the online entry. Another

empirical implication may be associated with the fact that the impact of online competition

depends on the depth of online popularity, and there may be different for urban and rural

people. Among numerous empirical studies, Duch-Brown et al. (2017) examined EU country-

level data for several consumer electronic products, and found evidence that consumer surplus

increases after the introduction of online competition. However, there are large differences

across countries, which may reflect the fact that e-commerce is at different stages of devel-

opment across European countries. Although there does not appear to be international price

convergence across European countries, empirical studies about spatial price dispersion and the

role of online competition using more detailed regional data within a country are still limited.

Besides, our model suggests that distaste costs matters for the equilibrium pattern. Forman et

al. (2009) discussed how the entry of offline stores such as Wal-Mart Stores, Inc., Target, and

Barnes and Nobles in local areas affects online purchasing and how that the changes in distance

to offline stores mitigates the sensitivity to online price discounts. Both Duch-Brown et al.

(2017) and Forman et al. (2009) also found the importance of disutility costs of purchasing

online.

Our theory also suggests policy implications about zoning. Consider the most usual setting

about social welfare, which has equal weights for producer surplus and consumer surplus.

When there is no online competition, zoning is not necessary because equilibrium locations

are also socially optimal. However, online competition leads a rationale of zoning such that

the optimal zoning policy may be either (A) regulating firms’ locations to be inside the urban

area when the online firm has relatively competitive advantage or the population distribution

is more even, or (B) forcing firms to locate outside the urban area for other cases.
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5 Conclusions

Online-offline competition has become an issue of great concern for researchers, practitioners,

and policy makers in recent years. We contribute to this literature by adding the role of online

competition into offline spatial price discrimination. This paper provides a novel framework

that combines online competition, spatial price discrimination, zoning, and urban-rural pop-

ulation distribution to demonstrate a new insight into the current digital world phenomenon.

Before the online entry, our benchmark result shows that the socially optimal locations of

duopolists and the implied zoning policy are affected by the distribution of population, but

the coincidence between the equilibrium and social optimal locations still holds when the gov-

ernment has equal weight on consumers and firms still holds. With online competition, the

offline firms serve the central urban area of the market, while the remote rural areas are served

by the online firm. The equilibrium locations can never be socially optimal due to the online

market power, and online competition induces all prices to decline to be partially equalized;

both findings are in contrast to the previous literature on spatial price discrimination. We

reveal various zoning policies, depending on online-offline and offline-offline competition, the

online advantage and the social weights on producer surplus and consumer surplus. The in-

tuition behinds our result is that the online firm sets a uniform price to induce equalized

spatial prices, which eliminates the effect of competition avoidance between offline firms by

choosing maximally differentiated locations. Two extensions analyze scenarios in which the

online firm can enact spatial price discrimination, and in which multiple offline firms with

different production costs compete with one online firm. Our model also provides some empir-

ical and policy implications. A possible future study is to explore either a two-sided market

with advertisement or a dual-channel situation in which offline firms can also run their online

channels.
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Proof of Appendix

Proof of Benchmark result

(1) We first rule out all asymmetric locations in equilibria. First, suppose x1+x2 > 1, meaning

that x̂ > 1/2.

π1 =

∫ 1

2

0
(p1(x)− t|x− x1|) (1−

b

2
+ 2bx)dx+

∫ x̂

1

2

(p1(x)− t|x− x1|) (1 +
3

2
b− 2bx)dx

=
t
(
b(2− 3x1 − x2)(2(3x

2
1 + x22)− 3x1 − 5x2 + 2) + 6(x2 − x1)(3x1 + x2)

)

24
,

(A.1)

π2 =

∫ 1

x̂
(p2(x)− t|x− x2|) (1 +

3

2
b− 2bx)dx

=
t(x2 − x1)

[
b(2(x1 + 2x2)

2 − 9(x1 + 3x2) + 6(x22 + 2)) + 6(4− x1 − 3x2)
]

24
.

(A.2)

Solving ∂π1/∂x1 = 0 and ∂π2/∂x2 = 0 leads to first-ordered conditions: 9bx21+(2bx2−7b+

6)x1+bx
2
2−(3b+2)x2+2b = 0, bx21−(3b+2(1−bx2))x1−7bx22+3(3b+2)x2−2(b+2) = 0

which yields four interior solutions. These solutions all lead to either x1 + x2 = 1 or

violating second-ordered conditions by detailed calculations and thus there are no interior

solutions. Second, in the case where x1 + x2 < 1, there also exist no interior solutions.

Third, the corner solution (x1 = 0 or x2 = 1) when x1 + x2 6= 1 can also be ruled out.

Consider the case x2 = 1 for the situation x1 + x2 > 1, and then firm 1 will response to

choose x1 = (5b − 6 +
√
25b2 + 12b+ 36)/(18b) ∈ [1/3, 1/2). However, given this x1, firm

2 will always has an incentive to move left at x2 = 1. Henthforth, any corner location

with x1+x2 6= 1 cannot be an equilibrium, and we need only consider the symmetric case

(x1 + x2 = 1). The profit functions become

π1 =
t(x2 − x1)

(
6(3x1 + x2) + b

(
2(7x21 + x22)− 3(3x1 + x2) + 8x1x2

))

24
, (A.3)

π2 =
t(x2 − x1)

(
6(4− x1 − 3x2) + b

(
2(x21 + 7x22)− 9(x1 + 3x2) + 8x1x2 + 12

))

24
.

(A.4)

Solving ∂π1/∂x1 = 0 and ∂π2/∂x2 = 0 simultaneously yields the unique solution of lo-

cations (x∗1 = 1
4 +

√
b2+4−2
4b , x∗2 = 1 − x∗1), which also satisfies the second-order condition

∂2πi

∂x2

i

∣∣∣
x1=x∗

1
,x2=x∗

2

< 0, i = 1, 2. Notably, the first-order condition also yields another solu-

tion {x1 = 1
4 +

√
b2+4+2
4b , x2 = 1− x1}, which in fact violates the second-order condition.
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(2) The consumer surplus CS can be calculated by

CS = V −
∫ x̂

0
t(x2 − x)f(x)dx−

∫ 1

x̂
t(x− x1)f(x)dx

= V − tb

24
(6(x32 − x31 + x1x2(x2 − x1))− 3(3x2 − 5x1)(x2 + x1)− 2(6x1 − 1)

+ 6(x1 + x2)
2 + 12(1− 2x1)). (A.5)

Then, we maximize SW (α) = α(π1 + π2) + (1 − α)CS to solve the first-order conditions

∂SW (α)/∂x1 = 0 and ∂SW (α)/∂x2 = 0, which yield the first-ordered conditions: 4αbx21+

2α(2− b)x1 +α− 1 = 0 and x2 = 1− x1. Then, the solutions are xw2 (α) = 1− xw1 (α), and

xw1 (α) =
1
4 − 1

2b +
√

4α(α+b−2αb)+α2b2

4αb when α > 1/3 and xw1 (α) = 1/2 when α ≤ 1/3. The

boundary solution xw1 = 1− xw2 = 0 appears only when α = 1.

(3) The comparative statics yields

∂xw1 (α)

∂α
=

−1

2α
√
α(4α+ b− 2αb) + αb2

< 0, (A.6)

∂xw1 (α)

∂b
=

√
α(4α+ b− 2αb) + αb2 − 2α− b(1− 2α)

2b2
√
α(4α+ b− 2αb) + αb2

> 0, when α > 1/3. (A.7)

In the case of α = 1/2, xw1 (α = 1/2) = x∗1.

(4) We derive the incentive of relocation for firm 1 at the social optimum (xw1 , x
w
2 ) when

α > 1/3:

∂π1
∂x1

=
−t
4

(
b
(
x1(7x1 − 2x2 − 3) + x2(1− x2)

)
+ 2(3x1 − x2)

)
, (A.8)

when x1 ≥ xw1 , where x1 + x2 ≥ 1,

which leads to ∂π1

∂x1

∣∣∣
x2=1−x1

= −t
2 (4x1 − 1 + 2bx1(2x1 − b)) and

∂π1
∂x1

∣∣∣∣
(

xw
1
(α),xw

2
(α)

)

=
t(2α− 1)

2α
R 0 if α R

1

2
. (A.9)

Thus, if α ≤ 1/3, then the government should assign the market center (x = 1/2) to be

the locations for both firms, and if 1/3 < α < 1/2, then the government should enact

a zoning policy that only allows firms to locate within [xw1 (α), x
w
2 (α)]. As similar proof

applies for α > 1/2. While the above proofs analyze local properties for x1 near xw1 ,

the conclusion applies to having global properties. When 1/3 < α < 1/2, ∂π1/∂x1 =

−t(2bx2+b(1+3bx1)−7b)/4 is a decreasing function in x1 for x1+x2 > 1 since the zoning
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policy is x1 ∈ [xw1 , x
w
2 ]. When α > 1/2, it can be shown that it is optimal for firm 1 to

choose x1 = xw1 under the zoning policy x1 ∈ [0, xw1 ] and x2 = xw2 by detailed calculations.

✷

Proof of Proposition 1

(1) There are three cases in the equilibrium: x1R < x̂, x1R = x̂, and x1R > x̂, where x1R is

the right marginal consumer indifferent between the online firm and firm 1, which can be

described as Figure 1. Similar to (1)–(3), in the case of Figure 1(b),

π0 = p0

(∫ x1L

0
f(x)dx+

∫ x2L

x1R

f(x)dx+

∫ 1

x2R

f(x)dx

)
, (A.10)

π1 =

∫ x1R

x1L

(p0 + λ− t|x− x1|) f(x)dx, (A.11)

which can be reduced to the following equations under symmetric locations

π0

∣∣∣
Fig1(b)

=
p0
t

(
2
(
b(1− 4x1)− 2

)
(p0 + λ) + t

)
, (A.12)

π1

∣∣∣
Fig1(b)

=
(p0 + λ)2

(
b(4x1 − 1) + 2

)

2t
, (A.13)

and consumer surplus

CS
∣∣∣
Fig1(b)

= v − p0 − λ, (A.14)

and in the case of Figure 1(c),

π0 = p0

∫ x2L

x1R

f(x)dx, (A.15)

π1 =

∫ x1R

0
(p0 + λ− t|x− x1|) f(x)dx. (A.16)

Under symmetric condition x2 = 1 − x1, Eqs. (A.12) and (A.13) can be reduced to the

following equations

π0

∣∣∣
Fig1(c)

=
p0
(
t− 2(p0 + λ+ tx1)

)(
b(tx1 + p0 + λ) + t

)

t2
, (A.17)

π1

∣∣∣
Fig1(c)

=
1

12t2

(
4bλ3 + 3λ2

(
4b(p0 + tx1) + t(2− b)

)

+ 6λ(p0 + tx1)
(
2b(p0 + tx1) + t(2− b)

)
+ 4bp30

+ 3tp20(4bx1 + 2− b)− 4bt3x31 − 3t3(2− b)x21

)
, (A.18)

CS
∣∣∣
Fig1(c)

= v − p0 − λ. (A.19)

30



We can exclude the case x1R < x̂, since firm 1 obviously earns more profits from moving

closer to the center with more urban customers. Moreover, the second case x1R = x̂ is a

special case of x1R ≥ x̂ and can be excluded later. Both asymmetric cases x1 6= 1 − x2

in Figure 1(b) and Figure 1(c) are still not equilibria, by the same argument. Therefore,

the only equilibrium case is described as Figure 1(a). Then, the first-order conditions

∂π0/∂p0 = 0, ∂π1/∂x1 = 0, and ∂π2/∂x2 = 0 lead to

t2 · ∂π0
∂p0

∣∣∣∣
x2=1−x1

= 6bp20 − 2
(
t(2− b)− 4b(λ− tx1)

)
p0

+ (tx1 − λ)
(
t(2− b)− 2b(λ− tx1)

)
= 0, (A.20)

2t · ∂π1
∂x1

∣∣∣∣
x2=1−x1

= −2bt2x21 − t
(
t(2− b) + 4b(p0 + λ)

)
x1 + 2b(p0 + λ)2

+ t
(
t− (2− b)(p0 + λ)

)
= 0. (A.21)

The above two conditions are quadratic in p0 and in x1, respectively, and lead to the

reaction functions in (4) and (5) by the second-order condition. Notably, those cases

x̂ 6= 1/2 cannot be equilibria since the firm more distant from the market center has an

incentive to move closer to the market. Specifically, when x̂ < 1/2, firm 1 will choose a

larger x1 to serve more urban consumers. Hence, the equilibrium is the case x1R > x̂,

which is depicted as Figure 1(a).

(2) Consider a case in which α = 1/2 and λ is not small so that Figure 1(a) is socially optimal;

solving ∂SW/∂x1 = 0 and ∂SW/∂x2 = 0 yields the first-ordered condition of the social

optimum

4t · ∂SW
∂x1

∣∣∣∣
x2=1−x1

= −2bt2x21 + (bt− 2t− 4bλ) tx1 − 2bp20 − (2− b)λt

+ 2bλ2 + t2 = 0, (A.22)

and x2 = 1− x1.

We may compare the above (A.22) and the first-ordered condition (A.21) in equilibrium.

We need to multiply (A.21) by −(p0 − 1) to equalize the second-order terms x21 of (A.21)

and (A.22), which leads to a difference in the first-order terms of (A.21) and (A.22):

p0
(
− 4p0b− tb− 4bλ+ 4btx1 + 2t

)
, which is zero iff x1 = 1

4 − 1
2b +

(p0+λ)
t . This does not

generally hold and thus the equilibrium is generally not socially desirable even in the case

α = 1/2.

When α 6= 1/2, similar arguments apply and thus the equilibrium locations (x̃1, x̃2) are

not socially desirable.
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(3) When α = 0, ∂SW
∂x1

∣∣∣
x2=1−x1,x1=1/2

= (p0+λ)(t(2+b)−2b(p0+λ))
2t , which is positive since p0+λ <

t/2 to ensure positive online market shares. Therefore, when α is close to zero, the social

optimal locations are x̃w1 = 1− x̃w2 = 1/2.

When α = 1, consider the more dispersed case described in Figure 1(c). Then, all offline

prices are p̃0 + λ. The social welfare SW = π0 + π1 + π2. We then have

∂SW

∂x1

∣∣∣∣
(x1=0,x2=1)

= −1

t

(
2b(p20 − λ2)− λt(2− b)

)
. (A.23)

When x1 = 0 and x2 = 1, the optimal choice of p0 for the online firm is to maximize

π0 = p0

∫ xL
2

xR
1

f(x)dx =
p0
t2

(
t− 2(p0 + λ)

)(
t+ b(p0 + λ)

)
, (A.24)

which yields the solution

p̃0|x0=0,x1=1 =
t

6
− 2

3
λ+

−2t+
√
t2(b+ 2)2 − 2b(t− 2λ)(t+ bλ)

6b
. (A.25)

Then, ∂SW
∂x1

∣∣∣
x1=0,x2=1,p0=p̃0(x1=0,x2=1)

is positive (negative) when λ is large (small) by de-

tailed calculations. For instance, when b = 1

18t · ∂SW
∂x1

∣∣∣∣
x1=0,x2=1,p0=p̃0(x1=0,x2=1)

= 4(λ+ t)(2λ− t) + (4λ+ t)
√

4λ2 + 2λt+ 7t2,

(A.26)

which is positive iff λ > 3
√
5−5
20 t ≈ 0.0854t. Henceforth, when λ is large, the socially

optimal locations are not maximal differentiation, while maximal differentiation appears

when λ is small.

(4) Given any p̃0

x̃1 − x∗1 =
1

4bt

(√
t2(b+ 2)2 + 32b2(p̃0 + λ)2 − 4b(p̃0 + λ)− t

√
b2 + 4

)
, (A.27)

which is positive if and only if ψ = 4b(p̃0 + λ)2 + t2 − 2t
√
b2 + 4(p̃0 + λ) > 0. We have

p̃0 + λ < t
4 , since the online firm will be dominated by the offline firm if p̃0 + λ > t

4 . This

is because the offline firm may choose x̃1 = 1/4 to dominate the online firm. Since ψ is

decreasing in p̃0 from p̃0 + λ < t
4 , and ψ is positive when p̃0 + λ = 0, we prove that ψ

is always positive, and therefore, x̃1 > x∗1. From (5), the reaction function x̃1 satisfies
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∂x̃1/∂p0 < 0, meaning that offline firms move close to the market center as the online

price decreases. This is because

∂x̃1
∂p0

=
8b(p0 + λ)√

t2(b+ 2)2 + 32b2(p0 + λ)2
− 1

t
, (A.28)

which is negative iff

32b2(p0 + λ)2 − t2(2 + b)2 < 0. (A.29)

The last inequality holds from p0+λ < t
4 . Therefore, we have ∂x̃1/∂p0 < 0. Further from

x̃1

∣∣∣
p0=

t

4
−λ

− x∗1 = −1

4
+

√
3b2 + 4b+ 4

4b
−

√
b2 + 4

b
> 0, (A.30)

which leads to x̃1 > x∗1.

The equilibrium prices under the benchmark scenario are p∗ = max{t|x − x∗1|, t|x − x∗2|},

which are higher than the equilibrium prices with online competition. That is, p∗0(x) > p̃0

when x < x2L or x > x1R, and p̃∗0(x) > p̃∗(x) = max {t|x− x̃∗1|, t|x− x̃∗2|} when x2L < x <

x1R, since x∗1 < x̃∗1 < x̃∗2 < x∗2.

✷

Proof of Proposition 2

From (4) and (5), solving the equations of implicit differentiation yields

dp̃0
dλ

=
−2
(√
φ1 − 4b(p̃0 + λ)

)(
t(2− b) + 4(btx̃1 −

√
φ2 − bz)

)

ϕ
, (A.31)

dx̃1
dλ

=

(√
φ1 − 8b(p̃0 + λ)

)(
t(2− b) + 4(btx̃1 −

√
φ2 − bz)

)

ϕ
, (A.32)

where φ2 = t2(b+ 2)2 + 32b2(p̃0 + λ)2 and ϕ = −8b(p̃0 + λ)
(
t(2− b) + 4

(
b(tx̃1 − λ)−

√
φ2
))

−
√
φ1
(
t(2 + b) − 4b(tx̃1 − λ) + 10

√
φ2 − 4t

)
. Substituting

√
φ1 and

√
φ2 from (4) and (5) into

the above dp̃0/dλ and dx̃0/dλ leads to

dp̃0
dλ

=
2t
(
t(2− b) + 4b(tx̃1 − 2p0 − λ)

)
(2− b+ 4bx̃1)

ϕ2
(A.33)

dx̃1
dλ

=

(
t(2− b) + 4b(tx̃1 − p0 − λ)

)2

(tϕ2)
, (A.34)
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where ϕ2 = −3t2(2 − b)2 + 8b
(
b(3x̃1t

2 + 2λ2) + 4t(p̃0 + λbx̃1) − (2 − b)λt − 6x̃1t
2(1 + bx̃1) +

2bp̃0
(
p̃0+2λ+t(4x̃1−1)

))
. Then, ϕ2 < 0 when b is not too large. This is because ∂ϕ2/∂λ > 0,

and thus

ϕ2 < ϕ2

∣∣∣
z= t

4
−p̃0,x̃1=x∗

1

= −2t2(3 + b2 − 2b
√
b2 + 4) < 0 when b < 1.6914. (A.35)

The second term of the numerator of dp̃0/∂λ is positive when b is not large. That is, since

this term t(2 − b) + 4b(tx̃1 − 2p̃0 − λ) is increasing in x̃1 and decreasing in p̃0, it is greater

than when we replace x̃1 = x∗1 and p̃0 = 1
4 t− λ into this term: t(2− b) + 4b(tx̃1 − 2p̃0 − λ) <

−4bλ− t
√
b2 + 4 + 2 + b < 0 when b is not large. Notably, even λ = 0, b < 1.1547 ensure this

term is negative. Therefore, dp̃0/dλ < 0, and dx̃1/dλ < 0 is obtained. d(p̃0 + λ)/dλ < 0 can

be further shown by detailed calculations: d(p̃0 + λ)/dλ = −(1/ϕ2)(4b(p̃0 + λ + tx1) + t(2 −
b))(4b(tx1 − p̃0 − λ) + t(2− b)) > 0. Finally, since a smaller λ induces more agglomerated x1

and x2, it leads to lower offline prices for the urban area à la spatial price discrimination as

shown by the green line in Figure 1(a). However, the offline prices for the non-urban areas are

p0 + λ, which become higher.

✷

Proof of Proposition 3

(1) When α = 0 (Figure 1(a)),

2t · ∂SW
∂x1

∣∣∣∣
x2=1−x1, x1=1/2

= (p0 + λ)
(
t(2 + b)− 2b(p0 + λ)

)
> 0. (A.36)

Therefore, the optimal zoning policy is x1 = x2 = 1/2. Thus, this optimal zoning policy

applies for the cases with small α.

(2) When α = 1, following the proof of Proposition 1(3) when λ is small, the social optimum

is maximal differentiation (xw1 = 0, xw2 = 1):

2t · ∂π1
∂x1

∣∣∣∣
x2=1−x1, x1=0

= 2b (p0 + λ)2 + t2 + t (p0 + λ)(b− 2) > 0. (A.37)

Therefore, the optimal zoning policy is x1 = 0 and x2 = 1. When α = 1 and λ is not

small, if still at Figure 1(c), from the condition 2t · ∂SW
∂x1

∣∣∣
x2=1−x1

= 0, we have 2b(λ2 −
p20) + t(2bx1 + 2− b)(λ− tx1) + 2btx1λ = 0. Thus,

2t · ∂π1
∂x1

∣∣∣∣
x2=1−x1, x1=xw

1

=
(
2b(λ2 − p20) + t(2bx1 + 2− b)(λ− tx1) + 2btx1λ︸ ︷︷ ︸

= 0

+ 4bp20 + 4bp0(tx1 + λ) + tp0(2− b) > 0. (A.38)
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Therefore, the optimal zoning policy is x1 ≤ xw1 and x2 ≥ xw2 (= 1− xw1 ). Thus, the above

zoning policies apply to the case when α is close to one.

(3) Consider the case where α = 1/2 and λ is not small, so that Figure 1(a) is socially optimal,

the first-order condition of the social optimum is −2bt2x21+(bt−2t−4bλ) tx1−2bp20− (2−
b)λt+ 2bλ2 + t2 = 0 from the proof of Proposition 1(2). At the socially optimal location,

we have

2t · ∂π1
∂x1

∣∣∣∣
x2=1−x1, x1=xw

1

= −2bt2x21 + (bt− 2t− 4bλ) tx1 − 2bp20 − (2− b)λt+ 2bλ2 + t2︸ ︷︷ ︸
= 0

+ p0
(
t(b− 2) + 4b(po + λ− tx1)

)

= −
(
tp0 (2− b) + 4b(tx1 − p0 − λ)

)
< 0. (A.39)

Therefore, when α = 1/2, the optimal zoning policy is asking firms to locate in (x1, x2) ∈
[xw1 , x

w
2 (1− xw1 )]. Now consider the case in which α = 1/2 and λ is small such that Figure

1(b) is the socially optimal pattern. We have ∂SW
∂x1

∣∣∣
x2=1−x1

= 2b(λ−p0)(p0+λ)
t , which is

negative (positive) when λ < p0 (λ > p0). Thus, the socially optimal location for firm 1

is the either smallest x1 = p0+λ
t or the largest x1 = 1

2 − p0+λ
t for the pattern Figure 1(b).

Then,

∂π0
∂x1

∣∣∣∣
Figure 1(b)

=
b
(
2λ(2− b(1− 4x1)) + t

)2

8t(2− b+ 4bx1)2
> 0. (A.40)

So the optimal zoning policy is [0, xw1 ] and [xw2 , 1]. Thus, the above discussion applies for

the cases that α is around 1/2.

✷

Proof of Proposition 4

(1) When α is small, the socially optimal locations will be the case of 1/2 − λ/t ≤ x1 ≤ 1/2

as Figure 1(a). Substituting the best response p̃0(x1) in Eq.(4) into the social welfare

function S̃W yields

∂S̃W

∂x1

∣∣∣∣∣
x1=

1

2
, x2=1−x1

=

(
11t2(b+ 4) + 32b

(
t(2b+ t)− 2z(t− bz)

))
φ̃

108tbφ̃

+ (4bz − t(2 + b))
(
32bz(bz − t) + t2(44− 28b+ 11b2)− 16b2zt

)
, (A.41)
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where φ̃ =
√
(2bz − t)2 + t2(b− 1)2 − 2t(b2z − t). This differential can be shown as posi-

tive when even 0 ≤ b ≤ 2, and 0 ≤ z ≤ t/4. Therefore, the socially optimal locations are

x1 = 1/2 and x2 = 1/2 when α is small.

∂π1
∂x1

∣∣∣∣
x1=

1

2
, p0=p̃0

=
1

18

(
(2t− b(4z − t))φ̃− 4t2(1 + b2)− 4bzt(b+ 2)− 10bt2 + 8b2z2

)
,

(A.42)

which is negative by detailed calculations. Henceforth, firm 1 has incentive to move to the

left at the market center point. We thus prove that the optimal zoning policy is limiting

both firms to locate in the middle of the market when α is small.

(2) When α is close to one, the social optimal locations may satisfy either 1/2−λ/t ≤ x1 ≤ 1/2

or 0 ≤ x1 ≤ 1/2− λ/t. Consider α = 1 for convenience. In the case 0 ≤ x1 ≤ 1/2− λ/t,

∂S̃W

∂x1
= −2bt2x12 + ((b− 2)t2 + 4bλt)x1 − bλ(2bλ+ (2− b)t)− 2bp20, (A.43)

which leads to ∂π1/∂x1 being either positive or negative. Similarly, in the case 1/2−λ/t ≤
x1 ≤ 1/2, it can be shown by detailed calculations that the same conclusion is obtained.

✷

Proof of Proposition 5

(1) We can exclude the case x1R < x̂ described in Figure 2(b), since firm 1 obviously earns

more profits from moving closer to the center with more urban customers. Moreover, the

case x1R = x̂ is a special case of x1R ≥ x̂ as following analysis and described in Figure 2(a).

Since the online firm is allowed to engage in spatial price discrimination, the equilibrium

price at each point becomes the second-lowest unit cost, provided by the lowest-cost firm.

The unit costs for offline firms and the online firm are x1 + t|x − x1|, x2 + t|x − x2|, and

λ, respectively. The profit of the online firm becomes

π0 =

∫ x1L

0

(
t|x− x1| − λ

)
f(x)dx+

∫ 1

x2R

(
t|x− x2| − λ

)
f(x)dx, (A.44)

where t|x − xi|, i = 1, 2 are the unit costs for consumers and t|x − xi| − λ is the price

received by the online firm, while the offline firms have the profit functions:

π1 =

∫ x2L

x1L

(λ− t|x− x1|)f(x)dx+

∫ x̂

x2L

t
(
(x2 − x)− (x− x1)

)
f(x)dx, (A.45)

π2 =

∫ x2R

x1R

(λ− t|x− x2|)f(x)dx+

∫ x1R

x̂
t
(
|x− x1| − |x− x2|

)
f(x)dx. (A.46)
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(2) Thus,

∂π1
∂x1

=
1

4t

(
−bt2(3x1 + x2 − 1)(x1 − x2) + 2t2(x2 − x1)− 2λ

(
2b(2tx1 − λ) + t(2− b)

))
,

(A.47)

∂π2
∂x2

=
1

4t

(
bt2(3x2 + x1 − 3)(x2 − x1)− 2t2(x2 − x1)− 2λ

(
2b(2tx2 + λ)− t(3b+ 2)

))
.

(A.48)

The above two first-ordered conditions yield

˜̃x∗1 =
−2t+ tb− 4bλ+

√
t2(b+ 2)2 + 32b2λ2

4bt
, (A.49)

and ˜̃x∗2 = 1− ˜̃x∗1. Comparing this equilibrium with the benchmark scenario yields

˜̃x∗1 − x∗1 =
1

4bt

(√
t2(b+ 2)2 + 32b2λ2 − t

√
b2 + 4− 4bλ

)
, (A.50)

which is positive, since 0 < b ≤ 2 and 0 < λ < t/4.

(3) The social welfare function can be presented (under the symmetric case) as two different

cases, 1/2− λ/t ≤ x1 ≤ 1/2 and 0 ≤ x1 ≤ 1/2− λ/t (described in Figure 2(a) and Figure

2(b), respectively):

SWx1≥1/2−λ/t

= 2

∫ x1L

0
(αt(x1 − x) + (1− α)(V − t(x1 − x)− λ))f(x)dx

+ 2

∫ x2L

x1L

(α(λ− t|x− x1|) + (1− α)(V − λ))f(x)dx

+ 2

∫ 1/2

x2L

(α(t(x2 − x)− t(x− x1)) + (1− α)(V − (t(x2 − x)− t(x− x1)))f(x)dx,

(A.51)

SWx1≤1/2−λ/t

= 2

∫ x1L

0
(αt(x1 − x) + (1− α)(V − t(x1 − x)− λ))f(x)dx

+ 2

∫ x1R

x1L

(α(λ− t|x− x1|) + (1− α)(V − λ))f(x)dx

+ 2

∫ 1/2

x1R

(αt(x− x1) + (1− α)(V − t(x− x1)− λ)f(x)dx. (A.52)
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Both are cubic polynomial functions of x1, and their three-ordered terms are both 2bt(3α−
2)/3x31.

For the case x1 ≥ 1/2−λ/t, the first-order condition of social welfare maximization under

the symmetric condition x2 = 1− x1 yields

2bt2(3α− 2)x21 − t
(
αt(7b+ 2)− 4b(t− z + αz)

)
x1 + (t− 2λ)(2tb+ 3t− λ)α

− t(tb− 3bλ− 2λ), (A.53)

which yields the optimal location

˜̃x∗w1 =
αb(7t+ 4λ)− 2t(2b− α)−

√
φw

4bt(3α− 2)
, (A.54)

where φw =
(
α2(2−b)2+8b(5α−2)(1−α)

)
t2+32bλ(2α−1)2(2+b)t−32b2λ2(7α2−8α+2).

These socially optimal locations are different from the equilibrium locations, except when

α = 1/2 by detailed calculations.

(4) The social welfare SWx1≥1/2−λ/t always has a unique interior solution ˜̃x∗w1 above or ˜̃x∗w1 =

1/2 − λ/t when α ≤ 1/2, because SWx1≥1/2−λ/t is a cubic polynomial with a negative

three-ordered term, and

∂SWx1≥1/2−λ/t

∂x1

∣∣∣∣
x1=1/2

= −t+ λ(b+ 2) + α
(
2t− 3λ(b+ 2) +

2bλ2

t

)
< 0, (A.55)

∂2SWx1≥1/2−λ/t

∂x21

∣∣∣∣∣
x1=1/2

= −4bλ(1− α)− αt(b+ 2) < 0. (A.56)

However, when α = 1, the social welfare function SWx1≥1/2−λ/t is a cubic polynomial with

a positive three-ordered term 4/3btx31, and there are two solutions for this cubic polynomial

x1 = (2b− 4− 2
√
b2 + 4)/(8b) < 0 and x1 = (2b− 4 + 2

√
b2 + 4)/(8b) > 1/2− λ/t. Since

∂(SWx1≥1/2−λ/t)/∂x1|α=1,x1=0 = −t < 0, SWx1≥1/2−λ/t has the maximal value at x1 = 0

within the interval 0 ≤ x1 ≤ 1/2−λ/t. Henceforth, the social optimum (˜̃x∗w1 , ˜̃x∗w2 ) = (0, 1)

if α is close to 1. A similar but more technical proof applies for all α ≥ 2/3 by detailed

calculations.

✷

References

Anderson, S. P., Goeree, J. K., & Ramer, R. (1997). Location, location, location. Journal

of Economic Theory, 77, 102–127.
38



Balasubramanian, S. (1998). Mail versus mall: A strategic analysis of competition between

direct marketers and conventional retailers. Marketing Science, 17, 181–195.

Bárcena-Ruiz, J. C., & Casado-Izaga, F. J. (2014). Zoning under spatial price discrimination.

Economic Inquiry, 52, 659–665.

Bárcena-Ruiz, J. C., & Casado-Izaga, F. J. (2017). Zoning a cross-border city. Journal of

Regional Science, 57(1), 173-189.

Bárcena-Ruiz, J. C., & Casado-Izaga, F. J. (2018). Zoning a metropolitan area. Papers in

Regional Sciences, 97(S1), S123–137.

Bárcena-Ruiz, J. C., & Casado-Izaga, F. J. (2020). Partial ownership of local firms and

zoning of neighboring towns. Annals of Regional Science, 65(1), 27–43.

Bárcena-Ruiz, J. C., Casado-Izaga, F. J., Hamoudi, H., & Rodriguez, I. (2014). Optimal

zoning in the unconstrained Hotelling game. Papers in Regional Science, 95(2), 427–435.

Brynjolfsson, E., & Smith, M. D. (2000). Frictionless commerce? A comparison of Internet

and conventional retailers. Management Science, 46, 563–585.

Chen, C. S., & Lai, F. C. (2008). Location choice and optimal zoning under Cournot

competition. Regional Science and Urban Economics, 38, 119–126.

Chen, Y., Hu, X., & Li, S. (2017). Quality differentiation and firms’ choices between online

and physical markets. International Journal of Industrial Organization, 52, 96–132.

Clay, K., Krishnan, R., Wolff, E., & Fernandes, D. (2002). Retail strategies on the web:

Price and non-price competition in the online book industry. The Journal of Industrial

Economics, 50, 351–367.

Colombo, S. (2012). On optimal zoning in a linear town with Cournot competitors. Letters

in Spatial and Resource Sciences, 5, 113–118.

Duch-Brown, D., Grzybowsk, L., Romahn, A., & Verboven, F. (2017). The impact of online

sales on consumers and firms. Evidence from consumer electronics. International Journal

of Industrial Organization, 52, 30–62.

Ecchia, G., & Lambertini, L. (1997). Minimum quality standards and collusion. Journal of

Industrial Economics, 45, 101–113.

Esteves, R. B., & Shuai, J. (2022). Personalized pricing with a price sensitive demand.

Economics Letters, 213, 110396.

39



Forman, C., Ghose, A., & Goldfarb, A. (2009). Competition between local and electronic

markets: How the benefit of buying online depends on where you live. Management

Science, 55(1), iv–163.

Goldfarb, A., & Tucker, C. (2019). Digital economics. Journal of Economic Literature, 57,

3–43.

Goolsbee, A. (2001). Competition in the computer industry: Online versus retail. The

Journal of Industrial Economics, 49, 487–499.

Guo, W. C., & Lai, F. C. (2014). Spatial competition with quadratic transport costs and

one online firm. The Annals of Regional Science, 52, 309–324.

Guo, W. C., & Lai, F. C. (2017). Prices, locations, and welfare when an online retailer com-

petes with heterogeneous brick-and-mortar retailers. Journal of Industrial Economics,

65, 439–468.

GUO, W. C. and LAI, F. C. (2022). Price discrimination under online-offline competition.

Economics Letters, 216, 110602.

Hamoudi, H., & Risueño, M. (2012). The effects of zoning in spatial competition. Journal

of Regional Science, 52(2), 361–374.

Heywood, J. S., & Ye, G. (2009). Mixed oligopoly, sequential entry, and spatial price dis-

crimination. Economic Inquiry, 47, 589–597.

Hoover, E. M. (1937). Spatial price discrimination. Review of Economic Studies, 4, 182–191.

Hotelling, H. (1929). Stability in competition. Economic Journal, 39, 41–57.

Hurter, A., & Lederer, P. (1985). Spatial duopoly with discriminatory pricing. Regional

Science and Urban Economics, 15, 541–553.

Lai, F. C., & Tsai, J. F. (2004). Duopoly locations and optimal zoning in a small open city.

Journal of Urban Economics, 55, 614–626.

Lederer, P., & Hurter, A. (1986). Competition of firms: Discriminatory pricing and location.

Econometrica, 54, 623–640.

Loginova, O. (2009). Real and virtual competition. The Journal of Industrial Economics,

57, 319–342.

Matsumura, T., & Matsushima, N. (2012). Locating outside a linear city can benefit con-

sumers. Journal of Regional Science, 52, 420–432.

Neven, D. J. (1986). On Hotelling’s competition with non-uniform customer distributions.

Economics Letters, 21, 121–126.
40



Salop, S. C. (1979). Monopolistic competition with outside goods. Bell Journal of Eco-

nomics, 10, 141–156.

Tabuchi, T., & Thisse, J. F. (1995). Asymmetric equilibria in spatial competition. Interna-

tional Journal of Industrial Organization, 13, 213–227.

Taylor, C., & Wagman, L. (2014). Consumer privacy in oligopolistic markets: Winners,

losers, and welfare. International Journal of Industrial Organization, 31, 80–84.

Thisse, J. F., & Vives, X. (1988). On the strategic choice of spatial price policy. American

Economic Review, 78, 122–137.

Vogel, J. (2011). Spatial price discrimination with heterogeneous firms. Journal of Industrial

Economics, 59, 661–676.

41


