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Abstract
The etiology of anorexia nervosa (AN) remains elusive. Recent genome-wide association studies
identi�ed the �rst genes liked to AN which reached genome-wide signi�cance, although our
understanding of how these genes confer risk remains preliminary. Here, we leverage the Allen Human
Brain Atlas to characterize the spatially distributed gene expression patterns of genes linked to AN in the
non-disordered human brain, developing whole-brain maps of AN gene expression. We found that genes
associated with AN are most expressed in the brain, relative to all other body tissue types, and
demonstrate gene-speci�c expression patterns which extend to cerebellar, limbic and basal ganglia
structures in particular. fMRI meta-analyses reveal that AN gene expression maps correspond with
functional brain activity involved in processing and anticipating appetitive and aversive cues. Findings
offer novel insights around putative mechanisms through which genes associated with AN may confer
risk.

Introduction
Anorexia nervosa (AN) is a debilitating and life-threatening psychiatric disorder characterized by self-
directed starvation, low weight and emaciation, and an intense fear of weight gain1. These core
symptomatic features appear homogeneous across both time and cultures, and a stereotypic post-
pubertal onset is commonly observed. Illness duration persists for several decades without remission for
more than half of those a�icted2, and recent meta-analyses suggest that leading specialized treatments
do not outperform control treatments on key indices of symptom remission3. With illness
pathophysiology and the biological mechanisms driving the potentially lethal self-directed restriction of
food intake remaining elusive, the need to better characterize the pathophysiology of AN is critical.

Despite the ubiquity of driven weight loss efforts in Western society, AN effects ~ 1% of the population,
and appears to be a largely heritable neuropsychiatric phenotype. For instance, (i) epidemiological
studies have illustrated an 11-fold greater risk of AN in �rst degree relatives of AN probands4,5, (ii)
heritability rates among twins range from 48–84%6–9, and (iii) the variability in twin-based heritability of
AN is due to genetic variation10. Cumulatively, this has prompted some to contest that genetics are the
single greatest risk factor for AN6.

Locating the precise source of the genetic risk for AN, however, has proven challenging. Owing to the
noted challenges around recruitment of AN participants for research, recent transcriptomic11, whole
exome sequencing12 and genome-wide association studies (GWAS)10,13−15 have been underpowered, and
have not yielded de�nitive insights as to the genetic architecture of AN. However, the more recent
cumulative aggregation of all available genotyped AN data in the world recently resulted in the
breakthrough discovery of eight loci reaching genome-wide signi�cance, that are associated with nine
genes16.
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Following this landmark discovery of the genetic loci associated with AN- a highly complex
neuropsychiatric disease, a fundamental challenge facing the ‘post-GWAS era’ lies in understanding how
speci�c genes confer risk. Elucidating the magnitude and neuroanatomical distribution of the expression
of the prioritized genes may offer novel insights into the neurogenetic mechanisms of AN. Speci�cally,
genetic associations at the level of non-disordered human tissue transcriptome may offer important
insights into normative gene function, without the confound of clinical epiphenomena common among
clinical populations17, and postmortem mRNA of human samples in particular has been outlined as the
‘ultimate intermediate phenotype’ to examine neuropsychiatric disorders18.

Here we characterize the neuroanatomical distribution of multiarray derived mRNA expression patterns of
the nine genes associated with AN16 in the non-disordered human brain, and explore the functional
relevance of these patterns. To do this, we extracted data from 20,737 protein-coding genes from the
Allen Human Brain Atlas (http://human.brain-map.org/), which contains post-mortem brain tissue from
six healthy donors (m age = 42.5 years; SD = 11.2 years), sampled in 363–946 brain locations within
approximately 22 hours of death. First, we assessed the donor-to-donor reproducibility of the nine genes
linked to AN in the largest GWAS to date16 (Supplementary Fig. 1) by leveraging the concept of
differential stability19, which we operationalized as the average Spearman’s correlation between any
possible combination of 15 pairs between donors20. Next, we created voxel-by-voxel volumetric gene
expression maps for genes demonstrating strong differential stability and developed a composite brain
map representing an average of 6 individuals on the left hemisphere, registered brains to MNI space
using ANT’s non-linear registration and averaged so that each gene’s mRNA expression pattern is
represented by a single voxel-by-voxel brain map (Supplementary Fig. 2). One-sample t-tests, corrected for
54 tests using a false discovery rate threshold, were conducted to assess which of the 54 left hemisphere
regions from six donor samples expressed mRNA to a signi�cantly greater or lesser degree compared to
average mRNA expression across the brain.

Next, we created voxel-by-voxel volumetric gene expression maps for the genes demonstrating strong
differential stability and developed a composite brain map representing an average of 6 individuals on
the left hemisphere, registered brains to MNI space using ANT’s non-linear registration and averaged so
that each gene’s mRNA expression pattern is represented by a single voxel-by-voxel brain map
(Supplementary Fig. 2). One-sample t-tests, corrected for 54 tests using a false discovery rate threshold,
were conducted to assess which of the 54 left hemisphere regions from six donor samples expressed
mRNA to a signi�cantly greater or lesser degree compared to average mRNA expression across the brain.

Results

Donor-to-donor reproducibility of gene expression patterns
Five of the AN risk genes (FOXP1, CADM1, CDH10, NCKIPSD, MGMT) ranked above the 50th percentile of
all 20,737 protein-coding genes, indicating reproducible patterning irrespective of sex and ethnicity
(Fig. 1). Donor-to-donor associations were also assessed via Spearman’s rank correlation coe�cient, with
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each individual association for FOXP1, CADM1, CDH10, NCKIPSD, MGMT demonstrating statistical
signi�cance (p < 0.001), further suggesting strong differential stability (Supplementary Fig. 1).

Brain-based Region-of-interest Gene Expression
Of the �ve genes showing reproducible expression patterns, three demonstrated spatially speci�c
expression patterns which reached statistical signi�cance for speci�c brain regions (Fig. 2). Compared to
average expression across the whole brain, statistically signi�cantly greater expression of CADM1 mRNA
levels were noted diffusely throughout the cerebellum (Cerebellum Crus 2: p = 0.021, d = 2.181; Cerebellum
3: p = 0.001, d = 5.678; Cerebellum 4/5: p = 0.001, d = 5.899; Cerebellum 6: p = 0.038, d = 1.750; Cerebellum
7: p = 0.016, d = 2.387; Cerebellum 8: p = 0.014, d = 2.633; Cerebellum 9: p = 0.013, d = 2.817; Cerebellum
10: p = 0.017, d = 2.368), in the olfactory bulb (p = 0.035, d = 1.823, and in limbic regions including the
hippocampus (p = 0.007, d = 3.400) and amygdala (p = 0.022, d = 2.088) (all p values adjusted after FDR
correction for 54 tests). Statistically signi�cantly lower expression of CDH10 mRNA levels were noted
throughout the basal ganglia (caudate: p = 0.002, d = 5.302; putamen: p = 0.023, d = 2.515; pallidum: p = 
0.022, d = 2.509), the thalamus (p = 0.002, d = 4.761), hippocampus (p = 0.035, d = 2.154), and amygdala
(p = 0.049, d = 1.913).

Expression of FOXP1 mRNA was statistically signi�cantly greater in basal ganglia regions (caudate: p = 
0.001, d = 4.785; putamen: p = 0.001, d = 4.437), frontal lobe regions (precentral gyrus: p = 0.043, d = 1.156;
superior frontal gyrus: p = 0.026, d = 1.413; superior orbitofrontal gyrus: p = 0.010, d = 1.945; middle frontal
gyrus: p = 0.016, d = 1.652; middle orbitofrontal gyrus: p = 0.011, d = 1.867; inferior frontal operculum: p = 
0.015, d = 1.703; frontal inferior gyrus triangular region: p = 0.001, d = 1.997; inferior orbitofrontal gyrus: p 
= 0.010, d = 1.933; Rolandic operculum: p = 0.002, d = 2.912; anterior medial orbitofontal gyrus: p = 0.016,
d = 1.639; rectus: p = 0.026, d = 1.404), in the insula (p = 0.002, d = 3.106), a range of cingulum regions
(anterior cingulate: p = 0.043, d = 1.160; medial cingulate: p = 0.030, d = 1.322; posterior cingulate; p = 
0.020, d = 1.524), occipital regions (calcarine sulcus: p = 0.001, d = 3.918; cuneus: p = 0.002, d = 2.960;
superior occipital gyrus: p = 0.002, d = 3.048; medial occipital gyrus: p = 0.002, d = 3.058; inferior occipital
gyrus: p = 0.002, d = 3.528), a range of parietal regions (angular gyrus: p = 0.002, d = 3.386; postcentral
gyrus: p = 0.020, d = 1.532; superior parietal gyrus: p = 0.011, d = 1.861; inferior parietal gyrus: p = 0.001, d 
= 2.019), and a range of temporal regions (Heschl’s gyrus: p = 0.002, d = 3.647; superior temporal gyrus: p 
= 0.002, d = 3.335; superior temporal pole: p = 0.016, d = 1.631; medial temporal gyrus: p = 0.085, d = 0.908;
medial temporal pole: p = 0.005, d = 2.417; inferior temporal gyrus: p = 0.015, d = 1.682). Expression of
FOXP1 mRNA was statistically signi�cantly lower in the thalamus (p = 0.001, d = 3.345), a range of
cerebellar regions (cerebellum crus 1; p = 0.020, d = 1.355; cerebellum crus 2; p = 0.000, d = 7.399;
cerebellum 3: p = 0.000, d = 6.438; cerebellum 4/5: p = 0.004, d = 2.521; cerebellum 6: p = 0.011, d = 1.899;
cerebellum 7b: p = 0.000, d = 7.084; cerebellum 8: p = 0.000, d = 6.955; cerebellum 9: p = 0.000, d = 5.814;
cerebellum 10: p = 0.000, d = 8.776), and temporal regions including the hippocampus (p = 0.030, d = 
1.314), parahippocampal gyrus (p = 0.030, d = 1.312, and amygdala (p = 0.031, d = 1.293).
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The relative expression of NCKIPSD and MGMT was not spatially con�ned to speci�c brain regions, and
appeared to be expressed diffusely. Voxel-by-voxel volumetric gene expression maps for the additional
six genes are presented in Supplementary Fig. 3. Importantly, out of sample validation indicates similar
expression patterns for all genes of interest in the Genotype-Tissue Expression (GTEx) project database
(Supplementary Fig. 4).

Whole-body Gene Expression
Alongside whole-brain gene expression, we additionally assessed gene expression across 30 different
body tissue types in the body, by extracting normalized gene expression values (reads per kilo base per
million; RPKM) from the GTEx database, via the FUMA platform (Supplementary Fig. 5). Normalized
expression [zero mean of log2(RPKM + 1)] was used to assess differentially expressed gene sets21, and
Bonferroni adjusted p-values were calculated using two-sided t-tests per gene per tissue against all other
tissues. These analyses indicate that the aggregated set of AN risk genes are cumulatively most
expressed in the brain, relative to other body tissue types.

Cognitive State Correlates
Expression maps for two of the �ve differentially stable genes (CADM1, NCKIPSD) were highly correlated
with functional imaging maps re�ecting ‘conditioning’, ‘fear’ and ‘reward’, ranking among the top 0.5%
strongest associations for each of these cognitive state activation maps, respectively (Fig. 3). Moreover,
when assessing the relationship between gene expression maps and functional activation maps most
associated with speci�c mental states, these same two genes (CADM1, NCKIPSD) were among the 0.5%
strongest associations with depression, anxiety, stress and addiction (Fig. 4). In addition, two of these �ve
genes (NCKIPSD, MGMT) were correlated with functional imaging maps re�ecting visual processing.

Discussion
The anatomical distribution of gene expression networks in the human brain is idiosyncratic, dynamic
and highly coordinated. Cumulatively, gene-gene co-expression patterns represent genetic signatures in
the brain which are likely involved in a series of cognitive and affective states, learning processes, and
brain disorders. This is especially important to examine in AN, a largely heritable and uniformed
neuropsychiatric phenotype, for which the largest GWAS to date recently identi�ed nine genes implicated
in its genetic risk16. While comprehensive post-mortem assessment of brain-based gene expression in AN
is lacking, the explication of precisely where in the non-disordered human brain these risk genes are most
and least expressed is critical for advancing our understanding of how the genetic signature of AN
impacts the mechanisms that drive illness psychopathology. Here, we leveraged the expansive human
brain mRNA library from the Allen Brain Atlas to illustrate the spatial location of expression patterns of
mRNA re�ecting speci�c genes linked to AN.
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Cumulatively, the 9 AN risk genes assessed are most predominantly expressed in the brain, relative to
other body tissue types, supporting the notion that AN is a brain-based disorder22. Further, 5 of these 9
genes demonstrate reliable expression patterning across sex, ethnicity and age, which was corroborated
in independent sample comparisons, which is suggestive of well conserved mechanisms of action. In the
non-disordered brain, CADM1 mRNA expression was elevated throughout the cerebellum, the olfactory
bulb, and in limbic regions including the hippocampus and amygdala. Previous GWAS studies have
linked CADM1 to the regulation of body mass and energy homeostasis23,24. For instance, risk alleles for
obesity in humans are associated with greater mRNA expression of the CADM1 gene in the cerebellum
and hypothalamus25, and animal studies have illustrated elevated neuronal expression of CADM1 in
cerebellar, hypothalamic and hippocampal regions in obese mice relative to lean mice26. Moreover, the
induction of CADM1 in excitatory neurons facilitates weight gain while paradoxically enhancing energy
expenditure26. In contrast, the removal of CADM1 in knockout mice results in a prolonged negative energy
balance, rapid weight loss, and prevents weight gain even in the context of extended high fat dietary
regimens26, which mirrors the rapid weight loss and profound di�culty reported by those with AN in
gaining weight27,28. Importantly, the expression of CADM1 in cerebellar and hippocampal regions may be
gated by a dynamic interplay between bodyweight and dietary intake, as dietary restriction serves to
reduce CADM1 expression in obese mice, but not in controls26. Cumulatively, these data suggest that
CADM1 may act on the cumulative genetic risk for AN via its contribution to synaptic plasticity and the
excitatory/inhibitory balance of neuronal networks which regulate energy expenditure and bodyweight,
which may be exacerbated by low weight.

The FOXP1 gene, which encodes a transcription factor important for the early development of many
organs including the brain29, demonstrated highly diffuse patterns of over-expression in frontal, occipital,
parietal, and temporal regions, and patterns of profound under-expression in an array of cerebellar
regions, alongside thalamic, hippocampal and amygdalar regions. In addition, CDH10 was signi�cantly
under-expressed in central structures such as the caudate, putamen, pallidum, and thalamus, and
temporal regions such as the hippocampus and parahippocampus in the non-disordered human brain.
Interestingly, both FOXP1 and CDH10 expression patterns have been linked to the pathophysiology of
autism30,31. For instance, overexpression of FOXP1 has been associated with autism31,32 and related
features including language impairment and intellectual disability33. Elevated expression of CDH10 in the
frontal cortex has also been associated with autism spectrum disorders34. Certainly, AN has been
characterized by elevated autistic traits35,36 and conceptualized by some as a related endophenotype
characterized by cognitive rigidity and social cognition37,38. A particular challenge relating to the
treatment of AN relates to the high rates of relapse, which is partly underpinned by cognitive and
behavioral in�exibility39. These data raise an intriguing question around whether FOXP1 and CDH10
expression may serve a plausible mechanism through which cognitive �exibility is altered in those with
AN.
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Interestingly, and while not demonstrating strong differential stability in expression across donors, the
C2orf30/ERLEC1 gene demonstrated spatially speci�c patterns of expression in the non-disordered brain
(Supplementary Fig. 3). Speci�cally, the ERLEC1 gene is reliably under-expressed in cerebellar regions.
Interestingly, the ERLEC1 gene also exhibits bodyweight-dependent effects of dietary restriction. Animal
studies suggest that during periods of dietary restriction, lower birthweight animals, relative to normal
weight animals, demonstrate profound deacetylation at ERLEC1 sites, and an accompanying
downregulation of ERLEC1 expression40. In AN, broader �ndings have illustrated global volumetric
reductions in gray matter structures in the context of starvation41, suggesting that the brain changes
dynamically in response to changing caloric and nutrient availability. The present �ndings add to this
body of evidence, raising the notion of a possibly synergistic effect of weight status and dietary intake in
regulating the expression of genes implicated in the pathophysiology of AN.

In examining the functional relevance of genes linked to AN, quantitative reverse inference via meta-
analysis of approximately 15,000 fMRI studies illustrated that two of these �ve differentially stable genes
(CADM1, NCKIPSD) were highly correlated with functional imaging maps re�ecting ‘conditioning’, ‘fear’
and ‘reward’, respectively. The cognitive state maps relating to fear and reward conditioning had a
stronger association with each of these seven two genes than 99.5% of all other protein coding genes in
the brain. The psychopathology of AN is centrally characterized by alterations in both fear and reward,
inasmuch as typically non-threatening cues (normative bodyweight, palatable food cues, etc) are found
highly aversive42, while typically hedonic cues (food, money, etc) are deemed rewarding or motivating43.
With evidence illustrating abnormal fear conditioning in AN44, and structural and functional abnormalities
in nodes within the fear circuit among those with AN45, it been postulated that pathogenic fear learning
may be fundamental to the psychopathology of AN46. In tandem, neuroimaging evidence has illustrated
reliable aberrancies in circuits underpinning reward47–49, which give rise to altered reward sensitivity (and
marked capacity to inhibit and delay reward seeking behaviors48,50−52. These data accord with our
�ndings noting that several of the genes implicated in AN demonstrate reliable patterns of over (CADM1)
and under-expression (FOXP1, CDH10, ERLEC1) in central nodes within fear and rewards circuits,
suggesting that the genes linked with AN may confer risk for AN psychopathology by altering processes
relating to fear- and reward learning.

Cumulatively, these results expand recent GWAS �ndings by offering proof-of-principle demonstration
that the genes conferring risk intersect multiple regions and cognitive processes which function
abnormally in AN. These �ndings offer important insights around putative mechanisms through which
risk genes associated with AN may confer psychopathology, and how relevant gene expression patterns
depend to an extent on both weight and nutritional status which point towards novel targets in
elucidating the pathophysiology of AN.

Materials And Methods
Gene Selection
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The largest GWAS of AN to date revealed eight loci which reached genome-wide signi�cance16. Extraction
of the nearest genes (the nearest gene within the region of linkage disequilibrium ‘friends’ of the lead
variant)16 resulted in the identi�cation of nine candidate genes.

Post-Mortem Brain Samples

mRNA distribution data was obtained from the Allen Human Brain Atlas (http://human.brain-map.org/).
One donor was a Hispanic female, three donors were Caucasian males, and two donors were African-
American males. Mean donor age was 42.5 years (S.D. = 11.2 years), and postmortem brain tissue was
collected, on average, 22.3 hours after death. Data collection adhered to ethical guidelines for the
collection of human postmortem issue collection, and institutional review board approval was granted at
each issue bank and repository that provided tissue samples. Further, informed consent was obtained
from each donor’s next-of-kin. For more details regarding data collection procedures, see 
http://help.brainmap.org/display/humanbrain/Documentation .

Gene expression data

Gene expression data from 20,737 protein coding genes was collected from the Allen Human Brain Atlas.
Each donor brain was sampled in 363–946 locations, either in the left hemisphere only (n = 6), or over
both hemispheres (n = 2) using a custom Agilent 8 × 60 K cDNA array chip. Analyses were performed on
left hemisphere samples due to a larger sample size. Individual brain maps were non-linearly registered to
the MNI152 (Montreal Neurological Institute) template using Advanced Normalization Tools. Next, we
extracted region speci�c statistics for 54 brain regions based on the Automated Anatomical Label (AAL)
atlas.

Donor-to-donor reproducibility of gene expression patterns

Owing to differences in donor sex and ethnicity, we assessed the similarity of gene expression patterns
across the six donors by leveraging the concept of differential stability19, which is the average
Spearman’s correlation between any possible combination of 15 pairs between donors20. This method
has previously indicated that genes with strong differential stability are highly biologically relevant19. For
analysis, we selected the probe with the greatest differential stability, which represented the probe with
the least amount of spatial variability among donors. The average correlation (Spearman’s r) across 15
pairs of 6 donors’ voxel-by-voxel brain maps were used to calculate differential stability using an
approach described by Hawrylycz and colleagues (2015)19. Since each voxel-by-voxel map was
generated based on a limited and variable number of samples, to calculate the statistical signi�cance of
Spearman’s coe�cients we calculated p-values between two donors based on the smallest number of
samples out of the two. That is, if one donor had samples from 353 locations and another one from 456,
we would use the 353 samples to calculate a p-value for the pair.

Out-of-sample validation
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The Genotype-Tissue Expression (GTEx) project database was used for independent sample validation.
Although this dataset provides gene expression data from fewer brain regions (i.e., 10) compared to the
Allen dataset, the data is derived from a larger dataset of donors (mean sample size for mRNA expression
across brain regions = 131.7, range = 88–173). Median gene expression pro�les from 10 distinct brain
regions were extracted for the above-speci�ed 20 genes of interest from the GTEx database and median
values were calculated for these same 10 regions from the Allen dataset. For independent sample
validation, the rank-order correlation of gene expression between the Allen and GTEx datasets using the
10 brain regions reported in the GTEx database was calculated.

Voxel-by-voxel gene expression maps

To create novel voxel-by-voxel volumetric expression maps, we �rst marked all the sample locations and
expression values in native image space20,53. To interpolate missing voxels, we labeled brain borders with
the sample expression value that had the closest distance to a given border point (Supplementary Fig. 2).
Next, we divided the space between scattered points into simplices based on Delaunay triangulation, then
linearly interpolated each simplex with values to yield a completed map. All maps were computed in
Matlab 2014a (The Mathworks Inc., Natick, MA, USA). We then created a composite brain map
representing an average of 6 individuals on the left hemisphere, registered brains to MNI space using
ANT’s non-linear registration and averaged so that each gene’s mRNA is represented by a single voxel-by-
voxel brain map.

Cognitive state correlates

The Neurosynth framework has collated neuroimaging data from over 14,000 fMRI studies (database
version 0.7, released July, 2018). While this framework can be used to develop meta-analytic brain
activation maps for speci�c cognitive states (i.e., stress, learning, reward) using forward inference, it may
also be leveraged to “decode” cognitive states on a given activation map, via reverse inference20. We
correlated voxel-by-voxel mRNA expression maps for the genes of interest with NeuroSynth (version
0.3.7), performing quantitative reverse inference via large-scale meta-analysis of functional neuroimaging
data using mRNA brain expression maps on voxel-by-voxel left hemisphere brain maps, representing the
average of the six donors. Next, we modi�ed the NeuroSynth package to calculate Spearman’s correlation
coe�cient instead of the default Pearson’s correlation coe�cient. To test the speci�city of these cognitive
states, we extracted association Z maps, which re�ect Z-scores of the association between the presence
of activation and the presence of a cognitive feature. We assessed the 5 strongest relationships for
expression maps for each gene of interest and all available cognitive state maps in the Neurosynth
database. Additionally, we calculated Spearman’s correlation between all 20,737 genes and association Z
score maps and ranked them from largest to smallest.

Statistical analysis of gene expression data.

The R statistical package (version 3.3.2) was used for statistical analysis. One-sample t-tests (two-tailed)
were conducted to assess which of the 54 left hemisphere regions from six donor samples expressed
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mRNA to a signi�cantly greater or lesser degree compared to average mRNA expression across the brain.
To correct for multiple tests (54 in total), reported p-values were adjusted using a false discovery rate
(FDR) threshold. Cohen’s d values for one-sample t-tests were calculated to yield a measure of effect size.

To assess gene expression across various body tissues, normalized gene expression values (reads per
kilo base per million; RPKM) were extracted from the GTEx database, via the FUMA platform. As
described by Watanabe and colleagues21, normalized expression [zero mean of log2(RPKM + 1)] was
used to assess differentially expressed gene sets. Bonferroni adjusted p-values are then calculated using
two-sided t-tests per gene per tissue against all other tissues. Genes with a Bonferroni adjusted p-value < 
0.05 and absolute log fold change ≥ 0.58 were categorized as a differentially expressed gene set in a
given tissue type. The presented -log10 p-values represent results from hypergeometric tests, which were
used to assess if genes of interest were overrepresented in differentially expressed gene sets in speci�c
tissues.

Similarly, hypergeometric tests were used to assess if genes of interest were overrepresented in gene sets
reported in the GWAS catalog and gene sets associated with behavioral and cognitive state processes
reported within GO biological processes gene sets within Molecular Signatures Database, using 20,119
protein coding genes as the background set. p-values were Benjamini-Hochberg adjusted for all genesets
reported in the GO biological processes dataset and GWAS catalog, respectively.
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Figures

Figure 1

Differential stability of protein coding genes. Differential stability for all protein coding genes (n=20,737)
was calculated to assess the similarity of gene expression patterns from donor-to-donor. FOXP1, CADM1,
CDH10, NCKIPSD and MGMT were above the 50th percentile of all genes, suggesting adequate
reproducibility. 
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Figure 2

The pathway of gene expression for anorexia nervosa risk genes in the human brain. Each point
represents expression from six donors with standard errors for each given brain region for (a) CHD10, (b)
CADM1, and (c) FOXP1. Asterisks represent regions of statistically signi�cant over or under expression,
relative to the rest of the brain (*p<0.05, FDR corrected for 54 tests).
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Figure 3

Cognitive state correlates of the �ve differentially stable genes associated with AN. a Cognitive states
were meta-analytically decoded from AN risk gene mRNA maps (Supplementary Figure 2) using the
NeuroSynth framework. The top �ve strongest relationships for CADM1, CDH10, FOXP1, MGMT and
NCKIPSD are shown, with duplicates removed. b The absolute distribution of Spearman’s correlations
between each protein coding gene map (N=20,737) and cognitive state maps.

Figure 4
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Mental state correlates of the �ve differentially stable genes associated with AN. a Mental states were
meta-analytically decoded from AN risk gene mRNA maps (Supplementary Figure 2) using the
NeuroSynth framework. The top �ve strongest relationships for CADM1, CDH10, FOXP1, MGMT and
NCKIPSD are shown, with duplicates removed. b The absolute distribution of Spearman’s correlations
between each protein coding gene map (N=20,737) and mental state maps.
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