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Abstract

Often, in the analysis of time series and digital signals, a smoothing pro-
cedure is required to filter undesired random perturbations as noise and
outliers in data. Among the most widely known techniques for time series
smoothing, we have convolutional filters, simple exponential smoothing,
triple exponential smoothing (Holt-Winters method) and linear adap-
tive filters, such as the Wiener filter. In this paper, we propose the
NoLAW filter (Non-Linear Adaptive Wiener filter), a higher-order non-
linear extension for the adaptive Wiener filter, which is a linear statistical
smoothing technique that assumes the hypothesis that the underlying
series is corrupted by a zero mean, additive and independent Gaus-
sian noise. Numerical experiments show that the proposed method is a
computationally efficient and viable approach for filtering time series.
Quantitative metrics show that the NoLAW filter is capable of produc-
ing better results than the usual linear Wiener filter, simple exponential
smoothing and Holt-Winters method. Moreover, the computational cost
of the proposed NoLAW is linear in the number of samples, which
means that, asymptotically, it is equivalent to the regular Wiener filter.

Keywords: Time series, smoothing, non-linear filtering, cubic regression,
denoising

1 Introduction

From basic low-level feature extraction tasks to forecasting applications, time
series filtering is a critical pre-processing step in a variety of statistical and data
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science procedures [1]. As a result, being able to determine the correct underly-
ing signal from a degraded corrupted version is a topic that many researchers in
several domains of science are interested in learning [2]. In summary, the main
purpose of time series smoothing is to eliminate or attenuate random distur-
bances in data while preserving as much useful signal information as possible
[3]. From a statistical perspective, smoothing consists of removing fine-grained
variance between time steps in order to reduce noise and reveal the signal of
the underlying causal processes [4].

One of the most significant issues in smoothing is that general time series
are usually non-stationary, requiring a locally adaptive filtering approach [5]. In
time series smoothing and forecasting, common linear filters with convolutional
kernels (Finite Impulse Response filter), such as weighted moving averages, are
a simple and extensively used approach. However, because to their inability
to adjust to local statistics, they frequently oversmooth the signal, destroying
relevant information [6].

Minimum mean squared error filters (MMSE) are an important family of
adaptive filters widely studied and employed with success in applied statistics
and signal processing. Two classic methods that belong to this family are the
Wiener filter [7] and the Kalman filter [8], with both of them being optimal
when the noises/errors have a Gaussian distribution. In terms of computational
efficiency, the linear pointwise adaptive Wiener filter is recognizable as one of
the best approaches for signal processing and time series smoothing [9]. How-
ever, one potential drawback of these filters is the appearance of undesirable
artifacts around abrupt discontinuities after smoothing, since the assumption
that samples inside a local window come from the same ensemble becomes
unrealistic if there are sharp fluctuations within that local window.

Exponential smoothing defines another kind of low-pass filters (Infinite
Impulse Response filter) regularly employed to smooth data in signal process-
ing, in order to remove high-frequency noise. Triple or third-order exponential
smoothing (Holt Winters method) treats different types of seasonality in data:
one additive and another multiplicative in nature. Briefly speaking, these fil-
ters compute a noise-free estimative using a weighted sum of past observations
with a exponentially decreasing weight function [10, 11].

Recently, with advances in computer science and machine learning, deep
neural networks have been used in time series smoothing and forecasting [13–
15]. Recurrent neural networks (RNN’s) are computational tools that control
a internal state to analyze sequences of inputs with variable lenghts [16] and
due to this characteristic are known to have memory. Among them, two kinds
of networks play important roles: Long Short-Term Memory (LSTM) networks
[18] and Convolutional Neural Networks (CNN’s) [17]. Roughly speaking, in a
time series and signal processing perspective, the term recurrent neural net-
work refer to the category of networks with an infinite impulse response filters
(IIR), whereas convolutional neural network refers to structures that uses
finite impulse response filters (FIR). The main problem with deep neural net-
works are: 1) the computational cost is high as we have to train these models
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using numerical methods such as stochastic gradient descent; 2) they usually
require a large number of samples for convergence to good results, which is
not always possible; 3) many researchers ague that deep neural networks lack
interpretability, that is, they work as black boxes and often it is hard to clearly
explain mathematically why and how the results are obtained.

In this paper, we generalize the linear adaptive Wiener filter by propos-
ing the NoLAW filter (Non-Linear Adaptive Wiener filter) as a higher-order
extension that recursively uses lower order filters to compute smooth approxi-
mations for the underlying signal in the estimation of the local statistics. The
main contribution of the proposed method is twofold: 1) as the NoLAW filter
is a statistical approach and not a deep learning technique, it works well when
the number of samples is small or large; 2) besides improving the performance
of the original Wiener filter, the NoLAW filter is a computationally efficient
algorithm for time series smoothing, as its complexity is linear in the number
of samples (equivalent to the original Wiener filter).

The remaining of the paper is organized as follows: Section 2 presents
the mathematical derivation of the original linear adaptive Wiener filter in
details by solving a least square problem. Section 3 proposes the NoLAW fil-
ter, which is a non-linear generalization of original where the noise-free sample
is estimated as a cubic function of the observation. Section 4 presents the
complexity analysis of the proposed NoLAW filter. Section 5 shows the com-
putational experiments and the obtained results. Finally, Section 6 presents
our conclusions and final remarks.

2 Adaptive Linear Wiener Filtering

The formulation of the adaptive linear Wiener filter is given in statistical terms,
where the main goal is to find, for each time step of the series, the optimum
linear estimative for a sample of the signal corrupted by a zero mean, additive
and uncorrelated Gaussian noise. In mathematical terms, we have:

f(n) = s(n) + e(n) (1)

where f(n) denotes the noisy observation, s(n) denotes the desired underlying
noise-free observation and e(n) is a Gaussian random variable with distribution
N(0, σ2

n), given by:

p(e(n); µ, σ2
n) =

1√
2πσ2

n

exp

{
−e(n)2

2σ2
n

}
(2)

Knowing that we want the optimal linear estimator ŝ(n), we have:

ŝ(n) = αf(n) + β (3)

where α is the slope and β is the intercept. By the initial hypothesis, we know
that the signal and the noise are uncorrelated and by the linearity of the
expectation, we have:
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E[f(n)] = E[s(n)] → µf = µs (4)

V ar[f(n)] = V ar[s(n)] + V ar[e(n)] → σ2
f = σ2

s + σ2
n (5)

Using least squares, it is possible to estimate the optimal parameters of the
linear estimators. The objective function is given by:

J(α, β) = E
[
(ŝ(n) − s(n))

2
]

= E
[
(αf(n) + β − s(n))

2
]

(6)

Differentiating with respect to α and β and setting the result to zero leads
to:

∂

∂α
J(α, β) = E [(αf(n) + β − s(n)) f(n)] = 0 (7)

∂

∂β
J(α, β) = E [(αf(n) + β − s(n))] = 0 (8)

By solving equation (7), we can write:

E
[
αf(n)2 + βf(n) − s(n)f(n)

]
= 0 (9)

αE
[
f(n)2

]
+ βE[f(n)] − E[s(n)f(n)] = 0 (10)

αE
[
f(n)2

]
+ βE[f(n)] − E[s(n)2] − E[s(n)e(n)] = 0 (11)

As the signal and the noise are uncorrelated, E[s(n)e(n)] = 0. Moreover,
it is known that V ar[x] = E[x2] − E2[x], which leads to:

α(σ2
f + µ2

f ) + βµf − (σ2
s + µ2

s) = 0 (12)

Doing the same for equation (8), we have:

αE[f(n)] + β − E[s(n)] = 0 (13)

αµf + β − µs = 0 (14)

αµf + β − µf = 0 (15)

(16)

which leads to:

β = (1 − α)µf (17)

Plugging β into equation (7), we have:
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α(σ2
f + µ2

f ) + (1 − α)µ2
f − σ2

s − µ2
s = 0 (18)

which leads to:

α =
σ2
s

σ2
f

=
σ2
s

σ2
s + σ2

n

(19)

Therefore, the final linear least squares estimator (adaptive Wiener filter)
is a convex combination between the observation in the current time step and
the local mean, given by:

ŝ(n) =
σ2
s

σ2
s + σ2

n

f(n) +

(
1 − σ2

s

σ2
s + σ2

n

)
µf (20)

= µf +
σ2
s

σ2
s + σ2

n

(f(n) − µf ) (21)

where σ2
s = max{0, σ2

f −σ2
n}. In practice, in the non-causal filter, the mean µf

and the variance σ2
f are estimated in a local window around the current obser-

vation. It is possible to adopt a causal neighborhood to use only the current
and past samples. A neighborhood of order n is comprised by 2n+ 1 samples,
being the current one plus the 2n previous samples. Figure 1 illustrates second,
third and fourth order causal and non-causal neighborhood systems.

Fig. 1 Second, third and fourth causal and non-causal neighborhood systems.

3 NoLAW: Non-linear Adaptive Wiener Filter

For simplicity, we begin by considering the quadratic case, which is the second-
order NoLAW filter. In this case, the idea is to have the estimator of the
noise-free value as a quadratic function of the observation:

ŝ(n) = αf(n)2 + βf(n) + γ (22)
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Hence, the least squares problem consists in minimizing the following
function of the parameter models:

J(α, β, γ) = E
[(
αf(n)2 + βf(n) + γ − s(n)

)2]
(23)

Differentiating the objective funciton with respect to α and setting the
result to zero leads to the first equation:

∂

∂α
J(α, β, γ) = E

[(
αf(n)2 + βf(n) + γ − s(n)

)
f(n)2

]
= 0 → (24)

αE
[
f(n)4

]
+ βE

[
f(n)3

]
+ γE

[
f(n)2

]
= E

[
f(n)2s(n)

]
(25)

Similarly, differentiating the objective funciton with respect to β and
setting the result to zero leads to the second equation:

∂

∂β
J(α, β, γ) = E

[(
αf(n)2 + βf(n) + γ − s(n)

)
f(n)

]
= 0 → (26)

αE
[
f(n)3

]
+ βE

[
f(n)2

]
+ γE [f(n)] = E [f(n)s(n)] (27)

Similarly, differentiating the objective funciton with respect to γ and
setting the result to zero leads to the third equation:

∂

∂γ
J(α, β, γ) = E

[(
αf(n)2 + βf(n) + γ − s(n)

)]
= 0 → (28)

αE
[
f(n)2

]
+ βE [f(n)] + γ = E [s(n)] (29)

Using the sample moments to approximate the population moments, we
can write the least squares problem as the following system of equations:



1

ni

∑
n∈ηi

f(n)4
1

ni

∑
n∈ηi

f(n)3
1

ni

∑
n∈ηi

f(n)2

1

ni
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n∈ηi

f(n)3
1

ni
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n∈ηi

f(n)2
1

ni
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n∈ηi

f(n)

1

ni

∑
n∈ηi

f(n)2
1

ni

∑
n∈ηi

f(n) 1





α

β

γ


=



1

ni

∑
n∈ηi

f(n)2s(n)

1

ni

∑
n∈ηi

f(n)s(n)

1

ni

∑
n∈ηi

s(n)


(30)

where ηi denotes the neighborhood of the i-th sample and ni is the cardinality
of this set (number of samples in the local window). We use a linear Wiener
filter to smooth the the observed time series and approximate the underlying
signal s(n) in order to compute the cross-correlations. Note that using the same
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Fig. 2 Block diagram for the proposed NoLAW filtering strategy for time series smoothing.

strategy, it is possible to define a third-order Wiener filter (cubic function of
the observation). For this, the estimation of the noise-free sample is given by
a polynomial of degree 3:

ŝ(n) = αf(n)3 + βf(n)2 + γf(n) + λ (31)

It is straightforward to see that the solution of the least squares problems
is given by the following system of equations:



1

ni

∑
n∈ηi

f(n)6
1
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1
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f(n)
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f(n)3
1
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1
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α

β

γ

λ


=



1

ni

∑
n∈ηi

f(n)3s(n)

1
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∑
n∈ηi

f(n)2s(n)

1
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∑
n∈ηi

f(n)s(n)

1

ni

∑
n∈ηi

s(n)


(32)

Note that all statistics involved in the non-linear Wiener filter can be
directly computed from a local window in the observed time series f(n) and
a local window in a pre-smoothed version of it. A reasonable and intuitive
choice for the application of higher-order Wiener filters is to apply a cascading
strategy, that is, the linear Wiener filter is used to build the smooth approx-
imation for the quadratic Wiener filter. Then the quadratic Wiener filter can
be employed to build the approximation for the cubic Wiener filter, and so on.
Figure 2 shows a block diagram illustrating the process of the third-order adap-
tive Wiener filtering. The general case in which the estimator is a polynomial
function of degree K of the observation, we have:
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ŝ(n) = αKf(n)K + αK−1f(n)K−1 + αK−2f(n)K−2 + . . . + α0 (33)

where the vector α⃗ = [α0, α1, α2, ..., αK ] stores the coefficients of the desired
non-linear estimator. In this case, the system of equations for the non-linear
Wiener filter of order k is represented by a (k + 1) × (k + 1) matrix:



1

ni

∑
n∈ηi

f(n)2K
1

ni

∑
n∈ηi

f(n)2K−1 . . .
1

ni

∑
n∈ηi

f(n)K

1

ni

∑
n∈ηi

f(n)2K−1 1

ni

∑
n∈ηi

f(n)2K−2 . . .
1

ni

∑
n∈ηi

f(n)K−1

...
...

. . .
...

1

ni

∑
n∈ηi

f(n)K
1

ni

∑
n∈ηi

f(n)K−1 . . . 1




αK

αK−1

...
α1

α0

 =



1

ni

∑
n∈ηi

f(n)K−1s(n)

1

ni

∑
n∈ηi

f(n)K−2s(n)

...
1

ni

∑
n∈ηi

s(n)


(34)

For some points of the series, the matrix defined by the system of equations
can be ill-conditioned and some regularization may be required. Often, a small
positive increment along its main diagonal is enough to overcome this problem.
In this work, we add δ = 0.001 to all elements of the main diagonal. The
algorithm for the proposed NoLAW filter is presented in the following. The
recursive function NoLAW has four parameters: ts (the time series), k (the
order of the filter, i.e., if k = 3 we have the cubic filter), w size (the size of
the local windows) and σ2

n (the variance of the noise).
In order to better understand why the computational cost of the proposed

NoLAW filter is equivalent to the computational cost of the regular Wiener
filter, we must compute the complexity of the NoLAW filter using asymptotic
analysis with the Big-O notation. In the next section, we provide a detailed
discussion about this issue.
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Algorithm 1 Non-Linear Adaptive Wiener Filter

1: function NoLAW(ts, k, w size, σ2
n)

2: if k = 1 then
3: smooth = LinearWiener(ts, w size, σ2

n)
4: return smooth
5: else
6: smooth = NoLAW(ts, k − 1, w size, σ2

n)
7: n = len(ts)
8: for i = 1 to n do
9: Build the matrix of moments M using equation (34)

10: Build the vector of cross-covariances c⃗ using equation (34)
11: Regularize the matrix M (add a small value to its main diagonal)
12: Solve the linear system Mα⃗ = c⃗
13: for j = 0 to k do
14: filtered[i] += α[j] ∗ ts[i]j
15: end for
16: end for
17: return filtered
18: end if
19: end function

4 Complexity Analysis

In order to analyze the complexity of the proposed NoLAW filter, first note
that the LinearWiener function has complexity O(w size× n), where w size
is the size of the local windows and n in the length of the time series. Recall
that, as the linear Wiener filter has a closed-form solution, it enables direct
computation of the noise-free estimative in O(w size) for each sample of the
time series. The LinearWiener function is called only one time, when k = 1.
For values of k ranging from 2 to the order of the NoLAW filter, the else
command block is executed.

Now, we focus in the analysis of the for loop (lines 8 to 16). Note that
this loop is executed n times, one for each sample. First, we have to build the
squared matrix M , which is (k+ 1)× (k+ 1). Recall that each sample moment
requires the summation of w size samples and the matrix M has (k + 1)2

elements. Note that to simplify a little bit further our calculations, for large
values of i, we have i + 1 ≈ i. Knowing that by recursion these processes are
executed for i = 2, 3, ..., k, we have to solve the following summation:

k∑
i=2

(i + 1)2 ≈
k∑

i=2

i2 (35)

First note that (i + 1)3 = i3 + 3i2 + 3i + 1 and summing for i = 2, ..., k we
have:
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k∑
i=2

[
(i + 1)3 − i3

]
= 3

k∑
i=2

i2 + 3

k∑
i=2

i +

k∑
i=2

1 (36)

As the he left hand side of the previous equation is a telescopic sum, we
can solve it easily as:

(k + 1)3 − 8 = 3

k∑
i=2

i2 + 3

k∑
i=2

i + (k − 1) (37)

To solve the summation of i from 2 to k, we adopt the same strategy. First,
note that (i + 1)2 = i2 + 2i + 1 and summing for i = 2, ..., k we have:

k∑
i=2

[
(i + 1)2 − i2

]
= 2

k∑
i=2

i +

k∑
i=2

1 (38)

Once again, the left hand side of the previous equation is a telescopic sum,
which is easily solvable. Hence, we can write:

2

k∑
i=2

i = (k + 1)2 − 4 − k + 1 (39)

which finally leads to:

k∑
i=2

i =
k2 + k − 2

2
=

k(k + 1)

2
− 1 (40)

Going back to equation (37), we can write:

(k + 1)3 − 8 = 3

k∑
i=2

i2 + 3

[
k(k + 1)

2
− 1

]
+ (k − 1) (41)

which leads to:

3

k∑
i=2

i2 = (k + 1)3 − 8 − 3k(k + 1)

2
+ 3 − k + 1 (42)

= k3 + 3k2 + 3k + 1 − 4 − 3k(k + 1)

2
− k

= k3 + 3k2 + 3k − 3k(k + 1)

2
− k − 3

Dividing both sides by 3, gives us:

k∑
i=2

i2 =
1

3

[
k3 + 3k2 + 3k − 3k2

2
− 3k

2
− k

]
− 1 (43)
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=
1

3

[
k3 +

3k2

2
+

k

2

]
− 1 =

1

6

(
2k3 + 3k2 + k

)
− 1

Finally, by factoring the polynomial we have:

k∑
i=2

i2 =
1

6
k(k + 1)(2k + 1) − 1 (44)

which is O(k3). Thus, as we have n samples in the series, the total computa-
tional cost to build the matrices M is O(w size× n× k3). In the following we
have to compute the elements of the vector c. Similarly, by the same argument,
we have to solve the summation:

k∑
i=2

(i + 1) ≈
k∑

i=2

i (45)

which has been solved is the previous analysis and results in a O(k2) func-
tion. Thus, the total computational complexity for building the c⃗ vectors is
O(w size×n× k2). Next, we have to compute the computational cost regard-
ing the solution of the linear system. It is known that a system composed of
k equations with k variables can be solved in O(k3). But as we have a sys-
tem with k + 1 equations and k + 1 variables, and knowing that the process
is done for i = 2, 3, ..., k due to the recursion, we have to solve the following
summation:

k∑
i=2

(i + 1)3 ≈
k∑

i=2

i3 (46)

First, note that (i + 1)4 = i4 + 4i3 + 6i2 + 4i + 1. Then, we have:

k∑
i=2

[
(i + 1)4 − i4

]
= 4

k∑
i=2

i3 + 6

k∑
i=2

i2 + 4

k∑
i=2

i +

k∑
i=2

1 (47)

The left hand side of the previous equation is a telescopic sum, and plugging
the expressions for the summations computed previously, we can write:

(k+1)4−16 = 4

k∑
i=2

i3+6

[
1

6
k(k + 1)(2k + 1) − 1

]
+4

[
k(k + 1)

2
− 1

]
+(k−1)

(48)
By symplifying the equation we reach the following equality:

4

k∑
i=2

i3 = k4 + 2k3 + k2 − 4 (49)

which finally leads to:
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k∑
i=2

i3 =
k2(k + 1)2

4
− 1 (50)

which is O(k4). Hence, as we have to solve a linear system for each sample of
the series, the total computational complexity is O(n× k4).

Finally, the cost for computing the non-linear estimatives is O(n × k2).
Hence, the total computational complexity of the NoLAW filter is given by:

O(w size×n)+O(w size×n×k3)+O(w size×n×k2)+O(n×k4)+O(n×k2)
(51)

which can be reduced to O(w size × n × k3) when the the size of the local
windows w size is larger than the filter order k or reduced to O(n× k4) when
the size of the local windows w size is smaller than the filter order k. Anyway,
the most important fact is that both w size and k are constants much smaller
than n. Therefore, the computational cost of the proposed NoLAW filter is
linear in n, which is equivalent to the linear Wiener filter. In all experiments
in this paper, we use a cubic NoLAW filter, which means k = 3.

5 Experiments and results

In order to test and evaluate the proposed NoLAW filter in time series
smoothing, we performed a series of computational experiments. We compared
the performance of the proposed method against Gausian smoothing, Simple
Exponential Smoothing, Holt-Winters method (Triple Exponential Smooth-
ing) and the linear adaptive Wiener filter using local windows of first (size
3), second (size 5) and third-orders (size 7). To measure the performance of
the smoothing, each time series was corrupted by an additive independent
Gaussian noise with variance equal to 10% of the signal’s variance. After the
smoothing, five different quantitative metrics were computed: Mean Absolute
Percentage Error (MAPE) [19], Root Mean Squared Error (RMSE) [20], Mean
Absolute Error (MAE) [21], Median Absolute Error (MedAE) [22] and Peak
Signal-to-Noise Ratio (PSNR), a measure often employed in digital signal pro-
cessing [23]. In all experiments, the NoLAW filter parameter k was set to 3,
which means a cubic Wiener filter. The estimation of the noise variance was
performed by [12]:

σ̂2
n =

V0 − Vmed

1 − q
(52)

where V0 is the variance of the input signal, Vmed is the variance of the input
singal after median filtering and q is a noise reduction coefficient. According to
the authors, in case of Gaussian noise, the estimator can be expressed as [12]:

σ̂2
n =

2n

2n− π
(V0 − Vmed) (53)
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In our computational experiments, we selected 16 different time series: 1)
daily female birds; 2) bovespa; 3) dolar; 4) seatbelts; 5) beer; 6) mintemp; 7)
shampoo; 8) Cali emissions; 9) monthly-sunspots; 10) ETTh1; 11) ETTh2; 12)
mfeat-fourier; 13) eeg-eye-state; 14) phoneme; 15) texture; 16) optdigits. In
the following, we present a brief description of each one of them:

1. daily female births: daily total female births for California in 1959;
2. bovespa: time series of the Brazilian stock market index showing the daily

closing prices for the period 2018 to 2020.
3. dolar : dollar to Brazilian reais exchange rate from 2014 to 2020.
4. seatbelts: time series giving the monthly totals of car drivers in Great Britain

killed or seriously injured from January 1969 to December 1984.
5. beer : montly beer production in Australia from Januray 1956 to August

1995.
6. mintemp: daily minimum temperatures in Melbourne from January 1981

to December 1990.
7. shampoo: sales of shampoo over a three year period.
8. Cali emissions: total carbon dioxide emissions from all sectors, all fuels in

California from 1980 to 2017.
9. monthly-sunspots: monthly mean total sunspot number from January 1749

to December 1983.
10. ETTh1 : hourly electricity transformer temperature collected from a county

in China during an interval of 2 years.
11. ETTh2 : hourly electricity transformer temperature collected from another

county in China during an interval of 2 years.
12. mfeat-fourier : Fourier coefficients extracted from the shape of handwritten

digits from 0 to 9.
13. eeg-eye-state: continuous eletroencephalogram measurements with the

Emotiv EEG Neuroheadset during 117 seconds.
14. phoneme: amplitudes of the first harmonics normalised by the total energy

(integrated on all the frequencies) during nasal and oral sounds.
15. texture: statistical measures from texture image patches.
16. optdigits: the variation of a feature extracted from optical recognition of

handwritten digits along all samples of the dataset.

All data used in the experiments can be found free of charge in several
open internet repositories. Table 1 shows the obtained results in terms of Mean
Absolute Percentage Error. The bold value indicates the best result and the
underline value represents the second best result. The metrics show that for
these time series, in the majority of the cases, the best result is obtained by
cubic NoLaW with first-order or third-order local windows. However, looking
at the medians, the best performance was obtained by the first-order cubic
NoLaW, followed by the first-order linear Wiener filter. To verify whether the
performance of the proposed cubic NoLAW filter (best method) is superior to
the linear Wiener filter (second best method) or not, we performed a Wilcoxon
signed-rank test [24]. According to the test, there are strong evidences in favor
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of the rejection of the null hypothesis that the performances are equivalent (p-
value = 9.15× 10−5), suggesting that the proposed NoLAW filter can produce
better results.

Table 2 shows the obtained results in terms of another metric: the Root
Mean Squared Error. The measurements show that for these time series,
once again the best methods were the cubic NoLaW filter with first-order or
third-order local windows. In terms of average performance, the best result
was obtained by the third-order cubic NoLaW filter, followed by the third-
order linear Wiener filter. According to a Wilcoxon signed-rank test, there
are strong evidences in favor of the rejection of the null hypothesis that the
performances are equivalent (p-value = 0.0005), suggesting that the proposed
method performs better.

Table 3 shows the obtained results in terms of the Mean Absolute Error.
In this case, the best methods were the cubic NoLaW filter and the linear
Wiener filter with third-order local windows. According to a Wilcoxon signed-
rank test, there are significant evidences in favor of the rejection of the null
hypothesis that the performances are equivalent (p-value = 0.001), once again
favoring the proposed method.

Table 4 shows the obtained results in terms of the Median Absolute Error.
In general, the two best methods were the cubic NoLaW filter and the linear
Wiener filter with first-order local windows. According to a Wilcoxon signed-
rank test, for a significance level α = 0.05, the null hypothesis should not be
rejected (p-value = 0.051), suggesting that there are no significant differences
between the linear Wiener filter and the cubic NoLAW filter for these series.

Finally, Table 5 shows the obtained results in terms of the Peak Signal-to-
Noise Ratio. In general, the two best methods were the cubic NoLAW filter
and the linear Wiener filter with second-order local windows. According to
a Wilcoxon signed-rank test, there are strong evidences in favor of rejecting
the null hypothesis that the linear Wiener filter and NoLAW are equivalent in
these datasets (p-value = 3.05 × 10−5), suggesting that the proposed method
is capable of producing better results.

In order to ilustrate some qualitative results, Figure 3 shows a comparison
between the linear Wiener filter and cubic NoLAW with third-order local win-
dows in the smoothing of the shampoo time series. A Python implementation of
the cubic NoLAW filter can be found at https://github.com/alexandrelevada/
NoLAW.

6 Conclusions

In several machine learning applications, such as forecasting, regression and
classification, time series smoothing is a fundamental pre-processing stage. In
the last years, several deep learning methods have been proposed to tackle
this problem, however, one of the main limitations with this approach is the
computational burden required to train neural networks. Moreover, often, these

https://github.com/alexandrelevada/NoLAW
https://github.com/alexandrelevada/NoLAW
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models require a large amount of samples for convergence to suitable results,
which is not always possible.

The adaptive Wiener filter computes the optimal linear estimative under
the hypothesis of additive independent Gaussian noise. Hence, the motivating
question for this paper was: how to compute an optimal non-linear estimative
in a computationally efficient way? Our answer is: by using the NoLAW fil-
ter. Computational experiments showed that the proposed method can obtain
better results than other techniques with similar computational cost. As any
statistical method, it has positive and negative aspects. One limitation of the
NoLAW filter is that, due to the MSE loss function in the least squares prob-
lem, it may not be robust to the presence of outliers and other kinds of noise
in data.

Future works may include the development of the Robust NoLAW filter,
in which the sample averages are replaced by the medians, making the filter
not optimal in a mean squared error sense (L2-norm), but instead in a dif-
ferent loss function that uses the absolute value of the differences (L1-norm).
Another possibility consists in the development of the Non-Local NoLAW filter
by employing a non-local strategy in the estimation of the filter parameters,
through the computation of a similarity measure between the current local
window and local windows from different past samples. Finally, we also intend
to extend the NoLAW filter to work with multivariate time series using the
multivariate linear Wiener filter as the base case.
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Fig. 3 Comparison between the the linear Wiener filter and the cubic NoLAW filter in the
smoothing of the shampoo series. From top to bottom we have: a) noisy series; b) linear
Wiener filter; c) cubic NoLAW filter.
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