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Abstract

Introduction:
Intrauterine conditions and accelerating early growth are associated with childhood obesity. It is
unknown, whether fetal programming affects the early growth and could alterations in the maternal-fetal
metabolome be the mediating mechanism. Therefore, we aimed to assess the associations between
maternal and cord blood metabolome and offspring early growth.

Methods
The RADIEL study recruited 724 women at high risk for gestational diabetes mellitus (GDM) BMI ≥ 
30kg/m2 and/or prior GDM) before or in early pregnancy. Blood samples were collected once in each
trimester, and from cord. Metabolomics were analyzed by targeted nuclear magnetic resonance (NMR)
technique. Following up on offsprings’ �rst 2 years growth, we discovered 3 distinct growth pro�les
(ascending n = 80, intermediate n = 346, and descending n = 146) by using latent class mixed models
(lcmm).

Results
From the cohort of mother-child dyads with available growth pro�le data (n = 572), we have metabolomic
data from 232 mothers from 1st trimester, 271 from 2nd trimester, 277 from 3rd trimester and 345 from
cord blood. We have data on 220 metabolites in each trimester and 70 from cord blood. In each trimester
of pregnancy, the mothers of the ascending group showed higher levels of VLDL and LDL particles, and
lower levels of HDL particles (p < 0.05). When adjusted for gestational age, birth weight, sex, delivery
mode, and maternal smoking, there was an association with ascending pro�le and 2nd trimester total
cholesterol in HDL2, 3rd trimester total cholesterol in HDL2 and in HDL, VLDL size and ratio of
triglycerides to phosphoglycerides (TG/PG ratio) in cord blood (p ≤ 0.002).

Conclusion
Ascending early growth was associated with lower maternal total cholesterol in HDL in 2nd and 3rd
trimester, and higher VLDL size and more adverse TG/PG ratio in cord blood.

Introduction
Childhood obesity is a major public health challenge (1) affecting countries all around the world. It is
estimated that about half of obese school-age children will be obese as adults (2). Obesity can
profoundly affect both physical and mental health of these children - it is associated with poor social and
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emotional well-being, lower self-esteem, poor academic performance, and a lower quality of life (3–5).
Despite extensive research, there is neither easy nor e�cient treatment at hand (6). The focus should
therefore be on preventive measures, and thus increasing our knowledge of early mechanisms preceding
childhood obesity could act as a cornerstone for developing new strategies.

Growth is a dynamic process depicting individual potential and health. Recent studies on early
programming of childhood obesity (7) have shown that maternal factors e.g. high maternal BMI and
gestational diabetes (GDM) are strongly associated with excess fetal growth, adiposity, and increased
risk of cardiometabolic morbidity and insulin resistance (8–11). In addition to fetal growth and birth
weight, also early growth trajectories seem to be relevant (12, 13). In the RADIEL study, ascending early
growth was associated with childhood adiposity, independent of the child’s own lifestyle and
confounding maternal factors(14). Highlighting the role of intrauterine conditions, also early growth has
been associated with maternal obesity and other pregnancy related factors. (15, 16). The mechanisms
underlying these associations, however, are not well understood.

Although evidence linking intrauterine conditions to later offspring health is already abundant, quite little
is known about the in�uence of maternal metabolic milieu on future health of the offspring (17). A few
studies focusing on associations between the 2nd trimester or cord blood metabolome and early
childhood overweight/obesity risk have found associations with xenobiotics, lipids, methyl donors, and
metabolites related to tryptophan (18, 19). Interestingly, Zhao et al(18) found associations between
maternal metabolome in 2nd trimester and adverse early growth trajectories, while Cao et al discovered a
link between cord blood metabolomics and persistent obesity into adolescence. (20) To our knowledge
there are, however, no studies assessing maternal longitudinal metabolomic pro�les during pregnancy
and their possible underpinning role in early growth trajectories leading to childhood obesity.

Therefore, the aim of this study was to assess whether the metabolomic pro�le either during pregnancy
or in cord blood could be one possible link between intrauterine conditions and early growth. We
investigated whether the maternal metabolome in three time-points during pregnancy and the fetal
metabolome in cord blood associate with longitudinal early growth trajectories of offspring. Our special
focus was on the ascending early growth, which has been previously associated with childhood
adiposity.

Methods

Study design
This is a secondary analysis of the RADIEL study, a multi-center, randomized controlled intervention trial
aiming at prevention of GDM through lifestyle modi�cation. The study enrolled a total of 724 women at
high diabetes risk, in the Helsinki Metropolitan area or in Lappeenranta, Finland, during years 2008 to
2011. The recruited women had a history of GDM and/or obesity (BMI  30kg/m2). Exclusion criteria
were age < 18 years, current type 1 or 2 diabetes, medication altering glucose metabolism, multiple

≥
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pregnancy, severe psychiatric problems, physical disabilities, substantial communication di�culties, and
current substance abuse. The participants were randomized to a control group or to a combined lifestyle
intervention group, emphasizing dietary goals following Finnish nutrition guidelines, physical activity
(150 min/week), and limiting gestational weight gain. During pregnancy the study visits took place once
in each trimester and 6 weeks, 6 and 12 months after delivery. Previous publications have provided
detailed information on the study design and methods (21–23).

The study complies with the Declaration of Helsinki and was approved by the Ethical Boards of Helsinki
University Hospital (HUS) and South-Karelia Central Hospital (SKCH). All the participants entered the
study voluntarily and gave written informed consent. They were also free to discontinue at any point.

Measurements
Pregnancy

Every study visit included anthropometric measurements (height, weight, and blood pressure) and blood
samples for analyzing markers of glucose and lipid metabolism as well as in�ammatory markers. A 2-
hour 75g oral glucose tolerance test (OGTT) was performed at enrollment (if before pregnancy), in the
�rst and second trimesters of pregnancy, and 6 weeks and 12 months postpartum. GDM diagnosis was
based on one or more pathological values in the OGTT (normative values: 0h < 5.3 mmol/l, 1h < 10.0
mol/l, and 2h < 8.6 mmol/l). Prepregnancy weight was self- reported for those recruited in early pregnancy
and the weight at the last visit before pregnancy for those recruited before pregnancy. Gestational weight
gain (GWG) was de�ned as the difference between prepregnancy weight and weight at the third trimester
study visit.

Questionnaires provided data on maternal years of education and lifestyle such as substance use
(smoking, alcohol) and moderate-intensity physical activity (PA) (min/week). Food frequency
questionnaires (FFQs) offered information for calculating a Healthy Food Intake Index (HFII), which
served as a description of maternal diet as a whole (24). Maximum score was 18 and ful�lling nutritional
goals contributed points as follows: fast food (0–1 points), bread fat spread (0–2 points), low-fat cheese
(0–1 points), intake of high-energy/low-nutrient snacks (0–2 points), sugar-sweetened beverages (0–1
points), high-�ber grains (0–2 points), low-fat milk (0–2 points), �sh (0–2 points), red and processed
meat (0–2 points), vegetables (0–2 points), and fruits and berries (0–1 points). A higher score indicated a
healthier diet.

Offspring

The data from birth such as date of delivery, gestational weeks at delivery, delivery mode and placental
weight were obtained from the hospital birth records. They also provided data on newborn characteristics
at birth (weight, length, head circumference, and Apgar points). Cord blood samples from umbilical vein
were collected at delivery for metabolomics analyses.
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Communal childcare clinic registries from �rst two years of life provided additional data including growth
(weight, height) and information on early feeding: total duration of breast feeding and exclusive
breastfeeding, and the age at introduction of solid foods.

Our previous study used latent class mixed modelling and identi�ed three distinct growth pro�les
(ascending n = 80, intermediate n = 346, and descending n = 146) based on the development of ponderal
index (PI) during the �rst two years of life (12).

Metabolomic Pro�ling
Metabolomics analysis was performed using targeted nuclear magnetic resonance (NMR) based
technique (Nightingale Ltd, Helsinki, Finland). Only the metabolites detected in > 70% of the participants
were included in the analyses. Thus, 220 metabolites in each trimester and 70 metabolites from cord
blood were included in this study. These metabolites cover multiple metabolic pathways, including
lipoprotein lipids and subclasses, apolipoproteins, fatty and amino acids, ketone bodies, glycolysis and
gluconeogenesis-related metabolites, �uid balance, and in�ammation. NMR platform has been used in
large-scale epidemiological samples and in samples of pregnant and non-pregnant women (25). The cord
blood metabolome platform became available in 2019.

Statistical Analysis
The data are presented as means with standard deviations (SD), medians with interquartile range (IQR),
or as frequencies with percentages. The Shapiro–Wilk test was used to examine normal distribution of
the variables. The Fisher’s test, Mann–Whitney U test, Kruskal-Wallis test, Chi square test, ANOVA, or the
independent samples T test were used for between-groups comparisons, as appropriate. We excluded
from the analysis extreme outliers (deviating 1.5 times IQR from Q1 and Q3). Metabolites were log-
transformed to achieve normal distribution. Principal component analysis (PCA) was used to assess the
overall variability in the metabolomic data and 25 PCs explained 95% of the variance in the dataset. After
correcting for multiple testing, associations with p < 0.002 (0.05/25 to account for 25 PCs) were
considered signi�cant.

Logistic regression analysis was used to assess associations between metabolites levels (maternal and
cord blood) and growth trajectories. The analyses were adjusted for gestational age, birth weight SD
(standardized for gestational age), gender, delivery mode, and maternal smoking. Mixed model was used
for studying the longitudinal associations between metabolomics throughout pregnancy and early
growth, and these analyses were also adjusted for gestational age, birth weight SD, gender, delivery mode,
and maternal smoking. All analyses were performed with the SPSS 24.0 software program (SPSS Inc.,
Chicago, IL, USA) and �gures produced with R studio 2022.07.1.

Results
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From the cohort of mother-child dyads with available growth pro�le data (n = 572), we have
metabolomics data from 232 mothers from the 1st trimester, 271 from the 2nd trimester, 277 from the 3rd
trimester and 345 from cord blood. Mean BMI of the mothers was 31.5kg/m2 and altogether 270 out of
558 (47%) had GDM. Table 1 presents the characteristics of the participants and their children according
to the growth trajectory. There were statistically signi�cant differences between the groups in maternal
pre-pregnancy BMI, smoking during pregnancy, early GDM, gestational age at delivery, and offspring size
at birth (Table 1). There were no differences between the groups in maternal lifestyle during pregnancy or
in gestational weight gain.

When comparing the mean levels of the metabolites in three different growth trajectories (ascending n = 
80, intermediate n = 346, and descending n = 146), we discovered that in each trimester of pregnancy,
there were differences between the groups in very low-density lipoprotein (VLDL) and low-density
lipoprotein (LDL) particles, as well as in high-density lipoprotein (HDL) particles (p < 0.05) (Fig. 1). In cord
blood, on the other hand, there were differences in the mean VLDL size and levels of lactate.

Longitudinal assessment of distinct metabolites throughout the pregnancy also yielded signi�cant
differences in HDL2 and in very large HDL between the growth pro�les (Fig. 2.) We also assessed the AUC
of each metabolite, but there were no signi�cant associations with growth pro�les and neither did the
change in the metabolites between speci�c trimesters during pregnancy reach any statistical
signi�cance.

In the logistic regression analysis, ascending growth pro�le was associated with several metabolites
(Fig. 2). None of the metabolites in the 1st trimester showed statistically signi�cant associations with
growth pro�les, but in the later half of the pregnancy, e.g. lower levels of several HDL particles and
ApoA1were associated with adverse growth (p≤.0.005). In the cord blood, on the other hand, higher levels
of VLDL particles and triglycerides were associated with the ascending growth pro�le. Speci�cally, after
correction for multiple testing, there were associations with the 2nd trimester lower total cholesterol in
HDL2, 3rd trimester lower total cholesterol in HDL2 and in HDL, as well as larger VLDL size and higher
ratio of triglycerides to phosphoglycerides (TG/PG ratio) in cord blood (p < 0.002) (Fig. 3).

Discussion
This study demonstrates an association between metabolomic pro�les during pregnancy and in cord
blood with early growth of the offspring. We show that ascending growth, which was associated with
later childhood adiposity in our previous study, was associated with lipoprotein composition – lower
cholesterol in HDL and HDL2 in mid and late pregnancy, as well as higher VLDL size and triglycerides to
phosphoglycerides ratio in cord blood. Our results suggest that the association between offspring’s
growth and maternal metabolomic state during pregnancy is dependent on the stage of pregnancy.

Metabolic pro�le changes during pregnancy (26). There is an increase in several lipoprotein-related
variables and NMR-based metabolic pro�ling has revealed changes in certain amino acids and fatty
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acids compared to non-pregnant women (27). In pregnancies complicated with maternal obesity or GDM,
there are more adverse metabolic measures and women with obesity seem to start their pregnancy
already in a more deranged state, having less room for change throughout pregnancy (26, 28, 29). Recent
reports from Zhao et al. and Cao et al. concerning maternal 2nd trimester and cord blood metabolome
and offspring early growth suggested that the use of metabolic pro�les might be clinically important in
predicting later overweight or obesity of offspring(18, 20). These prior results were promising, but
unfortunately metabolomic pro�les were measured only at one time point. According to our results,
especially the lipid pro�le in the 2nd and 3rd trimester was associated with offspring growth. Interestingly
Gademan et al. also found that maternal lipid pro�le based on standard enzymatic and turbidimetric
technique in early pregnancy has been connected to offspring adiposity at 5–6 years of age, independent
of pre-pregnancy maternal BMI (30). Overall, the association between offspring’s growth and maternal
metabolomic state during pregnancy seems to be dependent on the stage of pregnancy.

Previous studies have suggested that higher VLDL and lower HDL are tied closely to obesity (31) and our
results are well in line, demonstrating an association between levels of several HDL and VLDL subclasses
in the second and third trimesters of pregnancy with offspring’s’ growth trajectories. HDL mainly consists
of glycerophospholipids, cholesteryl esters (ChoE), sphingomyelins, and triacylglycerols, but the role of
different particle ratios in HDL are not yet fully understood (32). HDL removes excess cholesterol from
tissues and has for that reason been traditionally linked to lower risk of cardiovascular disease.
Especially higher HDL subfraction type2 (HDL2) levels are associated with lower risk of myocardial
infarction(33). More recent studies have, however shown, that there are also many other functions in HDL
as inhibiting in�ammation, reducing oxidative stress, maintaining immune and cardiovascular health
(Woollett 2022). Suleiman et al pointed also that HDL has an important role in pregnancy adaptation
(34). Altered HDL metabolism and low HDL2 levels have been reported in hypertensive mothers and this
has associated with being small-for-gestational age (SGA) in newborns, probably due to excessive
in�ammation and oxidative stress (35) (36). SGA could lead to adverse health outcomes after birth if
rapid catch-up growth follows (37).

We also discovered a difference in the levels of ApoA1 between the growth trajectories. ApoA1 is an
integral part and the major structural protein of HDL, mediating the many of antiatherogenic functions of
HDL (36). When assessing the longitudinal measures of metabolites during pregnancy, our results
demonstrated an association between HDL2 and very large HDL and the adverse growth pro�le. Our
results can be considered in line with prior results as also in our study HDL and VLDL were associated
with the adverse growth pro�le associated with childhood obesity, suggesting that metabolic pro�les
during pregnancy are a continuum.

Fatty acids are essential for fetal growth (38). In our study pregnancies leading to adverse offspring
growth showed lower mean levels of several unsaturated fatty acids in the 3rd trimester. Fatty acids are
strongly correlated with dietary intake and interestingly we have previously shown that maternal dietary n-
3 PUFA intake during pregnancy was associated with offspring adiposity at 5 years of age(39). This has
been investigated also in a RCT, where omega-3 supplementation for obese women improved fetal
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growth in lean mass and longer gestation (40). Outside pregnancy Omega-3 PUFA supplementation was
associated with increase in large HDL2 and a decrease in small HDL3.(41) In our study maternal physical
activity and diet did not differ between the distinct growth pro�le groups, but the gross measurement
methods could naturally offer a possible explanation.

However, there are also other mechanisms in addition to fetal growth which could be mediating the
association between maternal lipidomic pro�le and childhood growth. These metabolites have a capacity
to in�uence epigenetic mechanisms and also the maturation of adipocytes of the offspring. Interestingly,
ApoA1 has been even connected to offspring eating behavior at the age of 5 years. (42). This supports
our �ndings and provides a plausible explanation to our results.

The major strength and novelty of our study is combining longitudinal analysis of maternal metabolomic
pro�les at all three trimesters during pregnancy as well as in cord blood to offspring’s growth measured
at several time-points during the �rst two years of life. Our study population consists of a large cohort of
well-characterized pregnancies. We have measured metabolomics in three different stages during
pregnancy as well as from cord blood and this enables us to focus on distinct time-points and their
importance for offspring health, considering the constantly changing metabolomic state during
pregnancy. We also have maternal anthropometrics and lifestyle recorded at each trimester of pregnancy.
From the offspring we have accurate and repeated measurements performed by professional health care
workers until the age of 2 years, which enabled us to do longitudinal growth trajectory analysis.

Our study is, however, not without limitations. The fact that the study population consisted of only high-
risk pregnancies and all Caucasian origin, limits naturally the generalizability of our results. We also
performed a targeted metabolomics analysis and therefore have only a limited number of metabolites
and even less from the cord blood. The panel used is also very lipid centric. When considering growth,
however, lipids have been proven very crucial and therefore this speci�c panel seems justi�ed.
Unfortunately, the study protocol did not include measurements of newborn body composition which
would have been an interesting addition to our analyses.

In conclusion, our results show that we might have an opportunity for prevention of childhood obesity as
early as in the fetal period. In the optimal situation, the maternal metabolome during pregnancy could
help us to identify children needing intensi�ed follow-up and possible support for the whole family. Future
research should focus on the possibilities to in�uence the maternal metabolome during pregnancy by
speci�c diet or lifestyle and its possible in�uence on the future health of the offspring. Optimally, an
intervention starting early in pregnancy would still have a window of opportunity to in�uence offspring
growth and future health.
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Table 1
Table 1 is available in Supplementary Files section.
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Figure 1

Normalized mean levels of the metabolites in each trimester and in cord blood. The plots show only the
metabolites with p<0.05 and those with p<0.002 are marked with *.
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Figure 2

Longitudinal associations between the most signi�cant metabolites with growth pro�les: concentration
of XL-HDL (p=0.002), cholesterol in HDL2 (p=0.002), cholesterol in HDL (p=0.003), and Apolipoprotein A1
(p=0.005), adjusted for gestational age, birth weight SD, gender, delivery mode, and maternal smoking.
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Figure 3

Associations between the metabolites in the 2nd and the 3rd trimesters and cord blood with the
ascending growth pro�le, adjusted for gestational age, birth weight SD, gender, delivery mode, and
maternal smoking. Forest plots show the metabolites with p<0.05, descending pro�le as the reference,
and * marks the ones with p<0.002 for statistical signi�cance after correction for multiple testing.
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