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Abstract Trees are one of the few carbon sinks in urban areas. Different methods are avail-

able to assess biomass of urban trees, one of it being biomass functions. One advantage of

biomass functions is their easy and low-cost application because required data like diameter

and height are directly available from tree inventories.

Our data show that it is not suitable to use forest tree biomass functions as size and

biomass allocation differ between both ecospheres. Hence, it is important to apply specific

urban tree biomass function if biomass or carbon storage is of interest. We started to develop

new urban tree aboveground biomass functions using 144 measured deciduous trees of four-

teen tree species in Karlsruhe, Germany. Conifers are also of interest but not covered in this

data, so we explored several possibilities to build more general models incorporating decid-

uous and conifer tree species from urban and forest origin. Among others, we tested adjusted

forest biomass models and a cross-classified mixed model using data from urban and forest

origin holding more than 2200 conifer and deciduous trees. This last model shows best pre-

dictive performance for deciduous urban tree species, assured by ten-fold cross-validation

on group- and population level. We also compared performance to conifer forest biomass

functions, showing slightly improved BIAS values. As a feature, the model is also able to

make predictions also for non-observed conifers in urban space, under the assumption of

comparable urban-forest differences between deciduous and conifer species. A sample ap-

plication shows results for a small subset of data of a urban tree inventory, collected in a

residential area in the city of Munich, Germany.

Keywords biomass functions, cross-classified mixed model, urban trees, allometric model

1 Introduction

Urban trees provide several ecosystem services, one of them being a carbon storage (Konij-

nendijk et al, 2005; McGovern and Pasher, 2016; Moser et al, 2017). During the last decades,
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a lot of research was undertaken to bring light into the role of urban forests for carbon se-

questration (e. g. Nowak, 1993; Vonderach et al, 2012; Pasher et al, 2014; Zhao et al, 2018;

Trlica et al, 2020, and many others). In comparison to traditional forests, tree density in

urban forests is much lower, but nevertheless urban trees represent a relevant reservoir of

carbon and eventually a sink of carbon dioxide in the urban context (e. g. Nowak et al,

2002; Kändler et al, 2011). Management of urban forests might additionally focus on in-

creasing the amount of stored carbon. For this, methods to derive current state of carbon

storage are necessary to be able to evaluate the development of this reservoir.

Knowledge about the urban carbon reservoir and possibly the associated fluxes help

understand the role of urban trees in carbon dioxide emission mitigation for single trees

(e. g. Brianezi et al, 2013), on local (Xie et al, 2007; Kändler et al, 2011; Strohbach and

Haase, 2012; Russo et al, 2014; Schreyer et al, 2014; Gardi et al, 2016; Tigges et al, 2017;

Boukili et al, 2017; Trlica et al, 2020), or nation-wide scale (Nowak, 1993; Nowak and

Crane, 2002; Nowak et al, 2013; Pasher et al, 2014; McGovern and Pasher, 2016), to deduce

the total net balance for a specific area (Nowak et al, 2002; Timilsina et al, 2014; Orozco-

Aguilar et al, 2018), to conduct demand-supply analysis (Timilsina et al, 2014; Zhao and

Sander, 2015; Russo et al, 2015) for reporting in context of United Nations Framework

Convention for Climate Change (UNFCCC) (Pasher et al, 2014), to assess their potential

in carbon credit markets (e. g. McHale et al, 2007), to draw comparisons to other urban

(e. g. Tigges et al, 2017) or traditional forests (e. g. Nowak and Crane, 2002), build storage

maps (Raciti et al, 2014; Strohbach and Haase, 2012) or to develop management options

(O’Donoghue and Shackleton, 2013; Raciti et al, 2014) with regard to climate change and

carbon dioxide mitigation.

For the estimation of stored carbon in urban space, several methods were developed

and applied. On the one hand, there are approaches using remote sensing (Xie et al, 2007;

Kändler et al, 2011; Strohbach and Haase, 2012; Pasher et al, 2014; Schreyer et al, 2014;

Tigges et al, 2017; Trlica et al, 2020), either based on airborne photogrammetry and/or air-

borne lidar. Ground based lidar, i. e. terrestrial laser scanning (TLS), was applied to estimate

single trees biomass (e. g. Vonderach et al, 2012; Zhao and Sander, 2015; Zhao et al, 2018;

Xu et al, 2018; Velasco and Chen, 2019). On the other hand, several remote sensing studies

make also use of allometric biomass functions. These serve for direct estimation of single

tree biomass, which might be upscaled to the required spatial level. In these cases, biomass

functions with predictors originating from remote sensing analysis are used (Kändler et al,

2011; Strohbach and Haase, 2012; Schreyer et al, 2014; Tigges et al, 2017). Some studies

developed specific biomass functions (e. g. Johnson and Gerhold, 2003; Yoon et al, 2013),

used equations from near-by locations (e. g. Lv et al, 2016) or used forest tree biomass

function for comparison (e. g. Gardi et al, 2016). Yet another option is to estimate biomass

based on data and attributes stored in an (existing) tree inventory.

When it comes to applying existing methods to new areas, applicability (Russo et al,

2014) and comparability of results (Strohbach and Haase, 2012) need to be assessed. McPher-

son et al (2016, p. 8ff) point out that several factors might influence tree growth within and

between cities. The authors highlight management practice in this context, which also de-

pendent on regulatory rules. They also state, that urban trees exhibit higher variability in

habitus than rural trees.

Since the amount of stored carbon cannot simply be accessed using existing forest tree

biomass functions (McHale et al, 2009; Velasco and Chen, 2019) there is a need to develop

specific functions for urban trees. But developing tree biomass functions is more demanding

in the urban space than in traditional forests, due to comprehensible limitations in availabil-

ity of trees for cutting. Hence, if one aims at calculating stored carbon using acquired data of
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well-established management tools like tree inventories ± as in this study ± new approaches

are required.

The aim of this study is to develop a set of urban biomass functions to estimate the to-

tal aboveground biomass (agb) based on individual tree attributes usually available at tree

inventories. In the following, we describe our data for model building which encompass

both, urban and forest trees. Subsequently, methodological steps are described starting from

a simple urban trees mixed non-linear allometric biomass model, enhancing it using addi-

tional predictors, adjusting existing forest biomass models and finally building models based

on data including urban and forest trees. We show results based on cross-validation and dis-

cuss the different approaches. Finally, the new models are applied on example data from a

tree inventory.

2 Material and Methods

2.1 Data

In this study, we could revert on previously generated biomass data from both urban trees

(Kändler et al, 2011) and forest trees (Vonderach et al, 2018). The first set contains data

of 164 non-destructively sampled urban trees of fourteen different tree species from a field

study in 2011 in Karlsruhe, Germany. These trees were non-destructively sampled by skilled

arborists using the randomized-branch-sampling (RBS) protocol (c.f. Gaffrey and Saborowski,

1999; Saborowski and Gaffrey, 1999; Good et al, 2001).

Using RBS, the main bole was measured at 0.5 m and 1 m above ground, followed by

2 m-sections up to the crown. Inside the tree crown, each of three paths from crown base to

bud end were measured for segment length as well as bottom and top diameter between all

knots, i. e. branching points. Total volume is then estimated by expanding measured segment

volume by the path-wise cumulated selection probability based on all branch base diameters

at each knot (for details see Gaffrey and Saborowski, 1999; Good et al, 2001). Aggregated

volume is transferred to biomass using specific gravity values from literature (Kollmann,

1982). The processed data include information about total aboveground biomass, several

diameters along the stem (of which here we use the diameter in 1 m height above ground,

further called d1 as predictor), tree height (h), height of green crown (hgc) and remotely

sensed crown diameter (cd, see Kändler et al, 2011). The required d1-diameter was not

available for all trees due to early branching. Hence, only 144 complete observations were

available, spread over fourteen deciduous species, each holding three to thirty-two obser-

vations. Further biometric information is given in table 1, a graphical overview is given in

figure 1.

As preliminary results during model building have shown, the use and incorporation of

tree data from traditional forests can enhance the final biomass model. Hence, we addition-

ally used data from a meta-study aiming at building additive component biomass functions

for the most frequent forest tree species in Germany (Vonderach et al, 2018). This data

(n=2061 complete observations) originate from different sources (both with regard to geo-

graphic origin and sampling method), but a substantial part of the trees was also sampled

using RBS (in contrast to the urban tress, forest trees were cut before sampling). The data

contains the same variables as the urban tree data set, except remotely sensed cd. Missing

d1 was estimated based on the other predictors using the taper curve library BDAT (Kublin,

2003; Vonderach et al, 2022). Here, eight tree species, including four conifers, are given

holding 25 to 666 observations (for a data summary see table 2).
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species name n dbh d1 h hgc cd agb

Acer campestre field maple 5 21.6 21.9 8.8 2.2 6.1 206.3

Acer platanoides Norway maple 32 47.6 48.4 13.9 2.3 10.5 1372.5

Acer pseudoplatanus sycamore maple 3 47.0 48.0 15.6 2.5 10.6 1267.2

Aesculus hippocastanum sweet chestnut 6 53.6 52.8 12.7 2.7 10.4 1658.9

Betula spp. birch spp. 3 40.9 43.0 17.3 3.9 8.2 866.8

Carpinus betulus common hornbeam 12 30.0 31.3 11.5 2.6 7.1 570.5

Fraxinus excelsior common ash 15 48.9 50.3 14.7 3.0 10.6 2110.6

Platanus × acerifolia London plane 14 79.2 83.4 20.8 3.6 12.1 4601.7

Prunus avium wild cherry 4 25.4 26.0 12.2 2.9 4.6 308.6

Quercus robur common oak 21 40.5 42.1 13.8 2.9 9.1 1750.4

Quercus rubra red oak 8 75.6 75.8 19.6 2.5 15.6 5319.6

Robinia pseudoacacia black locust 6 37.5 38.9 14.5 3.9 7.3 1406.9

Tilia × euchlora Caucasian lime 7 49.9 50.9 14.9 3.5 8.4 1412.6

Tilia cordata small-leafed lime 8 29.6 31.5 12.9 3.7 7.0 392.0

Table 1 Overview on sampled urban trees per species. Given are the number of sampled trees per species

(n), mean values for diameter in breast height (dbh, measured in 1.3 m above ground), diameter in 1 m above

ground (d1), tree height (h), height of green crown (hgc), crown diameter (cd) and aboveground biomass

(agb), calculated from volume and specific gravity.

species name n dbh d1 h agb

Abies alba silver fir 29 41.8 43.4 25.8 1255.2

Acer pseudoplatanus sycamore maple* 25 28.3 29.1 22.6 493.2

Fagus sylvatica European beech 666 32.2 33.1 24.8 1078.8

Fraxinus excelsior common ash* 37 33.2 34.2 25.6 1144.5

Picea abies Norway spruce 616 32.7 34.3 24.9 581.0

Pinus sylvestris Scots pine 311 31.7 32.9 23.0 516.2

Pseudotsuga menziesii Douglas fir 130 31.0 32.0 24.7 580.5

Quercus spp. oak spp.* 247 31.9 32.9 22.9 955.7

Table 2 Overview on sampled forest trees per species. Species names with asterix (*) indicate availability in

both data sets. Besides, number of sampled trees per species, mean values for diameter in breast height (dbh),

diameter in 1m above ground (d1), tree height (h) and aboveground biomass (agb) are given.

2.2 Methods

The urban tree data set consists of fourteen tree species. Because the number of observations

are rather low for some species, which prohibits stable biomass models for each species

individually, a mixed model approach was chosen in the first step. Hence, we modelled

the aboveground biomass (agb) for all species in one model, but allowed for structured

deviations from this population average given the factor species (spp). Additionally, we

chose to fit the models on the (nonlinear) data scale to avoid the need of back-transformation

and bias correction (c. f. Sprugel, 1983). We started by modeling the response y (=agb) by

allometric models of the general form

y = (α +a)
p

∏
i=1

X
βi+bi

i + ε (1)

with predictors Xi, i = 1 . . . p and fixed effect parameters α and βi for the population aver-

age, random terms a and bi for species specific deviations and investigating d1 and further

predictors, namely tree height (h), height of green crown (hgc) and crown diameter (cd).

The known phenomenon of heteroscedastic errors in biomass data was treated by modelling

the increasing variance species-wise as power of a variance covariate ν , using d1 or the

estimated agb (c. f. table 3), i. e. var(ε) = σ2|ν |2δ (see Pinheiro and Bates, 2004, p. 210f).
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Fig. 1 Relation between predictors and agb for different species. Legend for all graphs is given in top left

panel.

To check if a generalized model fits all species without grouping satisfies our requirements,

such a model was implemented as well. So far, all models were fit using R (R Core Team,

2019) and the nlme-package (Pinheiro et al, 2019).

Since the urban tree data set misses conifer species, which in fact occur in urban space as

well, the question arose how to estimate agb for those trees, if no models can be developed.

We explored several possibilities:

One option would be to use biomass functions from traditional forests as a surrogate for

the urban landscape, possibly incorporating a compensating additive term or scaling factor.

We tested such an approach on the deciduous tree species using the biomass functions from

the German National Forest Inventory (NFI) ( fNFI , which were developed for 18 species,

c. f. Riedel and Kaendler, 2017), estimated agbNFI and modeled the difference as well as

the ratio to the observed agb. Different nonlinear and hierarchical models were tested and

a species-mixed allometric model (c. f. equation 1) also proved to be a reasonable choice,

both from theoretical and practical considerations. Only d1 was required for modeling the
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absolute or relative deviations from the NFI biomass functions (notation as in equation 1).

y = fNFI(spp,dbh,h)+(α +d1β+b)

y = fNFI(spp,dbh,h) · (α +d1β+b)
(2)

A second option for modeling agb for urban areas is to include tree data of urban and

traditional forests and let the mixed model framework statistically separate the available in-

formation. Unfortunately, the merged data (a combination of table 1 and 2) misses complete

information on crown attributes (hgc and cd) as these are not available in the forest data

set, therefore only d1 and h are available predictors. The more challenging part in such a

model is that we now need to include two factor variables (species and origin) which are

not hierarchically organised, but instead are cross-classified. This means that each species

can (potentially) occur in each level of origin. The following (potential) function is used as

starting model equation:

y = (α +aaoo +aspp) ·d1(β+baoo+bspp) ·h(γ+caoo+cspp) (3)

Here again, greek letters refer to fixed effects and the latin letters are used for the random

effect terms, which are indexed for area of origin (aoo) and species (spp). The complexity

of such nonlinear cross-classified mixed model makes convergence often difficult. Indeed,

we also experienced convergence issues also with models of reduced complexity (i. e. less

random effects), so that we switched to the log-scale, imposing back-transformation and bias

correction on predictions (e. g. ‘naive estimate’, see Sprugel, 1983; Duan, 1983). The model

equation of the final best cross-classified mixed model (CCMM), fitted using the R-package

lme4 (Bates et al, 2015), is:

log(y) = (α +aaoo +aspp)+(β +bspp) · log(d1)+(γ + cspp) ·h (4)

using tree height (h) untransformed, which yielded better results.

As a last approach, we simplified this model and included the area of origin as a binary

variable, being zero and one in case of forest and urban origin (FU). This reduces complexity

and the 1-level mixed model can be fitted on the data-scale making a bias correction obsolete

but predictions for conifers in urban areas possible. The equation of this ‘factor’ model (FM)

is:

y = (α +aspp +b ·FU) ·d1(β+bspp) ·h(γ+cspp) (5)

All models were examined for the urban trees using leave-one-out cross-validation, both

on population and on species level. The indicators of interest were RMSE and BIAS:

RMSE =

√

∑
n
i=1(yi − ŷi)2

n

BIAS =
∑

n
i=1(yi − ŷi)

n

(6)

Additionally, for the species specific evaluation, we calculated relative RMSE and BIAS

by dividing each by the species-specific mean agb. For all models, agb was estimated as

described, taking back-transformation and BIAS-correction into account where necessary.

The predictions of the final CCMM model were also checked against the estimates of the

NFI biomass functions (Riedel and Kaendler, 2017) using the R-package rBDAT (Vonderach

et al, 2022) with respect to absolute and relative RMSE and BIAS for the forest tree species

of our data set. The data was used during both model developments, and hence, concerns

regarding improper comparison are unfounded.
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2.3 Sample application

We evaluated the CCMM model using a small subset of a tree inventory containing a subset

of areas in Munich, Germany, at two different points in time (2007 and 2019). All registered

trees are characterised by species name and the required model predictors. In rare cases,

trees were recorded as groups, i. e. data holds the number of trees of these groups, mean

diameter and height. Diameter was measured using caliper, rounded towards full centimeter,

and height was estimated by experienced arborists and given as full meters. No measured

aboveground biomass is available. For tree species, which were not covered by the set of

species for which biomass functions were developed, we applied a mapping based on genus,

habitus and expert knowledge. For few species (mainly genus Populus) a biomass estimation

correction was applied due to very unequal specific gravity values between model species

(using Acer, being the best covered genus in our model data) and assigned species. For

that purpose, we used the specific gravity proportion between both species according to

Kollmann (1982).

3 Results

Urban trees show different biomass accumulation with size, e. g. dbh, when compared to

forest trees (figure 2). This finding is even more pronounced if tree height is considered

additionally. Tree height is very different for deciduous urban trees given diameter when

comparing to forest trees. Based on our data, we can state that the measured deciduous

urban trees are 10 to 15 m smaller than their forest counterpart (figure 3). Interestingly, there

is virtually no overlap in tree height between both origins for all diameter classes. If we

consider d1 and h when looking at biomass, we find that deciduous urban trees have higher

biomass values for the same dimensions than forest trees. This is also shown in figure 3 by

the modeled contour lines (see also the figure caption for an explanation and example). In

consequence, we can state that deciduous urban trees usually hold less biomass than forest

trees if only diameter, i. e. d1, is considered. If comparison includes both thickness and

height, deciduous urban trees accumulate more biomass. This seemingly contradictory result

is resolved by the fact that urban trees (in our data) never reach the same tree heights as forest

trees and show a different morphology. This observed difference in biomass diminishes as

trees get larger and almost vanishes for trees above 100 cm d1. This at least is shown by

our data, although only a small share of thick trees are present. Hence, for modelling and

application it is important to include a height measure into the biomass models.

We have tested different approaches to develop urban tree biomass functions. The first

set of models are based on the 144 urban trees, the second set encompassed 2205 trees,

including forest trees. We evaluated these models using AIC (Akaike, 1974, where applica-

ble), model residual error, leave-one-out cross-validated root mean squared error (RMSE)

and mean error (BIAS).

The first set of models, fitted using the urban tree data only, show that all four selected

variables (d1, h, hgc and cd) contribute to explain aboveground biomass of urban trees. This

is coherent, since all variables describe trees in their volumetric extent (see also figure 1).

The fitted mixed models had the random effect terms for factor species usually placed on the

parameter β1 belonging to d1. Heteroscedasticity (c. f. section 2.2) was best treated also by

this covariate, except for model mm4, which makes use of the model predictions to weight

the errors (see table 3). The best model by AIC (mm4, AIC=1905.4) makes use of d1, hgc

and cd for the fixed effects with random effects set on the exponent of d1. Other models are
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Fig. 2 Aboveground biomass (agb) of deciduous forest trees (black circles) and urban trees (red squares) in

relation to diameter in 1 m above ground. The continuous lines show modeled relationship between agb and

d1.

not much worse, or Ð especially when evaluated in terms of residual standard error (σ ) and

cross-validated RMSE and BIAS (see tables 3 and 4) Ð even better. In terms of predictive

performance, mm5 shows lowest group-level cross-validated RMSE and BIAS (see table 4,

index ‘g’ and ‘cv’). When it comes to applicability, the model mm1 seems to be a good

choice as well, because it only requires easy to measure quantities (d1 and h, no laborious

crown measurements) and exhibit only a slightly higher bias than mm5. The model results

also indicate that height of green crown (hgc) might offer more information than does tree

height (h) ± at least for model fitting. Comparing cross-validated results, it seems that using

h instead of hgc delivers more accurate predictions on average (models mm1 and mm5). The

model gm6, a species-independent generalized nonlinear least squares model, was fitted as

a reference without an hierarchical approach and, indeed, shows smallest residual standard

error. But all other fit statistics do not show any advantage of that model.

As mentioned above, our full data clearly indicates, that there is a difference in above-

ground biomass between urban and forest trees of same diameter class. Especially, urban
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name model formula ν RE AIC σ

mm0 nlme α · d1β1 d1 a 1982.5 0.057

mm1 nlme α · d1β1 · hβ2 d1 | spp b1 1944.8 0.035

mm2 nlme α · d1β1 · hgcβ3 d1 | spp b1 1939.2 0.028

mm3 nlme α · d1β1 · hgcβ3 · cdβ4 d1 | spp b1 1907.3 0.030

mm4 nlme α · d1β1 · hgcβ3 · cdβ4 ŷ | spp b1 1905.4 0.122

mm5 nlme α · d1β1 · hβ3 · cdβ4 d1 | spp b1 1922.2 0.021

gm6 gnls α · d1β1 · hβ3 · cdβ4 d1 | spp - 1940.4 0.012

Table 3 Structural representation of the first set of fitted models (urban trees only). ‘mm’ and ‘gm’ in column

name refer to ‘mixed model’ and ‘generalized model’, respectively. In column model, the applied method-

ological framework is indicated, column formula refers to the fixed effects, column ν gives details about

covariate and grouping applied in modeling heteroscedasticity, with ŷ refering to fitted values. Column RE

indicates on which parameter random effects are finally placed. Column σ refers to residual standard devia-

tion.

name rmseg rmseg, cv rmsep rmsep, cv biasg biasg, cv biasp biasp, cv

mm0 695.3 777.9 804.4 825.3 -36.9 -40.7 -80.8 -81.6

mm1 631.7 723.8 730.3 745.6 14.2 16.7 32.1 38.4

mm2 619.9 714.4 711.2 738.8 30.1 27.7 53.3 55.0

mm3 653.2 726.0 772.7 783.6 86.6 97.4 143.1 142.9

mm4 664.7 792.4 764.6 804.5 91.4 118.5 135.9 147.7

mm5 591.8 688.8 659.0 684.5 15.0 13.6 38.4 37.0

gm6 690.8 740.1 690.8 740.1 94.6 100.0 94.6 100.0

Table 4 Performance for the first set of urban trees models expressed in the form of the RMSE and BIAS

for the group (Index g) as well as the population effects (Index p) of the model fit as well as for the cross-

validation (Index cv).

trees exhibit less biomass for a given diameter (c. f. figure 2). Including forest data into

model building not necessarily improve the models. Modeling the deviation between urban

and forest biomass to be able to use well approved forest biomass functions using an additive

or multiplicative correction factor does not lead to satisfactory results: these types of mod-

els, based on adjusting forest tree biomass functions, turn out to have the highest RMSEcv

values of all tested models and moderately high BIAScv values (see table 5). The additive

model shows lower RMSEcv but higher BIAScv than the multiplicative model.

Alternatively, the CCMM model of equation 4, being an extension of the well suited

mm1-model incorporating both urban and forest trees and only requiring available d1 and

h, shows best values for both RMSEcv and BIAScv, whereas the simplified FM model, im-

plementing equation 5 using a binary variable encoding forest and urban origin, exhibits

an BIAScv high as −90.6 kg (almost nine times higher than the best model in absolute

values) and moderately high RMSEcv (see table 5). Clearly, the best model in this re-

gard is the CCMM. To assure, that the CCMM also reproduces measured forest biomass

equally well, we compared the bias-adjusted predictions against the NFI functions (Riedel

and Kaendler, 2017) for Norway spruce, Scots pine, Douglas fir, European beech, oak and

sycamore and found slightly higher RMSE values for all species except Douglas fir and

sycamore (max. +4.1 %) and smaller absolute BIAS values for all species except for Nor-

way spruce (NFI: +8.0 kg, CCMM: -12.8 kg). Maximum deviation of relative BIAS of the

CCMM model is −3.2 %.

When evaluating the different models for single species results, especially for species

of particular interest, results might show different patterns (see tables 8 and 9 in appendix

for absolute and relative RMSE and BIAS). In this case, no model exhibits best results for

all of the 14 considered deciduous tree species. The ‘best’ models show smallest BIAScv
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Dimension and agb of deciduous trees
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Fig. 3 Comparison of observed (circles and squares, size proportional to biomass) and modeled (contour

lines) agb for deciduous forest (black circles) and urban trees (red squares) with respect to d1, h and agb

No consideration of species in this graph. Each observed tree is given by its diameter and height, while agb

(modeled by a simple allometric model using these two predictors) is given as contour lines in the background.

Additionally, a functional relationship between d1 and h is modeled and included (dashed lines). Horizontal

and vertical lines are included to ease the interpretation of the graph: a tree with d1=40 cm shows an average

height of 28 m in forests and only 14 m in urban space. Of course, a forest tree given these dimensions exhibits

an agb of approx. 1200 kg while an urban tree, which is only half in height, shows only 800 kg. Interestingly,

the models indicate for trees with the comparable dimension in d1 and h, that urban trees theoretically exhibit

more agb than forest trees.

values for only four species and smallest RMSEcv values for only five species, respectively.

In this regard, the well performing CCMM also shows very good results: in particular, the

largest relative Bias is −9.7 % (Robinia) and relative RMSE ranges between 10 and 36 %

(cf. table 9). Similarly, mm1 and mm5 models also perform well, but the largest BIAS is

higher (for sycamore and birch, respectively). Only for black locust, the result of mm1 is

better than that of CCMM considering RMSE and BIAS. But both models (mm1 and mm5)

exceed 10 % BIAS for 3 and 4 tree species, respectively. Moreover, both models, mm1

and mm5, can only predict deciduous trees. This is an advantage of the CCMM model,
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because coniferous trees in urban areas can be represented by the integration of coniferous

tree species data and the methodology of cross-classified mixed models. Unfortunately, an

independent evaluation of the performance for these additional tree species in the city is

currently not possible (no data available).

The finally proposed CCMM model (equation 4) uses only d1 and h as predictors due

to data limitations, but includes independent random effects given species for the intercept

and the two parameters. Random effects based on origin (traditional forest vs. urban area)

were significant only for the intercept (aaoo), making it a scaling parameter (this finding

provoked the development of the factor model of equation 5). The estimated parameters for

the CCMM model are given in table 6, the random effects for different species are given

in table 10 in the appendix. The factor for correcting bias is estimated to be 1.012081 (see

Sprugel, 1983; Duan, 1983). As long as predictions correspond to the group-level, i. e. refer

to a certain species and location as in our example, the given approach for bias-correction

by e0.5σ2
is valid and corrects for the bias of transformation of the common within-group

error. On higher level, e. g. on population level, the uncertainty of the between-group error

must be incorporated as well (see e. g. Wirth et al, 2004, appendix 1).

no model nfit ncv ndec ncon RMSE Bias RMSEcv Biascv

1 mm1 144 144 14 0 631.7 14.2 724.0 13.3

2 mm5 144 144 14 0 591.8 15.0 688.8 13.6

3 FB+D 144 144 14 0 790.1 22.0 802.2 21.7

4 FB*R 144 144 14 0 842.1 32.7 849.4 12.8

5 CCMM 2205 144 15 4 598.6 -10.7 667.1 -10.7

6 FM 2205 144 15 4 693.1 -76.8 780.9 -90.6

Table 5 Comparison of the different modeling approaches.‘mm1’ and ‘mm5’ refer to the mixed models from

table 3 without forest trees and with resp. without crown diameter (cd). ‘FB+D’ and ‘FB*R’ are adjusted

forest tree biomass functions (equation 2), ‘CCMM’ refers to the cross-classified mixed model (equation 4)

and ‘FM’ is the factor model from equation 5. Column headings ‘n’ show the number of observations of

model fit (index fit) and for the cross-validation (index cv), respectively. The indices ‘dec’ und ‘con’ refer to

deciduous and conifer tree species.

model α β γ Std.aspp Std.bspp Std.cspp Std.aaao σ

CCMM -1.50880 2.02329 0.03487 0.13843 0.04568 0.00349 0.16024 0.15498

Table 6 Parameter estimates of the CCMM model from equation 4. The first three columns (α , β and γ) give

the estimated fixed effects. Column four to seven give the estimated standard deviations of the independent

random effect terms. σ gives the residual standard deviation of the model. Estimated random effects for

different species can be found in the table 10 in the appendix.
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Fig. 4 Predicted above ground biomass of the Munich data against d1 on double log scale. Black squares

indicate 2007 data and red circle refer to 2019 data. Vertical and horizontal lines mark the average biomass

and diameter. The two-part pattern is due to differences in tree heights and applies to almost all tree species.

On average, tree height remains constant and biomass increase is driven by diameter increase.

3.1 Sample application

year stems agb C CO2 d1m hm agbm d1med hmed

[a] [n] [kg] [kg] [kg] [cm] [m] [kg] [cm] [m]

2007 2763 854176 411950 1511856 22.6 10.2 309.1 19.1 9.0

2019 2260 941050 453472 1664241 26.4 10.2 416.4 23.9 9.0

Table 7 Carbon storage and agb for the example area in Munich by urban trees for 2007 and 2019. Indices

‘m’ and ‘med’ refer to mean and median values. A clear increase of storage can be highlighted (+10.2 %)

despite a decrease in number of trees.
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To show the applicability of the developed model, we applied the CRM with iSiMan5

tree management software (Brudi and Akontz, 2022) to a small subset of data, collected in

a residential area in the city of Munich, Germany. The model makes use of variables, which

are easy to measure and are regularly collected during urban tree inventory. The model can

estimate stored agb of the urban trees, which can also be easily translated into stored amount

of carbon by applying the respective carbon content factor (see e. g. Paustian et al, 2006;

Calvo Buendia et al, 2019). If data for multiple points in time are available, in this case for

2007 and 2019 (see figure 7), it even is possible to calculate the respective net carbon fluxes.

The results for our example data show that in 2019 the urban trees store about 941 tons

of biomass, i. e. about 453 tons of carbon (c. f. table 4). This amount of storage was achieved

by 2260 trees, meaning an average amount of stored biomass of 416 kg per tree. Compared

to 2007, this is an increase of about 86 tons of biomass or a plus of 10.2 %. The average

sink capacity is thus approx. 3.5 tons of carbon per year. At the same time, 503 trees were

lost (−18.2 %) and the compensation of loss and increase in carbon storage is a result of

an increased average diameter. Average tree height remained constant. Since the developed

equation takes into account the different tree species and their sizes, further analyses in

combination with the data from the tree inventory are possible. These results highlight the

importance of managing, tending and conserve especially old urban trees, which not only act

as a carbon storage but also serve further ecosystem services (social, economic, ecological,

climatic and aesthetical, see further e. g. Konijnendijk et al, 2005; Moser et al, 2017).

4 Discussion

There are several other, supposedly more modern, approaches to determine the biomass and

C-sink potential of urban trees (e.g. aerial and terrestrial laser scanning). But the use of

the close allometric relationships between simple to measure tree attributes and the target

variables biomass or carbon storage, especially in combination with regular and repeated

inventory data, remains an accurate and low-cost (or even no-cost) method to determine

urban tree carbon storage. Additionally, the method allows for more modern techniques

(e. g. terrestrial laser scanning) for data acquisition to extent the data basis of model building.

There is a clear need for urban tree biomass functions in addition to forest tree biomass

functions. Our data analysis shows that a simple transfer of forest biomass functions into

urban space needs adjustment because the allometry of urban trees differs strongly from

those of forest trees. Although the same tree size in terms of diameter (e. g. d1) can be found

in both landscapes, tree heights (and also crown habitus) differ significantly. In our data set,

there was virtually no overlap in tree heights given diameter, making both origins separate

units. Still, both units are made up of trees, obeying allometric rules. Differences in biomass

between urban and forest trees are more pronounced in smaller dimensions and diminish

as trees mature. One explanation could be that urban trees grow in less confined spaces, are

less affected by inter- or intraspecies competition, grow less tall and form larger crowns from

early live on. The larger trees get, both origins resemble a more unconstrained habitus and

thus show more comparable biomass and carbon storage. The application of forest biomass

models in an urban setting is an extrapolation of those models, which requires correction.

Our approaches using the NFI biomass functions including correction performed worse in

comparison to most other tested models.

The developed models make use of the predictors d1 and h which are regularly mea-

sured during urban tree inventories. In case of using a diameter measured in a different

height, e. g. in 1.3 m (dbh) as regularly used in forestry, a simple linear regression can con-



14 Christian Vonderach, Adrienne Akontz

vert between both variables. It turned out by model cross-validation that additional variables

like height of green crown (hgc) or crown diameter (cd) do not or only slightly improve the

models. Actually, our CCMM model shows best overall statistics only using d1 and h.

We propose to use the CCMM model, which fits several species and origins (urban

and forest areas) at once. This model shows best performance compared to models only

using data from urban areas and, hence, the model learns from forest trees and improves

the modeled relationship. Besides, it is possible to estimate unmeasured crossings (here:

conifer species in urban areas). This advantage should be used with care as no validation

could be conducted. In particular, the difference between urban trees and forest trees is

contained only in the random effect of the scaling parameter and applies to both hardwood

and softwood. Thus, a similar difference of these two tree species groups is assumed, which

is not necessarily true. In principle, however, it can be assumed that both deciduous and

coniferous trees in urban areas grow with more space and less competition as compared to

forest trees, so that crown formation and height growth are modified in a similar direction.

The CCMM uses the mixed-effects modelling framework. From a theoretical perspec-

tive, the validity of a model is assured, among other things, by checking the assumption of

normality for the estimated random effects. This is difficult if the factor variable has only two

levels, and often 5±6 factor levels are recommended as a minimum. Nevertheless, the case

of less factor levels is not uncommon (e. g. female vs. male) and some authors see no reason

to prevent the use of mixed models in such cases (e. g. Gelman and Hill, 2007, p. 247/275f).

Our results indicate convergence and suitable parameter estimates of the CCMM model as

well as proper fit statistics so that we can assume correctness and applicability of the model.

The set of (urban) tree species included reflects the situation in Karlsruhe, Germany,

and, hence, is not necessarily representative for other cities, not even in Germany. Some tree

species are represented only by small numbers of samples. It is important to enhance our

data by more tree species, especially, if considering future development eventually aiming at

more suited tree species in a changing urban climate. There might also be differences within

tree species depending on different urban regions (c. f. McPherson et al, 2016), requiring

more specific and localised models. Using the mixed-models approach new tree species can

be added into the model by estimating their random effect even with a few observations

only, so that local situations can be handled with little effort (Mehtätalo and Lappi, 2020).

Beside that, collecting data from different cities might help building a more general model,

which includes random effect terms for each city and makes it possible to expand the model

geographically.

As an example, we applied the CCMM model to a subset of a tree inventory in Munich,

Germany. The additional encountered tree species were assigned to the model tree species.

Of course, this results in a degree of uncertainty that has an impact on the results, but is

unavoidable in this context of application from our point of view. Such uncertainty can only

be resolved by additional data. In our data set, only 196 (138) trees out of 2763 (2260) were

conifers in 2007 (2019), i. e. significantly less than 10 % and with a higher proportion of

trees removed than in the hardwoods. In consequence, we do not expect an excessive impact

on the result by the invalidated part of the model, nevertheless it is important to be aware of

it.

5 Conclusions

Biomass functions are an easy and low-cost method to estimate biomass and carbon stor-

age, both in forests and urban landscapes. Although trees are the main carbon sink and obey
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close allometric relationships in both ecosystems, the simple use of widely available forest

biomass functions in urban areas is not recommended. Our data show clear differences in

dimensions and biomass allocation. Hence, the development of specific urban biomass func-

tions is important. Based on data from urban and forest areas, we present a new biomass

model fitted for multiple species at once. This model is capable of differentiating between

both origins and at the same time improving predictive power compared to single-origin-

models, i. e. the model ‘learns’ from the allometric relation of forest trees. Besides, the

cross-classified mixed model can also estimate unobserved groups, which in this case are

conifers in urban areas. Regrettably, we could not check the performance of these groups

due to missing data. Although conifer tree species are of minor importance in urban areas,

there is still lack of such data. The presented approach deserves further attention because

it is capable of further extensions like e. g. including a city-group level or random effects

estimation for further tree species by means of the mixed effects modeling framework. The

assumption of comparable differences in habitus and biomass allocation between urban and

forest trees for both deciduous and conifer species needs to be further investigated.

As an exemplary application, we used the model to estimate carbon storage for a sub-

set of Munich for two points in time showing an increase in biomass and carbon storage

despite a reduced number of stems and a constant tree height. Main driver is an average in-

crease of diameter of about 4 cm in 12 years. Further work should concentrate on currently

less frequent species especially in view of rapid climate change and subsequent changes in

tree species composition. With that, a closer look into the carbon sink potential of different

species over time is possible and improves knowledge of ecosystem services provided by

urban trees.
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A cross-validated species specific results

species n R1 B1 R2 B2 R3 B3 R4 B4 R5 B5 R6 B6
sycamore maple 3 191.7 -173.0 216.8 -184.5 167.2 25.9 166.1 4.0 262.6 88.0 263.7 60.1

birch spp. 3 314.3 -64.1 210.4 -190.0 228.7 -96.3 218.8 -98.0 258.2 -5.3 137.1 -137.1

oak spp. 21 381.4 -49.4 562.4 -99.8 243.5 85.0 321.8 97.4 623.9 -149.9 963.0 -286.2

common ash 15 549.3 -14.3 675.9 9.8 274.9 4.9 360.8 -61.0 497.4 -47.0 753.7 -193.8

field maple 5 40.5 5.6 43.2 4.7 32.1 6.3 35.4 14.5 40.6 -2.1 44.4 1.1

common hornbeam 12 137.0 -16.4 138.9 -12.9 152.1 -22.3 165.0 -33.2 164.1 -9.4 259.5 -59.5

Caucasian lime 7 449.3 -182.0 241.7 -98.3 708.5 -234.7 890.6 -318.3 386.2 -105.9 576.8 -235.0

London plane 14 1848.9 121.2 1523.3 -67.5 2269.8 109.2 2381.7 168.9 1633.9 98.4 1669.5 -11.2

black locust 6 344.1 -86.5 253.3 145.3 101.6 75.1 81.9 52.1 426.4 -136.1 733.0 -243.4

horse chestnut 6 450.6 216.3 497.7 252.0 356.2 -89.2 402.1 24.8 432.0 150.3 394.8 152.9

red oak 8 1207.5 402.9 1363.3 449.7 1166.3 274.1 1167.3 208.0 898.6 236.9 839.2 116.6

Norway maple 32 346.4 -18.8 342.6 11.4 270.0 0.7 250.3 -8.4 368.6 -13.2 401.4 -53.3

wild cherry 4 78.1 -8.2 98.6 1.5 49.2 -9.9 56.4 -17.0 60.0 -3.8 76.6 -0.7

small-leafed lime 8 70.6 8.1 60.9 6.2 99.5 -32.0 196.3 -74.9 40.9 1.5 33.0 3.4

Table 8 Overview on cross-validated measures of the different model approaches. The abbreviation ‘R’ and

‘B’ refer to RMSE and BIAS, respectively. The corresponding indices relate to column ‘no’ of table 5.

species n rR1 rB1 rR2 rB2 rR3 rB3 rR4 rB4 rR5 rB5 rR6 rB6

sycamore maple 3 15.1 -13.6 17.1 -14.6 13.2 2.0 13.1 0.3 20.7 6.9 20.8 4.7

birch spp. 3 36.3 -7.4 24.3 -21.9 26.4 -11.1 25.2 -11.3 29.8 -0.6 15.8 -15.8

oak spp. 21 21.8 -2.8 32.1 -5.7 13.9 4.9 18.4 5.6 35.6 -8.6 55.0 -16.3

common ash 15 26.0 -0.7 32.0 0.5 13.0 0.2 17.1 -2.9 23.6 -2.2 35.7 -9.2

field maple 5 19.6 2.7 20.9 2.3 15.6 3.0 17.2 7.0 19.7 -1.0 21.5 0.6

common hornbeam 12 24.0 -2.9 24.4 -2.3 26.7 -3.9 28.9 -5.8 28.8 -1.7 45.5 -10.4

Caucasian lime 7 31.8 -12.9 17.1 -7.0 50.2 -16.6 63.0 -22.5 27.3 -7.5 40.8 -16.6

London plane 14 40.2 2.6 33.1 -1.5 49.3 2.4 51.8 3.7 35.5 2.1 36.3 -0.2

black locust 6 24.5 -6.1 18.0 10.3 7.2 5.3 5.8 3.7 30.3 -9.7 52.1 -17.3

horse chestnut 6 27.2 13.0 30.0 15.2 21.5 -5.4 24.2 1.5 26.0 9.1 23.8 9.2

red oak 8 22.7 7.6 25.6 8.5 21.9 5.2 21.9 3.9 16.9 4.5 15.8 2.2

Norway maple 32 25.2 -1.4 25.0 0.8 19.7 0.1 18.2 -0.6 26.9 -1.0 29.2 -3.9

wild cherry 4 25.3 -2.7 32.0 0.5 15.9 -3.2 18.3 -5.5 19.4 -1.2 24.8 -0.2

small-leafed lime 8 18.0 2.1 15.5 1.6 25.4 -8.2 50.1 -19.1 10.4 0.4 8.4 0.9

Table 9 Overview on cross-validated measures of the different model approaches. The abbreviation ‘rR’

and ‘rB’ refer to the relative RMSE (coefficient of variation) and relative BIAS. The corresponding indices

relate to column ‘no’ of table 5. Relative RMSE and BIAS are scaled by species specific mean observed

aboveground biomass.



18 Christian Vonderach, Adrienne Akontz

B parameter estimates of the CCMM

species α aaao aspp β bspp γ cspp

birch spp. -1.50880 0.15417 -0.05195 2.02329 -0.01990 0.03487 -0.00017

black locust -1.50880 0.15417 0.13679 2.02329 0.04328 0.03487 0.00066

Caucasian lime -1.50880 0.15417 -0.02768 2.02329 -0.02594 0.03487 0.00012

common ash -1.50880 0.15417 0.12836 2.02329 0.01542 0.03487 0.00143

common hornbeam -1.50880 0.15417 0.01220 2.02329 0.01543 0.03487 0.00200

douglas fir -1.50880 0.15417 -0.09424 2.02329 -0.01337 0.03487 -0.00441

European beech -1.50880 0.15417 -0.01902 2.02329 0.05054 0.03487 0.00331

field maple -1.50880 0.15417 0.04772 2.02329 0.01217 0.03487 0.00015

horse chestnut -1.50880 0.15417 0.00105 2.02329 0.02287 0.03487 0.00038

London plane -1.50880 0.15417 -0.01711 2.02329 -0.03266 0.03487 0.00054

Norway maple -1.50880 0.15417 0.02568 2.02329 0.00816 0.03487 0.00147

Norway spruce -1.50880 0.15417 0.18834 2.02329 -0.10420 0.03487 -0.00453

oak spp. -1.50880 0.15417 0.01319 2.02329 0.04164 0.03487 0.00117

red oak -1.50880 0.15417 0.04590 2.02329 0.02222 0.03487 0.00134

Scots pine -1.50880 0.15417 -0.28100 2.02329 -0.00441 0.03487 0.00027

silver fir -1.50880 0.15417 -0.03706 2.02329 -0.02470 0.03487 -0.00202

small-leafed lime -1.50880 0.15417 -0.10021 2.02329 -0.03197 0.03487 -0.00072

sycamore maple -1.50880 0.15417 -0.00223 2.02329 0.01602 0.03487 -0.00079

wild cherry -1.50880 0.15417 0.03127 2.02329 0.00939 0.03487 -0.00017

Table 10 Parameter estimates of the cross-classified mixed model of equation 4 for different species. Param-

eter aaoo would take the value -0.15417 in case of forest trees.
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