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Abstract
Diagnostic AI systems trained using deep learning have been shown to achieve expert-level identi�cation
of diseases in multiple medical imaging settings1,2. However, such systems are not always reliable and
can fail in cases diagnosed accurately by clinicians and vice versa3. Mechanisms for leveraging this
complementarity by learning to select optimally between discordant decisions of AIs and clinicians have
remained largely unexplored in healthcare4, yet have the potential to achieve levels of performance that
exceed that possible from either AI or clinician alone4.

We develop a Complementarity-driven Deferral-to-Clinical Work�ow (CoDoC) system that can learn to
decide when to rely on a diagnostic AI model and when to defer to a clinician or their work�ow. We show
that our system is compatible with diagnostic AI models from multiple manufacturers, obtaining
enhanced accuracy (sensitivity and/or speci�city) relative to clinician-only or AI-only baselines in clinical
work�ows that screen for breast cancer or tuberculosis. For breast cancer, we demonstrate the �rst
system that exceeds the accuracy of double-reading with arbitration (the “gold standard” of care) in a
large representative UK screening program, with 25% reduction in false positives despite equivalent true-
positive detection, while achieving a 66% reduction in clinical workload. In two separate US datasets,
CoDoC exceeds the accuracy of single-reading by board certi�ed radiologists and two different
standalone state-of-the-art AI systems, with generalisation of this �nding in different diagnostic AI
manufacturers. For TB screening with chest X-rays, CoDoC improved speci�city (while maintaining
sensitivity) compared to standalone AI or clinicians for 3 of 5 commercially available diagnostic AI
systems (5–15% reduction in false positives). Further, we show the limits of con�dence score based
deferral systems for medical AI, by demonstrating that no deferral strategy could have achieved
signi�cant improvement on the remaining two diagnostic AI systems.

Our comprehensive assessment demonstrates that the superiority of CoDoC is sustained in multiple
realistic stress tests for generalisation of medical AI tools along four axes: variation in the medical
imaging modality; variation in clinical settings and human experts; different clinical deferral pathways
within a given modality; and different AI softwares. Further, given the simplicity of CoDoC we believe that
practitioners can easily adapt it and we provide an open-source implementation to encourage widespread
further research and application.

1 Introduction
Deep learning-based AI systems achieve impressive accuracy in many applications, but the lack of a
"safety net" impacts deployment in safety-critical areas where the consequences of AI error often mean
that staged use alongside human experts is crucial. One such safety-critical application is medical
imaging, where diagnostic AI systems have demonstrated expert performance in multiple retrospective
research studies1, but where AI models can make errors in cases that can be diagnosed accurately by
clinicians.
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Although there is a rich literature of AI (and other computerised technologies for medical imaging
diagnosis) providing diagnostic outputs to assist clinicians and potentially improve their performance 5–

8, it remains unclear how to optimally resolve situations in which such AI tools and human experts have
similar levels of performance, but have opposing diagnostic opinions where one must be chosen. Patient
harm could theoretically arise from either the choice to override a clinician’s independent opinion with AI
or vice-versa4. Optimal care requires deference to the diagnostic opinion that is most likely correct, but
this is challenging to predict because failure modes of AI systems have been di�cult to characterise.
Resolving this situation with a reliable method for optimally choosing which diagnostic agent to defer to
therefore represents an important unmet need for the application of AI to healthcare.

As diagnostic AI tools and clinicians have been shown to make errors in different types of cases9,10, an
ideal predictive system might harness their complementary strengths. We present a Complementarity
driven Deferral-to-Clinical Work�ow (CoDoC) system to improve performance of AI-only and human-only
clinical work�ows, by �rst examining the predictions of a diagnostic AI system and then deferring to a
clinical work�ow if the AI is deemed to be less likely to be accurate than the clinical work�ow for that
case. As complementarity between AI and clinicians has been observed in multiple medical settings, we
enable re-implementation of our framework in other settings by open-sourcing our model code alongside
the clinical data required to reproduce our experimental results.

We leverage algorithmic approaches enabling AI tools to defer to domain experts when uncertain about
their predictions and show that this can increase the performance of the composite system by optimising
reliance on the correct inference. However, most precedent work in the ML literature on learning to defer to
a human collaborator is not applicable in medical AI where regulatory requirements, engineering, data-
sharing or intellectual property considerations may require the diagnostic AI to be accessible only as a
“locked model” that cannot be modi�ed 11, 12,13 (a black-box setting). Given this practical constraint, we
develop a system that is compatible with any pre-existing diagnostic AI model without requiring it to be
retrained. Our system uses con�dence scores from one or more “locked” (pretrained) diagnostic AI
models as inputs to a “deferral AI” model that decides whether to make a prediction using the diagnostic
AI models or defer to a clinician; and can thereby be implemented as a wrapper.

From an engineering perspective, this enables a modular system design and ensures that the deferral AI
can be simple as it only learns which con�dence scores of the prediction model should result in a deferral
to a clinician. As a consequence, the CoDoC system is nimble and can be adapted to novel deployment
scenarios and any diagnostic AI. The deferral AI is trained based on simple non-iterative algorithms.
Despite the simplicity of our approach, we show that CoDoC is effective and given a small tuning set of
cases to train the deferral AI, can attain performance that exceeds that of diagnostic AI or clinicians alone
across multiple diagnostic tasks and clinical work�ows, while being robust to various forms of
distribution shift. Further improvements may be possible by co-training the diagnostic and deferral AI, as
has been suggested in prior work14. However, restricting ourselves to treating the diagnostic AI as a black
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box also has several advantages, including the ability to use third-party diagnostic models and avoid
contravening regulatory/IP restrictions on modifying the diagnostic AI.

2 Description Of The Codoc System
Once trained, a deployed CoDoC system takes as its input the con�dence score from the diagnostic AI
system for a given medical image. This score is fed into a deferral AI model which decides to either use
the diagnostic model or defer, in which case the medical image is diagnosed using a standard clinical
work�ow without diagnostic AI. Details of the training and deployment architecture of CoDoC are
described in Fig. 1.

The learnable component of CoDoC is the deferral AI. The deferral AI is inspired by work showing that the
con�dence score from a deep network15 can be used to detect inputs where an AI model’s predictions are
unreliable. This was also demonstrated to be effective in medical AI systems for breast cancer screening
in recent work16. In these prior works, the con�dence score is taken as an indication of whether the
prediction is reliable, and these works compute thresholds on the con�dence score under which to defer
to a clinician, so as to maximally boost the performance of the overall system. We refer to this approach
as threshold search. However, in most practical applications, the amount of data available for optimising
the thresholds is very small (particularly in terms of the number of positive cases) and the estimates of
combined performance obtained can be very noisy and fail to generalise to future unseen data.

In particular, consider the plot from Fig. 1d where, for a given operating point that a diagnostic AI model
operates at, we plot points (synthetically generated for illustration purposes) with markers identifying
where the clinician predicts the correct ground truth label and where the model predicts the correct ground
truth label. A threshold search approach faces an underspeci�cation problem17 as shown by the �rst
three panels of Fig. 1d - there are many different choices for the thresholds on the con�dence score of the
diagnostic AI within which to defer to a clinician that all achieve the same performance (as they all lead
to deferring on all cases where the diagnostic AI made an incorrect prediction while the clinician made a
correct prediction, and not deferring on cases where the diagnostic AI is correct but the clinician is
incorrect). How to choose between these solutions remains an open question. In the next section, we
derive a mathematically optimal deferral strategy and an approach that addresses the underspeci�cation
problem.

2.1 Mathematically Optimal Deferral strategy and
Comparison with Threshold Search
We used a probabilistic approach to estimate the performance of the deferral AI given a limited dataset
that was separate from the dataset the diagnostic AI was trained on. We call this the “tuning” dataset and
it was the dataset that the deferral AI was trained on. Each datapoint in the tuning dataset comprised a
three-tuple of the model con�dence score, the ground truth disease label (result of a biopsy for Cancer or
an Xpert MTB/RIF assay for TB18) and the result of a clinical work�ow assessing the case. We provide
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details of the same in Appendix Section A.1 and a high level summary of the approach here. Given an
operating point  for the diagnostic AI (a threshold where for con�dence outputs z are classi�ed as
AIOpinion = True), the speci�city and sensitivity of any deferral strategy can be estimated by computing
an integral based on this density estimate, as follows:

where

Moreover, the AIOpinion is simply based on the operating point

where IsLess(a, b) is a function that is one when a < b and zero otherwise. Now, we choose a parameter λ
between 0 and 1 that indicates how to trade-off sensitivity and speci�city, and we train CoDoC to
optimise

Based on this objective, in the appendix we show that we can de�ne the following advantage function for
any value of z as

For any choice of operating point θ for the AI, the optimal deferral strategy is:

θ

θ
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We show mathematically that this is the optimal deferral strategy in Appendix A.1.1.1.

Since the AI prediction is obtained by checking whether the AI Score is above the operating point, the
Advantage function is completely determined by the 4 conditional distributions:

We can estimate the above conditional distributions using any density estimation method like Kernel
Density Estimation19. Using a density estimation method leads to a smoothing effect on the advantage
function that is critical for generalisation in data sparse settings. In comparison, threshold search can be
interpreted as applying the same strategy without any smoothing on the conditional distributions, simply
taking these to be the empirical distributions based on the dataset. In Fig. 1d, we plot the comparison of
the advantage functions from the threshold search approach and show that it leads to an
underspeci�cation problem, i.e., there are many choices for the thresholds that all achieve the same
performance in terms of sensitivity and speci�city on the tuning dataset. However, when we use the
smoothing approach and compute the advantage function, the smoothed advantage function has unique
zero crossings that de�ne the deferral region.

The density estimation method we used naturally has hyperparameters that control the level of
smoothing. The ideal amount of smoothing is dataset-dependent and cannot be chosen a-priori. We
instead used a hold out validation set to choose hyperparameters of the smoothing procedure so that we
choose values that compute a deferral strategy that generalises well to unseen data (details in Appendix
Section A.1.3).

3 Results Of Codoc On Medical Imaging
We studied two diagnostic tasks for evaluating CoDoC: breast cancer detection from X-ray mammograms
and recommending patients for diagnostic sputum testing for TB based on TB-suspicious �ndings in
their Chest X-Ray. We considered multiple international clinical settings: TB screening in Bangladesh, US
mammography (where clinicians predominantly operate alone as a “single reader”); and UK
mammography where breast screening requires two readers and an arbitration process for each case
(“double reading”). In each setting, we demonstrate that CoDoC achieves superior diagnostic
performance compared to either diagnostic AI models or clinicians alone (Table 1). The details of each
clinical task are given in the subsequent sections.

For each clinical task, the set of all available data was partitioned into a training set and a held-out test
set, that was only touched once for evaluating the �nal CoDoC system. The training set was further
partitioned into a tuning set for the diagnostic AI and a validation set that was used to select
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hyperparameters or select amongst several deferral AI models that performed well on the tuning set. For
each setting, we optimised CoDoC either for improving sensitivity keeping speci�city intact or vice versa,
relative to both the clinical work�ow and the diagnostic AI model. The operating point for the diagnostic
AI model was chosen to re�ect the tradeoff made between sensitivity and speci�city by the clinical
work�ow as follows: for the purposes of comparing reader, diagnostic AI and CoDoC performance, we
obtained an operating point that matched the clinical work�ow on speci�city, another that matched the
clinical work�ow on sensitivity, and picked the mean of those two as the operating point for the
diagnostic AI we compared to, following published precedent20.

 



Page 10/33

Table 1
Performance of CoDoC compared to a standalone diagnostic AI system and clinical readers. Bolded and

starred entries mean statistically signi�cant improvement over both the AI-only and clinician-only
baselines (at a statistical signi�cance threshold of .05). Unbolded entries mean statistically non-inferior
(with a non-inferiority margin of .05) to both AI-only and clinician only baselines). OP 1–4 refers to a set
of distinct parameters that determine an operating point for each application. There were no statistically

inferior entries to either AI-only or clinician-only. Superiority and non-inferiority were de�ned by
standardised hypothesis tests (McNemar and Wald; see Appendix section A.1.3 for details).

Task /
Dataset

Diagnostic AI
model

Clinical
Work�ow

CoDoC Clinician(s) Standalone
diagnostic AI
model

Sens. Spec. Sens. Spec. Sens. Spec.

Breast Cancer
Detection/ UK
Mammo
Dataset

Mammo
Diagnostic AI
1

Defer to First
reader OP 1

72.6* 91.8 62.7 92.8 64.9 93.9

Defer to First
reader OP 2

64.4 96.5*    

Defer to
Double
Read + 
Arbitration
OP 3

71.0* 95.1 67.6 96.1

Defer to
Double
Read + 
Arbitration
OP 4

68.3 96.9*    

Breast Cancer
Detection/ US
Mammo
Dataset 1

Mammo
Diagnostic AI
1

Defer to
Single
Reader

OP 1

56.9* 87.5 50.0 88.0 48.3 86.3

Defer to
Single
Reader

OP 2

50.0 91.2*

Breast Cancer
Detection/ US
Mamm
Dataset 2

Mammo
Diagnostic AI
2

Defer to
Single
Reader

96.7 90.9 96.7 84.5 86.7 70.0

TB Detection/
TB Dataset

Manufacturer
1

Defer to
Single
Reader

90.5 68.3 89.4 62.4 90.9 65.6

Manufacturer
2

89.3 64.2     89.5 62.5

Manufacturer
3

89.2 67.7     89.7 62.7
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Task /
Dataset

Diagnostic AI
model

Clinical
Work�ow

CoDoC Clinician(s) Standalone
diagnostic AI
model

Sens. Spec. Sens. Spec. Sens. Spec.

Manufacturer
4

90.6 70.8     91.9 67.9

Manufacturer
5

91.8 71.7     92.8 69.1

3.1 Breast cancer screening with x-ray mammography

3.1.1 Datasets and Diagnostic AI Systems
We utilised an updated version of a previously published diagnostic AI model (“Mammography
Diagnostic AI 1”), trained for breast cancer classi�cation in two large datasets of screening
mammograms from the UK (“UK Mammography Development Dataset”) and US (“US Mammography
Dataset 1”)10, incorporating published technical improvements to maximise AI performance 21,22. The
information in both datasets was de-identi�ed 10.

To enable direct comparison to our previous work we report results on the same held-out test set10 of UK
cases that were not used to train or tune either the diagnostic AI model or the deferral AI model (“UK
Mammography Test Dataset”). The data used to train CoDoC was restricted to a subset of the same UK
dataset cases used for training the previously published diagnostic AI model (those used for tuning its
hyperparameters)10. This set consisted of 60755 cases (of which 1198 have biopsy con�rmed cancers).
This was further split into a training subset consisting of 12169 cases (of which 243 were cancer
positive) and a validation subset consisting of the remaining cases. The training subset was used for
optimising parameters of the deferral AI and validation subset was used for choosing between a �nite
collection of deferral AI models trained with different hyperparameters.

The UK held-out test set comprised screening mammograms collected between 2012 and 2015 from
25,856 women at two screening centres in England, where women are screened every three years. This
was a random sample of 10% of all women with screening mammograms at these sites during this time
period. For each case, the cancer ground truth was determined through biopsy-con�rmed longitudinal
follow up over 39 months, and historical clinical reads were also collected. Biopsy-con�rmed breast
cancer was found in 414 women within 39 months of imaging. In the UK, two readers interpret each
mammogram and an arbitration process may be used to invoke a third opinion (“double-reading”). These
interpretations occur serially, such that each reader has access to the opinions of previous readers. The
records of these decisions yield different benchmarks of human performance for cancer prediction, which
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we included as “First reader” (independent �rst human reader) and “Double read” (�nal screening
decision, including any arbitration reads as required).

To assess generalisation, we explored the performance of CoDoC in a separate diagnostic AI system
(Mammography Diagnostic AI 2), trained for breast cancer classi�cation in a wholly-separate US dataset
(US Mammography Dataset 2) by wholly-separate diagnostic AI developers compared to Mammography
Diagnostic AI 123. In this setting CoDoC was trained using 7,074 breast exams from the same “US
Mammography Dataset 2” cases used for training the previously published “Mammography Diagnostic
AI 2”. The held-out test set consisted of 7,074 breast exams of women aged 27 to 92, performed between
May and August of 2017 at NYU Langone Health. Cancer was determined by positive biopsy within 120
days of the original study, and according to previously published methodology. For the training and test
sets combined, 307 studies contained only benign lesions, 40 only malignant lesions, 21 studies both
benign and malignant lesions and the remaining 13,780 exams came from patients who did not undergo
a biopsy. Benign and malignant lesions were split evenly across the training and test sets.

3.1.2 Performance of CoDoC in UK Mammography
When using CoDoC autonomously with deferral to a single reader (reader 1), absolute speci�city was
improved by 2.6% (95% CI 2.3–2.9%; P = 0.005 for superiority at non-inferior sensitivity) or absolute
sensitivity by 7.7% (95% CI 4.5–10.7%; P < 0.001 at non-inferior speci�city) compared to a standalone
diagnostic AI model, at a cost of 0.15 and 0.34 additional human reads per case respectively.

Improvements were larger still if CoDoC was used autonomously with deferral to a double-reading
standard of care. This improved sensitivity compared to double-reading without AI by 3.4% (95% CI 1.3–
5.4%; P < 0.001 at non-inferior speci�city), or speci�city by 0.8% (95% CI 0.6-1.0%; P < 0.001 for superiority
at non-inferior sensitivity) and reduced human reads by 1.4 per case. CoDoC here also signi�cantly
improved performance compared to using a diagnostic AI model alone (Table 1).

Clinical interpretation of results
The observed improvements in sensitivity and speci�city could have implications for the implementation
of AI in screening mammography. We considered a number of potential ways that CoDoC might be
implemented into a screening work�ow: 1) deferral to a single reader alone, 2) deferral to a double-reader
work�ow.

Considering the situation where the double-reader system was replaced by CoDoC deferred to a single
reader alone, CoDoC attained superior diagnostic accuracy to the historic double-reader system using
only 15 percent of a single reader's workload. While retaining the same cancer detection rate as a
standalone diagnostic AI system, this reduced the "recall to assessment rate" by 37 percent (from 70 to
44 per 1000 cases).
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In an alternative deployment scenario where the desired outcome was to maximise diagnostic accuracy,
CoDoC could defer to the standard double-reader work�ow. This would deliver a valuable 15% reduction
in recall-to-assessment (from 48 to 41 per 1000 cases) while matching the cancer detection rate of
double-reading, alongside a three-fold reduction in reader workload (from 2.1 to 0.7 reads per case). This
deployment work�ow would be in accordance with emerging guidelines for the use of diagnostic
mammography AI tools in replacement of the second reader in the UK work�ow.

3.1.3 Performance of CoDoC in US Mammography
We evaluated the performance of CoDoC in US Mammography when applied to a wholly separate
diagnostic AI system 25 built by a different manufacturer (Mammography Diagnostic AI 2), in a wholly
separate dataset from a different clinical context (US Mammography Dataset 2). In this setting CoDoC
demonstrated a statistically signi�cant improvement compared to both the existing single-reader system
in the US, or a diagnostic AI model alone (Mammography Diagnostic AI 2). CoDoC improved absolute
speci�city by 6.5% (95% con�dence interval (CI) 5.9-7.0%; P < 0.001 for superiority at non-inferior
sensitivity) despite reducing the requirement for human reads by 53% (from every case being read to
every 2.1 cases being read). Compared to the standalone diagnostic AI model, CoDoC showed a
statistically signi�cant improvement in absolute speci�city of 20.9% (95% CI 19.8–22.0%; P = 0.019 for
superiority at non-inferior sensitivity), at a cost of 0.47 additional human reads per case.

Clinical interpretation of results
The performance improvements from CoDoC would reduce the recall-to-assessment rate by up to 45
percent (from 159 per 1000 cases to 88 per 1000) while matching the cancer detection rate of the current
single-reader system.

3.1.5 Comparison of our Probabilistic Approach and
Threshold-Search
We present results comparing our approach with the threshold-search approach proposed in prior work16.
We found that on datasets where we have a large tuning dataset (like the UK Mammography Dataset or
the TB Datasets considered in the next section), the two approaches gave nearly identical results.
However, when the tuning dataset was small (the US Mammography dataset 2), we found that the
probabilistic approach outperformed the threshold-search approach16 on unseen test data. Figure 2
shows a comparison between the two approaches and demonstrates that CoDoC outperformed the
threshold-search approach when the tuning datasets were small (less than 1000 samples) as in the US
Mammography Dataset 2 (NYU).

3.2 Tuberculosis screening with 5 commercially available AI
systems
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3.2.1 Datasets
CXR images are widely used in a triage process to direct which patients require gold standard
investigation for TB by genotyping using the GeneXpert diagnostic assay. The decision to request a Xpert
diagnostic assay can be made by a human radiologist, with or without reference to an AI system. Where
the triage is performed autonomously by AI systems instead of human radiologists (as supported by 26),
this is usually based on a prede�ned threshold abnormality score.

We explored the impact of CoDoC when applied to screening for tuberculosis (TB) using chest X-rays as a
triaging tool for an Xpert MTB/RIF (Xpert) test. We analysed a previously published study 27 describing
individuals aged 15 years or older presenting consecutively to 3 tuberculosis screening centres in Dhaka,
Bangladesh between May 2014 and Oct 2016 where they received a digital posterior-anterior chest X-ray
(CXR) and an Xpert test. 23,954 individuals were included in analysis after exclusion of those under 15
years of age or without a valid CXR or Xpert test, which were split evenly into CoDoC training and test
sets. Note that in this setting, the commercial AI systems are not strictly “Diagnostic AI” tools since the
objective here is not to determine the presence of TB from the CXR, but rather to identify su�cient
suspicion of TB based on the CXR to justify diagnostic investigation with a Xpert test. For consistency
with the other modalities in this manuscript and to differentiate this function from the deferral decision,
we term these commercial systems “diagnostic AI” systems.

All chest X-rays were read independently by a group of 3 registered radiologists and 5 commercial
diagnostic AI systems, each developed by a different manufacturer. Radiologist reads were dichotomised
into possible tuberculosis (highly suggestive of tuberculosis, possibly tuberculosis) or not tuberculosis
(abnormal but not tuberculosis, normal). Xpert results were used as the bacteriological evidence and
reference standard. The 5 diagnostic AI systems processed anonymised CXR images retrospectively
without any clinical or demographic information, independently, and with no previous training or
validation at the study site. We assessed the role of CoDoC in a hypothesised work�ow common in real-
world implementation of AI systems for TB screening, where radiologists and AI tools are both available
for the independent interpretation of a CXR image. In our evaluation, CoDoC was used to decide when to
use the autonomous AI system and when to invoke a radiologist opinion. The proportion of subsequent
Xpert assays saved (with 0% representing the Xpert testing-for-all scenario) re�ects a proxy for
incremental cost-effectiveness achieved by adding CoDoC.

3.2.2 Performance of CoDoC
Compared to the standalone diagnostic AI models of manufacturers 1, 2 and 3, CoDoC improved
absolute speci�city by 2.7%, 1.7% and 5.0% (95% CI for 1: 2.2%-3.2%, P < 0.001, for 2: 1.2–2.3%, P < 0.001
and for 3: 4.5–5.6%, P < 0.001 for superiority at non-inferior sensitivity) at a cost of a single human read
for every 2.9, 3.7 and 3.8 cases respectively. CoDoC improved the proportion of Xpert tests avoided by
5.2%, 3.3% and 9.5% respectively. For manufacturers 4 and 5, CoDoC did not result in superior
performance over the diagnostic AI alone, which was markedly superior to human radiologists without
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deferral. Despite all 5 commercial AI systems showing signi�cantly better performance than the
radiologists, the AI models of manufacturers 1–3 could still be improved with CoDoC.

3.2.4 Clinical interpretation of results
For 3 out of 5 commercially available systems, the ability to route cases between radiologists and AI
systems resulted in signi�cant gains. Centres using CoDoC to enhance these AI systems would have
increased the proportion of Xpert tests avoided by 6.0% on average. For the two highest-performing AI
systems in this evaluation dataset, our work demonstrated that any con�dence-based deferral regime
(including CoDoC) would not confer any improvement over an AI-alone approach, as was borne out by the
results. We present a careful analysis of the limits of con�dence based deferral in Section 5 using these
results. Centres using CoDoC to augment AI systems would therefore be able to predict when (and when
not) to employ a deferral-based strategy (versus using AI alone).

4 Ascertaining The Limits Of Con�dence-based Deferral
We further sought to assess whether, even in ideal conditions (with in�nite data or no distribution shift),
whether any con�dence based deferral strategy could have succeeded in improving performance. To do
so, we made two changes to the CoDoC system: 1) We allowed multiple deferral regions (as many as
ten), allowing the system to learn a very �exible function of the con�dence score to determine when to
defer. Searching for multiple deferral regions can be done e�ciently via a dynamic programming
algorithm we describe in Appendix Section A.2) We allowed the system to cheat by training directly on the
test set used for evaluation.

Our rationale for this was to remove all possible sources of performance degradation that were due to the
limited nature of the deferral AI or the dataset used to train. In this setting, we allowed the deferral AI to
learn a very general (almost arbitrary) function of the con�dence score, and further allowed the model to
be trained directly on the test dataset, removing any possibility of drop in performance due to
generalisation issues. The performance of CoDoC in this setting can therefore be seen as a theoretical
upper bound on the performance of any deferral strategy that is based only on the con�dence score of
the diagnostic model, and is a useful tool to assess whether there is any potential complementarity
between the diagnostic AI and clinical work�ow that can be exploited to improve performance. We see
from Fig. 4 that indeed, for the two strongest commercially available TB models we studied, this
theoretical performance limit (as plotted in the red dashed line) was very close to the performance of the
diagnostic AI, thereby showing that con�dence based deferral strategies had very little potential for
improving performance in this setting.

5 Generalisation Of Codoc To New Populations And Clinical Readers
The accuracy of diagnostic AI models is vulnerable to "distribution shift" in deployment, meaning a
discrepancy between the distribution of data used for training the diagnostic AI and the distribution of
data seen in deployment28. Common distribution shifts include changes in technology (e.g. variations in
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imaging equipment, acquisition parameters, and post-processing methods), changes in population and
setting (e.g. demographics and disease distribution), and changes in behaviour (e.g. evolving clinical
practice and guidelines, differences in sociotechnical context or clinician training between centres or
countries). In this section, we examine whether CoDoC generalises well under various shifts, with the goal
of stress testing the applicability of CoDoC under real-world deployment scenarios.

5.1 Adaptation to a new population
In the previous sections, we demonstrated how CoDoC improved diagnostic accuracy relative to a
standalone AI and clinician(s), when CoDoC was trained using tuning data sampled from the same
population of patients as that used to train the underlying diagnostic AI, and where performance was
evaluated on held-out samples also from the same population. However, in many settings, the diagnostic
AI may not have been trained on the population where it is deployed. In this section, we asked the
question: can CoDoC yield accuracy improvements over both a standalone diagnostic AI system and
clinicians even on a new population that the diagnostic AI has not been trained on?

We evaluated CoDoC in a scenario where the diagnostic AI model (Mammography Diagnostic AI 1) was
presented with cases from a new and previously unseen US population (“US Mammography Dataset 2”).
This dataset was obtained from a community screening centre where women are screened every year,
and images are read by a single reader who importantly also has access to digital breast tomosynthesis
(DBT) when making screening recall decisions. The tuning set used to train the deferral AI consisted of
cases from a different set of women from the same population, comprising 8783 cases (of which 139 are
cancer positive) collected from 2,926 women drawn from the new population. This was further
subdivided into 4392 cases used for training the deferral AI and 4391 cases used for model selection.
The held-out test set for evaluation had 8981 cases (of which 174 are cancer positive).

The performance of the standalone AI clearly degraded on this new population as can be seen by
comparing the ROC curve for the standalone AI from Fig. 5 with that in Fig. 2. CoDoC demonstrated a
statistically signi�cant improvement compared to both the existing single-reader system in the US, or a
diagnostic AI model alone. CoDoC improved absolute sensitivity by 6,9% (95% con�dence interval (CI) 0.4,
13.2%; P = 0.033 for superiority at non-inferior speci�city) or improved absolute speci�city by 3.2% (95%
CI 2.6%, 3.7%; P = 0.037 for superiority at non-inferior sensitivity) despite reducing the requirement for
human reads by 55% (from 1 read per case to less than 1 read every 2 cases).

The performance improvements from CoDoC using the full tuning data would reduce the recall-to-
assessment rate by up to 25% (from 127 per 1000 cases to 96 per 1000) while matching the cancer
detection rate of a typical single-reader system. Compared to the standalone diagnostic AI model, CoDoC
showed a statistically signi�cant improvement in absolute speci�city of 4.9% (95% CI 4.1%, 5.6%; P = 
0.037 for superiority at non-inferior sensitivity) or an improvement in absolute sensitivity of 8.6% (95% CI
1.9%, 15.2%; P = 0.011 at non-inferior speci�city), at a cost of 0.55 additional human reads per case.

5.2 Generalizing to previously unseen readers
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In real-world deployments, different readers may use CoDoC to those whose opinions were used for
training the deferral AI (See Fig. 1 for the training architecture for CoDoC). We measured how the
performance of CoDoC generalised to previously unseen readers; and examined the variation in
performance of CoDoC for different individuals. To do this, we evaluated the impact of the deferral AI for
cases read by each previously unseen reader in the UK Mammography Test Dataset (Figure A0 in
Appendix Section A.2). CoDoC improved the sensitivity and/or speci�city of every individual reader, with a
mean (95% C.I.) improvement of 5.4% sensitivity (2.5%-8.2%) and 0.9% speci�city (0.6%-1.1%).

6 Subpopulation Analysis
We analysed how the improvements from CoDoC broke down by subgroups in the population of the UK
Mammography Dataset, based on clinically relevant characteristics like age and breast density. In
particular, we were interested in a) whether there were systematic differences between the improvements
from deferral between subgroups and, b) whether the deferral system was able to leverage such
systematic performance disparities between the AI and human readers without explicit knowledge about
the individual subgroups where the standalone AI system was signi�cantly worse than readers. Further
results on analysis and interpretation of the results is presented in Appendix Section A.3.

We focussed on the UK Mammography dataset 1 and considered the deferral to a single reader, as this
was the dataset for which we had the most nuanced subgroup information and the deferral to single
reader remains the most likely practical deployment scenario for CoDoC.

Differences in gains from deferral between subgroups: As is seen in Fig. 6, CoDoC consistently improved
on the performance of both standalone AI and the human reader across all subgroups of age and breast
density in either sensitivity or speci�city or both. For some subgroups (like those above age 70), the
diagnostic AI was signi�cantly worse than the reader on speci�city. In such cases, CoDoC recovered
much of the performance loss from the diagnostic AI but was unable to outperform the reader.

CoDoC learned to leverage differences between reader and AI performance: As is seen in Fig. 6, CoDoC
deferred more on certain subgroups, for example, those older than 70 years. In doing so, CoDoC
automatically identi�ed subgroups where the reader was better than the standalone AI, even though the
deferral AI never had access to subgroup information. Further subpopulation analyses are included in the
extended materials, with de-identi�ed images of cases deferred by CoDoC accompanied by qualitative
post-hoc interpretative notes by a board-certi�ed radiologist.

Discussion
In this study we demonstrate a novel CoDoC system that can learn to decide when to rely on a diagnostic
AI system and when to defer to clinical experts or work�ows. We evaluated CoDoC in multiple simulated
clinical work�ows screening for breast cancer or TB and showed that combined AI-clinician performance
using CoDoC exceeds that currently possible through either AI or clinicians alone. CoDoC is highly
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con�gurable to meet the requirements of speci�c clinical deployments, and does not require access to the
inner workings of the target standalone AI diagnostic model. We believe CoDoC represents a step towards
harnessing the complementarity possible between AI and clinical experts, to improve accuracy, trust, and
safety in real-world clinical deployments.

It is increasingly becoming apparent that clinicians and AI systems fundamentally assess images
differently10, and that both have different strengths and weaknesses 29,30. It is therefore intuitive that
systems designed to combine aspects of both should lead to improvements in both performance and
safety. However, in practice, there is an unmet need to enable users of medical AI systems to know which
opinion should prevail when their opinion differs from an AI tool and they are uncertain which should
prevail. Furthermore, the ability for an AI system to say "I'm not sure" or "I do not know" is an important
capability to ensure safe clinical deployment of this technology31.

A recent study demonstrated that the paradigm of deferral using threshold-search is a promising
approach for managing this unmet need16. However, this prior work only explored the solution in one
medical condition (breast cancer), one diagnostic AI tool and one clinical work�ow (for breast cancer
screening in a German dataset). It has hitherto remained unclear whether the promise of deferral might be
applicable to multiple medical AI applications, how a deferral algorithm might generalise to diagnostic AI
tools from multiple different manufacturers, whether performance would be robust given multiple
different clinical work�ows, and whether a deferral algorithm could be adaptable to new AI tools or
clinical settings with very limited data for site-speci�c training (as is common in medicine). CoDoC
validates the hypothesis that algorithmically-driven deferral between AI and clinical experts might
improve composite performance in a wide variety of medical AI applications screening for cancers and
TB alike, with rigorous evaluation in multiple countries for multiple different AI systems from different
manufacturers. Our method enables generalisation with limited retraining data and our code is openly
shared to enable further reproducibility and advancement of this �eld (as demonstrated in Section 4). A
key contribution of our work is that human-AI complementarity is not always present (as was seen in 2 of
5 commercially-available TB systems) and in that setting our work shows that con�dence-based deferral
methods will not improve composite performance. In particular, the results from section 5 demonstrate
the limitations of con�dence based deferral strategies and are a useful tool to determine, given a
particular dataset for training the deferral AI, whether one could expect to see any improvements from
any con�dence based deferral strategy. In real-world scenarios such an analysis could provide clear
guidance on whether to use CoDoC.

For breast cancer screening in a large representative UK mammography dataset, CoDoC was superior in
sensitivity to double-reading at the same speci�city, and superior in sensitivity while maintaining
speci�city. “Double-reading” is regarded as the “gold standard” for performance in the UK and much of
Europe 32 33 34 35) never previously exceeded using AI36 3738. The same system maintained superior
accuracy to both clinicians and the same diagnostic AI model even when the diagnostic AI was deployed
out-of-distribution in a large US mammography dataset, only tuning the deferral AI on a small amount of
out of distribution (OOD) data. Improvements in sensitivity and speci�city were sustained for a wholly-
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separate diagnostic AI tool for US Mammography screening (from a different manufacturer) despite
access to only 26 positive cancer cases for tuning.

CoDoC also conferred signi�cant improvements in the resource-limited setting of TB screening in
Bangladesh. CoDoC reduced the utilisation of Xpert tests for 3 of 5 commercially-available AI systems, by
deciding when Xpert test utilisation should be decided by AI and when the decision should be deferred to
a radiologist. This work�ow has high real-world applicability as many TB screening centres using AI
software already have the ability to route a subset of cases for radiology interpretation, while some
countries specify that radiologists must be present at the time of CXR acquisition39. For 2 commercial AI
systems, our CoDoC analysis demonstrated that con�dence-based deferral would not improve
performance over AI systems alone. In settings where radiologist interpretation is nevertheless considered
mandatory for AI quality assurance, such CoDoC analysis might enable more cost-effective monitoring by
highlighting situations in which radiologists performing quality-assurance of AI systems would be least
likely to identify AI errors.

The breadth of clinical modalities demonstrates that CoDoC is highly clinically applicable because the
deferral component is easily adaptable to multiple clinical work�ows39. Even in one medical modality
such as mammography, our results were robust in deferring to either single-reading or double-reading
practice. We demonstrated that a variety of operating points could be chosen depending on the goals of
the healthcare system, with statistically superior performance in clinically-applicable operating point
regions. For example, a mammography centre might wish to optimise for either cancer detection rate or
recall to assessment rate, and various CoDoC system con�gurations can be invoked depending on the
balance between those goals with desired e�ciencies for clinicians’ time. Indeed our results suggest that
deferral to a single reader might enable a screening programme to attain performance exceeding the gold
standard of double-reading while only requiring a fraction of a single reader’s time. Prospective and
health economic outcomes studies will be required to con�rm and quantify this potential bene�t. The
downstream effects of replacing a �rst reader (within an AI-enabled double-reader work�ow) with CoDoC
superior to the whole traditional double-reading work�ow could also have a profound effect on the overall
performance of AI-enabled double-reading. Future reader studies will be required to quantify this effect.

CoDoC performed well despite stress testing under multiple types of distribution shifts that commonly
cause failures of medical AI in real-world settings. Particularly notable were results under two forms of
shift that are common in the real world: shift in clinician performance and shift in population or site. It
has been shown that clinicians’ accuracy can vary signi�cantly, both in terms of accuracy as well as in
terms of the trade-off between sensitivity and speci�city 32,40. Reassuringly, CoDoC was able to
generalise to multiple previously unseen readers in the UK mammography screening programme without
any requirement for per-reader personalisation.

The variation in screening programmes between different hospitals or health systems is often sizeable41

(with our experiments therefore exposing CoDoC to multiple shifts between health systems including
changes in demographics, acquisition equipment, disease presentation, local clinical pathways). Despite
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signi�cant differences from the diagnostic AI system’s training data and an associated performance drop,
the deferral AI was able to generalise to a previously unseen US hospital with minimal and realistic local
training data needs. In particular, when we tuned the deferral AI using only 40 cases from a new
population/site, CoDoC was able to improve upon the diagnostic accuracy of both the standalone AI and
the clinician. In this setting, the deferral AI deferred a greater proportion of cases where diagnostic AI was
less reliable than clinicians, suggesting that this paradigm could provide a valuable “safety net” for AI-
enabled healthcare. This may enable local expert clinicians to mitigate concerns about failures of
standalone diagnostic AI during deployment in new environments.

Comparison to relevant literature in AI
There is a long history of literature in machine learning that considers selective prediction systems that
can refrain from making predictions on certain instances. This line of work traces back to the work of
Chow et al42, where the authors derived theoretically optimal algorithms in this setting. More recent
reviews of this area can be found in Wiener et al43. Connections between selective prediction and active
learning44 have also been studied. These works differ from the deferral setting considered in this paper,
since selective prediction ignores the accuracy of the human expert when the AI system abstains. The
deferral setting was studied in Sontag et al14 where the authors proposed a novel statistically consistent
estimator for simultaneously learning a deferral model and the underlying prediction model. This was
further extended to settings with multiple experts in subsequent work45. Optimising the performance of a
human-AI team without restrictions on the deferral rate have been studied46. Other works have also
proposed frameworks for AI models to defer to a domain expert in cases where the AI has low con�dence
in its inference 47 but require the ability to simultaneously learn both the classi�er and deferral system.
Others have proposed a model48 to characterise human-AI (or human-human, AI-AI) complementarity, and
demonstrated that complementarity may or may not exist in human-AI settings with the existence or
degree of complementarity depending on a number of factors: the independence of human and AI
decisions, existence of con�dence scores for the predictions provided, and baseline individual
performance of the human and AI. CoDoC extends and grounds these previous observations in the
safety-critical medical AI domain, showing varying degrees of extractable complementarity between AI
models and human experts, and proposing a reliable method for extracting it when available.

Many of the approaches above require co-training the deferral and diagnostic AI, which is not possible in
medical AI settings where diagnostic classi�cation tools are deployed in a “frozen” con�guration by
regulatory requirement and where access to the training pipeline for the diagnostic tools is not usual. Our
work was inspired by this research, but we limited ourselves to deferral based on the con�dence
estimates of pre trained diagnostic AI models. This constraint for deferral systems to work with “black
box” �xed diagnostic AI models also enables deferral to be studied in a wider variety of settings, since it
absolves the requirement for access to the training pipeline and data for the diagnostic AI systems in
each setting (which present signi�cant practical hurdles to deferral paradigms that require co-training the
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deferral and diagnostic AI together). We found that our approach su�ced to obtain statistically
signi�cant improvements in performance with the CoDoC system, and that doing so decoupled the
training of the deferral AI from the diagnostic AI which is highly advantageous in situations where the
diagnostic AI is only available as a black box that cannot be modi�ed (for example, due to IP or
regulatory constraints). In future work, it would additionally be valuable to explore additional gains in
diagnostic accuracy that could be obtained by co-training the diagnostic AI and deferral model, which
might be possible for individual manufacturers in medical settings, even if not practicable in our setting
of developing a single deferral wrapper for multiple different medical AI systems.

Limitations
In this study we evaluated performance under the assumption that clinicians and the diagnostic AI model
perform independent case interpretation, as is approved in some clinical settings such as TB screening.
However, in many settings clinicians use diagnostic AI models as an assistive tool, where prospective
research will be required to establish the impact of CoDoC and where orthogonal work to CoDoC will be
required to maximise its bene�ts. For example, it has been shown that the complementarity of AI tools for
human experts is also dependent upon factors such as the operators’ mental model, cognitive load, and
trust4, which could be optimised independently of the application of the CoDoC paradigm in a manner
speci�c to each diagnostic AI tool. In particular, there is also evidence that providing AI decision-support
can lead to systematic but unconscious biases on a clinician’s decision-making process4.

Our research demonstrated that improvements in accuracy were obtained using the CoDoC system while
saving clinician’s time compared to a standard AI-enabled work�ow. The CoDoC framework already
supports the introduction of tunable constraints/penalties on the deferral rate, and this could be adjusted
based on desired savings for clinician time as a trade-off with composite accuracy. However, further
health economic research and detailed per-hospital considerations would be needed to determine the
right trade-offs, beyond the scope of the present work.

While our mammography test set was representative for UK practice, the US mammography dataset 2
was enriched for cancer prevalence compared to national practice. We simulated deployment scenarios
for CoDoC with retrospective datasets, but quantifying the performance gains that result from clinician-AI
interaction would require prospective reader studies and exploration of other aspects of human-AI
complementarity orthogonal to the deferral decision - for example AI onboarding, trust and mental
models.

The same limitation was also true of the CXR examinations used to triage Xpert tests for TB screening, in
which multiple non-TB pathologies may be noticed by a radiologist but not classi�ed by AI tools used to
screen TB. Incorporating these tasks would require further research. Furthermore, although Xpert is
regarded by WHO guidelines as an acceptable reference standard for evaluating AI systems, the gold
standard would be full sputum culture for all participants. However, this was true for both AI and human
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radiologists in the dataset presented, so no selection or measurement bias was introduced and our
approach was consistent with prior published work. CoDoC did not achieve uniform performance gains
across the whole ROC curve. In the datasets we considered, the ROC range in which superiority was
demonstrated coincided with regions of clinically-relevance (as illustrated by benchmarks of clinician
sensitivity or speci�city for screening decisions), but this may not be guaranteed for other applications of
the CoDoC paradigm.

Beyond average diagnostic performance, variation among different population subgroups is an important
concern as it can amplify health inequalities. This is a signi�cant challenge for both standalone
diagnostic AI systems and clinician experts, both shown to exhibit signi�cant variation in population
subgroup performance for a range of medical applications49. Preliminary analysis suggests that CoDoC
does reduce variability in performance between different subpopulations, but further work is required to
rigorously validate this, alongside further important distribution shifts for real-world medical AI, such as
variations in instrumentation, acquisition and imaging technology.
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Figure 1 a-c: CoDoC training and deployment architecture. a. We obtain the con�dence score (speci�cally
the softmax score output by a deep learning model) output from the diagnostic AI model for each image.
These are then fed into a deferral AI model, which decides to either use the con�dence score of the
diagnostic model and apply a threshold to it to make a �nal disease/no disease prediction or defer, in
which case the medical image is diagnosed using a standard clinical work�ow involving one or more
clinicians. We refer to the composite decision-making apparatus comprising the deferral AI and the
selectively invoked diagnostic AI model or non-AI clinical work�ow as the CoDoC system. b. The
diagnostic AI model is pretrained on an initial training dataset (not shown, and which need not be
accessible when the deferral AI model is being trained). To create the training data for the deferral AI
model, a fresh set of medical images (referred to in this paper as the tuning data) are passed through the
diagnostic AI models. Clinician opinions and ground truth labels are also collected for the tuning data, to
obtain a tuple (AI scores, clinician opinions, ground truth label) for each medical image in the tuning data.
These tuples are used to train the deferral AI to decidewhen to defer, and if not deferring, to choose an
operating point for the diagnostic AI to make a �nal diagnostic prediction in order to maximise the
accuracy (in terms of either sensitivity or speci�city) of the deferral AI system. c. Using the AI and
clinician accuracy, summarised in the relative accuracy graph shown, the deferral AI system learns
deferral regions which are depicted in grey. When the average softmax score from the diagnostic AI
models lies in one of grey regions, CoDoC defers to a clinical work�ow and presents the outcome of the
clinical work�ow as the �nal diagnosis. When the con�dence score lies in the green region, CoDoC
predicts that the disease is absent, and when the con�dence score lies in the red region, CoDoC predicts
that the disease is present.

Figure 2

Figure 1d | Underspeci�cation in Threshold Search. The dataset is plotted by tagging each datapoint with
a separate marker depending on whether the AI model makes the correct prediction and whether the
human clinician makes the correct prediction for that case. Examples where only a human makes the
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correct prediction are advantageous to defer on (indicated by the upward arrows) and cases where only
the model makes the correct prediction are indicated by downward arrows. The top three �gures plot
various optimal solutions for threshold search all of which obtain the exact same performance on the
dataset. How to choose between these options is unclear, and the naive threshold search does not offer
any guidance on the same. In our approach, we �rst compute a smoothed representation of the discrete
advantage function and the zero crossings of this smoothed advantage function. The parameters of the
smoothing algorithm are tuned based on the performance of the selected thresholds on a validation set.

Figure 3

Figure 2 | Performance of CoDoC in breast cancer prediction compared to a standalone diagnostic AI
system and clinical readers. Defer to the single read clinical work�ow and defer to double-reader with
arbitration clinical work�ow in the UK (Mammography Diagnostic AI 1, UK Mammography Dataset) (Left).
Defer to the single read clinical work�ow in the US (Mammography Diagnostic AI 2, US Mammography
Dataset 2) (Right). Several �nal operating points could be chosen for the output of CoDoC. We illustrate
the Pareto frontier of such optimal operating points by computing a summary ROC (sROC) curve24 to
enable easier visualisation. We note that we only include CoDoC models for which we can obtain
statistically signi�cant improvements on sensitivity or speci�city compared to the diagnostic AI and the
clinical work�ow. Thus, on some datasets (like the US Dataset 2), we only show a single CoDoC model
that improves speci�city while remaining non-inferior on sensitivity. We were unable to improve sensitivity
on this dataset as the clinical work�ow already achieved a very high sensitivity.

https://paperpile.com/c/J915e7/AjZi
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Figure 4

Figure 3: Performance of CoDoC in tuberculosis prediction. Performance of CoDoC in TB screening from
CXRs compared to 5 standalone AI systems (Standalone AI Manufacturers 1-5), and compared to the
performance of radiologists (Reader). We illustrate the ROC curve for each standalone AI system. For
each standalone AI system we highlight the performance of CoDoC (when using CoDoC to defer to the
Reader), displaying a clinically-applicable operating point with CoDoC optimising speci�city.
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Figure 5

Figure 4: Limitations of con�dence-based deferral. The bottom row depicts the strongest performing
commercially available TB models where the potential improvement from a con�dence based deferral
strategy (observable as the gap between the orange curve and the purple curve) is very small. However,
on the top row, we see the same for the other three commercially available TB models that there is a
margin for improvement via con�dence based deferral, and the CoDoC system is indeed able to achieve
improvements in this setting as demonstrated in Figure 3.
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Figure 6

Figure 5: Performance of CoDoC in breast cancer prediction on a US mammography dataset (US
Mammography Dataset 2) In this screening centre, historical images were read by a single reader, who
had access to both mammography and digital breast tomosynthesis. While the diagnostic AI model had
not previously been trained on this population, CoDoC had been tuned on a held-out subset.
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Figure 7

Figure 6: Subgroup breakdown across age groups (left) and breast density grades (right) on the UK
dataset. Across subgroups, CoDoC ( ) combines performance from both the clinician (●) and standalone
diagnostic AI system (+). CoDoC shown is “Defer to First reader OP 1” from Table 1.
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