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Abstract
The surface defects such as cracks, broken cells and unsoldered areas on the solar cell caused by manufacturing process defects or arti�cial operation
seriously affect the e�ciency of solar cell. For the surface defects of solar cell, which have the characteristics of various shapes, large scale changes, and
di�cult to detect, a surface defect detection algorithm based on similarity non-maximum suppression mechanism is proposed by improving the Faster region-
based convolution neural network (R-CNN) in this paper. In the proposed algorithm, a similarity non-maximum suppression mechanism is used, and the
effectiveness of prediction frame screening is improved by introducing the cosine similarity of candidate box aspect-ratio. In addition, the cross-layer
connection based on Shu�e operation and the three-branch dilated convolution block are introduced in the main feature extraction channel, which improves
the network's ability to express features through multi-scale feature fusion. The experimental results show that, compared with the latest deep learning target
detection models, the proposed algorithm not only has higher detection accuracy, but also lower false detection and missed detection rates in various types of
defect detection.

1 Introduction
The widespread application of solar photovoltaic technology has well alleviated the environmental problems caused by the excessive use and consumption of
non-renewable energy sources such as coal and oil. However, the production process of solar panels is complex and the substrate is fragile, and process
defects or human errors can easily lead to subtle, hidden and hard-to-detect defects such as cracks, broken cells and unsoldered areas on the surface of solar
cells [1]. The existence of solar cell surface defects can seriously reduce the photoelectric conversion e�ciency and service life of the cells. The in-depth
research of solar cell surface defect detection technology and timely replacement of damaged panels based on the detection results are the keys to improving
the e�ciency of solar photovoltaic power generation [2].

Traditional solar cell surface defect detection methods contain laser scanning method [3], acoustic wave method [4] and Hertzian spectroscopy method [5],
but the preprocessing is time-consuming and labor-intensive, and the detection accuracy is low. The defect detection methods based on machine vision have
achieved rapid development due to their advantages of convenient operation, high detection accuracy and good real-time performance. The application of
clustering methods [6], matrix decomposition methods [7], and wavelet transform methods [8] has greatly improved the detection accuracy of solar cell
surface defects, but the traditional image domain and transform domain detection methods need to manually obtain relevant target feature information from
the original input, and there are still many limitations in portability, accuracy and real-time performance.

Since Hinton et al. proposed the use of neural networks to automatically learn high-level features in multimedia data [9], the application of deep learning in the
�eld of image object detection has achieved great success [10]. In 2014, Girshick et al. �rstly used the R-CNN for object detection, which greatly improved the
accuracy of object detection [11]. Through similar end-to-end training, not only can deep abstract features be extracted, but also feature extraction, selection,
and classi�cation can be completed in the same model, improving both performance and e�ciency. According to the presence or absence of the candidate
box generation stage, the target detection methods based on deep learning can be divided into two categories: one is a single-stage target detection algorithm
that directly calculates the image to generate the detection result, such as the YOLO (you only look once) series [12–16], the detection speed is fast, but the
accuracy is low. The SSD (Single Shot Multibox Detector) largely balances the detection speed and accuracy of the single-stage detection algorithm [17]; the
other is the two-stage target detection algorithm, which is based on a pre-generated candidate area to do a secondary correction to obtain the detection result,
the detection accuracy is high, and the detection speed is slow. R-CNN has laid the foundation of the two-stage target detection algorithm based on deep
learning. The algorithm design is ingenious, but the e�ciency is low. Based on R-CNN, He et al. and Girshick et al. proposed the spatial pyramid pooling net
(SPPNet) [18] and Fast R-CNN algorithm [19] in 2015, respectively. The detection speed was improved because these two methods only need to send the
image into the depth network once. The Faster R-CNN proposed by Ren et al. added a region proposal network (RPN) on the basis of Fast R-CNN, which
improved the network computing speed [20]. Dai et al. proposed a region based fully convolutional network (R-FCN), which improved detection accuracy
through the use of location-sensitive score maps [21]. The Cascade R-CNN algorithm proposed by Cai et al. improved the Faster R-CNN algorithm by
cascading multiple detection heads [22]. In order to identify targets of different scales, Girshick et al. proposed a feature pyramid network (FPN), which
constructed a feature pyramid through the multi-scale pyramid inherent in a deep convolutional network, and realized the construction of high-level semantic
feature maps at all hierarchical scales [23].

With the successful application of deep learning in the �eld of image target detection, more and more deep learning methods are applied to the surface defect
detection of solar cell [24]. Chen et al. designed a visual defect detection method based on multispectral deep convolution neural network (CNN) [25], Zhang et
al. made a complementary fusion of Faster R-CNN and R-FCN model, and proposed a solar cell surface defect detection algorithm fused with multi-channel
CNN [26]. In view of the characteristics of solar cell surface defects with diverse shapes, large scale changes, subtle features, similar to the background, and
di�cult detection, this paper takes Faster R-CNN as the baseline model, and proposes a solar cell surface defect detection algorithm based on similarity non-
maximum suppression mechanism. The proposed algorithm has improved the network structure according to the characteristics of CNN, so that it can use
different sizes of receptive �elds for targets of different scales while detecting low-level and high-level features, thus effectively improving the network
performance and test results. The speci�c contributions are summarized as follows:

(1) The use of cross-layer connections in Resnet [27] effectively improves the utilization of features, but downsampling and pooling operations easily lead to
damage to image features and increase the amount of network parameters. In this paper, a cross-layer connection based multi-feature fusion network
(CCMFN) is proposed. In the feature extraction stage, a cross-layer connection based on shu�e operation is introduced. Adding shu�e operation before
feature map fusion can adjust the size of the image without destroying the features of the input image and without increasing the complexity of the operation.

(2) In the detection methods based on Faster R-CNN, the features output from a �xed convolutional layer are often used to characterize the defects of different
morphologies and scales, and the detection effect is not good. The proposed algorithm improves the RPN network used to generate candidate boxes in Faster
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R-CNN, adding three-branch dilated convolution (TDC) block. By adjusting the dilation factor, the convolution kernel can obtain different receptive �elds, the
defect features of different scales can be better learned, the more accurate and applicable candidate boxes can be extracted by RPN.

(3) The candidate box screening strategy of Faster R-CNN is the non-maximum suppression (NMS) mechanism, which uses the intersection over union (IOU)
between two candidate boxes to evaluate their relationship. This evaluation criterion only considers the overlapping area between two candidate boxes, and
cannot fully describe the overlapping relationship of bounding boxes. In order to make the candidate box screening strategy more suitable for solar cell defect
detection, this paper proposes a similarity non-maximum suppression (S-NMS) mechanism to improve the effectiveness of prediction box screening by
introducing the cosine similarity of candidate box aspect-ratio.

2 Faster R-cnn
As a target detection scheme based on CNN, Faster R-CNN mainly solves two problems: �rst, the RPN is used to quickly generate candidate regions; second,
the RPN and Fast-RCNN networks share parameters through alternate training. The original network structure of Faster R-CNN is shown in Fig. 1. For the input
defect detection image, �rstly, feature extraction is performed through VGG, Resnet and other networks to obtain the basic feature map; secondly, the RPN
network is used to generate many regional candidate boxes, and then the candidate boxes are mapped to the last layer of convolutional feature map; �nally,
the fully connected layer is used to classify the target speci�cally and perform accurate bounding box regression.

Due to the existence of a large number of redundant boxes, it is necessary to use NMS for candidate boxes screening after RPN generates many regional
candidate boxes. By removing redundant boxes with high con�dence, the candidate boxes with high-quality are retained for bounding box regression and
classi�cation. According to the target bounding box list and its corresponding con�dence score list, NMS deletes bounding prediction boxes with large overlap
by setting a threshold.

3 Method
In order to make the detection network have better feature extraction capability for solar cell surface defects of different morphologies and different scales,
this paper takes Faster R-CNN as the baseline model, and proposes a network based on multi-feature fusion and S-NMS. The overall framework of the network
is shown in Fig. 2. Firstly, the basic feature map with rich semantic features is obtained by CCMFN. Then, the features of different receptive �elds at different
scales are fully fused by TDC block, and then the candidate boxes are generated. Finally, more accurate detection boxes are screened out by using S-NMS in
the testing phase, which further improves the accuracy of detection. The principles of CCMFN, RPN multi-scale receptive �eld fusion network, and S-NMS
modules are described below, respectively.

3.1 Cross-layer connection multi-feature fusion network (CCMFN)
Aiming at the characteristics of extremely small surface defects of solar cells, high similarity with background, high detection di�culty and low regression
accuracy, this paper proposes CCMFN. The network structure diagram and network visualization �ow chart are given in Fig. 2(B1) and (B2), respectively. The
images to be detected are input into the pre-training model, and the main feature maps containing defective parts are obtained after passing through VGG16
and Resnet101 networks, respectively. In order to effectively preserve the effective features of different layers of the network and avoid the problem of gradient
disappearance and degradation caused by the deepening of the network, the idea of identity in Resnet is introduced in this paper. The features of the second
and third layers of the network are extracted, converted into features of the same size as the features of the �fth layer by Shu�e operation, and cascaded.
Then, the dimension is reduced by 1×1 convolution, and the basic feature map is �nally obtained. In the process of adjusting the size of the feature map, the
shu�e operation not only retains the information of different scales, but also does not introduce additional parameters, which greatly speeds up the running
speed of the network. The design retains the shallow detailed texture information and the deep rich semantic information without increasing the network
operation cost, which effectively improves the regression accuracy and detection accuracy of the network.

3.2 RPN multi-scale receptive �eld fusion network
In Faster R-CNN, after the basic feature map is input to RPN, a 3×3 convolutional layer is �rst used for further feature fusion, and then the candidate boxes are
generated. According to the study in literature [28], the detection performance of the network on targets with different scales is greatly affected by the receptive
�eld, and the size of the target has a strong correlation with the appropriate receptive �eld. In general, the deeper the network level, the larger the receptive �eld,
and the stronger the ability to handle large targets. The shallower the network level, the smaller the receptive �eld, and the stronger the ability to handle small
targets.

The three types of defects in the solar dataset have subtle morphology and low discriminability, and the scales of defects of the same type are inconsistent. In
order to extract features of different scales more comprehensively, this paper designs a RPN feature fusion network composed of TDC blocks. The structure is
shown in Fig. 2(C). The single-scale feature images are taken as input, and the Resnet structure shown in Fig. 3 is taken as an example, in a single residual
block of the bottleneck layer, a feature map of a speci�c scale is created through parallel branches, and different dilation rates are used in the 3×3
convolutional layer to form different receptive �eld branches, the branch with large receptive �eld extracts large-scale defect features, the branch with small
receptive �eld extracts small-scale defect features, and different branches adopt the same structure and share weights. In addition, the use of zero-padding on
the convolution kernel enables the network to achieve an increase in the receptive �eld without increasing the network computation.

3.3 Similarity non-maximum suppression (S-NMS)
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In Faster R-CNN, after the network generates a large number of region candidate boxes through RPN, NMS is used as a post-processing algorithm to remove
the redundant boxes so that the network performance can strike a balance between recall rate and precision. The traditional NMS algorithm is based on a pre-
set threshold, which deletes the detection results that are larger than the threshold, otherwise keeps them. If the threshold is reduced to a certain level, the false
positive rate will increase. However, when the evaluation is performed with a high overlap threshold, the lower scoring detection boxes are completely removed
so that the false detection rate increases, which in turn leads to a decrease in the average precision measured over a range of overlapping thresholds. The later
improvements are all made for the case of target crowding and occlusion [28, 29], while there is no occlusion in the solar cell surface defects used in this
paper, but there is a dense phenomenon of targets in part. In order to further improve the detection accuracy and precision, this paper proposes the S-NMS
criterion based on the cosine similarity of candidate box aspect-ratio.

In the testing process, for the set B of each category containing the initial prediction box, the classi�cation execution degree S corresponding to each
prediction box is ranked from high to low, and then the highest score m and its corresponding prediction box Bm are deleted from set B and placed in the
empty set D. Calculate the IOU value and the cosine similarity sim(X,Y) between the remaining prediction box and Bm in set B in turn, and add the IOU value
and the cosine similarity of diagonal sim(X,Y) to get Ω. If Ω exceeds the set threshold Nt, the corresponding prediction box will be deleted, otherwise, it will be
put into set D. The above process is repeated until the set B is empty, and the input list is returned.

The S-NMS method improves the screening accuracy of the traditional NMS algorithm by introducing the prediction box similarity as another criterion in the
threshold criterion, which in turn improves the detection accuracy and classi�cation accuracy of the network.

4 Experimental Results And Analysis
In order to effectively evaluate the performance of the solar cell surface defect detection algorithm proposed in this paper, the same solar cell surface defect
PASCAL VOC2007 format dataset as in the literature [26] is used for the experiments. The dataset contains 1461 images with defects and 1 image without
defects, and the image resolution is approximately 5232×2720. In this paper, the dataset is expanded to 2687 images with defects by slicing, of which 79
images contain only broken cell defects, 1760 images contain only crack defects, 379 images contain only unsoldered area defects, and 469 images contain
mixed defects. The images in the dataset are randomly selected to form three sets, the training set consists of 2383 images, the validation set consists of 149
images, and the test set consists of 155 images. The speci�c composition of the datasets is shown in Table 1. The images in this dataset contain 215 broken
cell defects, 4974 crack defects, and 961 unsoldered area defects, with a total of 6150 defects. The speci�c distribution of each type of defect in the three
datasets is shown in Table 2.

In this experiment, Faster R-CNN is used as the baseline model, VGG16 and Resnet101 are used as the backbone network for training, and then the images in
the test set are input to the model, and the categories and localization boxes of the defects in the test images are �nally output by identifying and locating the
three types of defects. The network parameters during training are set as follows: Batch_size is 6, Base lr is 0.001, weight decay and momentum factor are
0.0005 and 0.9, respectively, and the maximum number of iterations N is 100 [20]. The test environment is as follows: a 64-bit Linux system with a CPU of
model i7-9700KF and a GPU of GTX2080 (11G video memory) for acceleration, and the algorithm is implemented using the pytorch deep learning platform.
The comparison algorithms used in the experiments of this paper are: yolo v3 [14], yolo v5 [16], FPN [23], Cascade R-CNN [22], R-FCN [21], and Faster R-CNN
(divided into VGG16 and Resnet101 as the backbone network) [20].

Table 1
The speci�c composition of the datasets

Datasets Broken cell Crack Unsoldered area Mixed Total number

Training set 64 1571 319 429 2383

Validation set 5 94 30 20 149

Test set 10 95 30 20 155

Total number 79 1760 379 469 2687

Table 2
Distribution statistical table

Datasets Broken

cell

Crack Unsoldered area Total number

Training set 100 2312 403 2815

Validation set 15 261 62 338

Test set 100 2401 496 2997

Total number 215 4974 961 6150

4.1 Visual effect analysis
Figure 4 gives the enlarged images of the detection results of solar cell surface defects at the same location by Faster R-CNN and the proposed method, A and
B are the enlarged images of the local detection results of Faster R-CNN with VGG16 as the backbone network and the proposed method, respectively, C and D
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are the enlarged images of the local detection results of Faster R-CNN with Resnet101 as the backbone network and the proposed method, respectively. It can
be seen that the detection result of Faster R-CNN with VGG16 as the backbone network in Fig. 4A(1) has the problem of misdetection, and the bounding box is
larger compared with the defect size. The detection result of the proposed algorithm is shown in Fig. 4B(1), the position marked by the bounding box is more
accurate under the condition of obtaining the same con�dence. Comparing Fig. 4C(1) with Fig. 4. D(1), it can be found that the location marked by the
bounding box of the detection result of the proposed algorithm is more accurate and the con�dence is higher. Observing the second row of Fig. 4, it can be
seen that the detection results of Faster R-CNN in Fig. 4A(2) and Fig. 4C(2) have the problems that the bounding box does not completely cover the defect
location and the bounding box is large, respectively. Figure 4B(2) and Fig. 4D(2) show the detection results of the proposed algorithm, it can be seen that the
location of the bounding box is more accurate. Comparing Fig. 4A(3) with Fig. 4B(3), it can be found that the detection results of the proposed algorithm have
a slight advantage in predicting the location. In Fig. 4C(3), the detection result of Faster R-CNN with Resnet101 as the backbone network has the problem of
missed detection, while the detection results of the proposed algorithm in Fig. 4D(3) accurately detect 3 crack defects, and the position marked by the
bounding box is more accurate. On the whole, the proposed method has advantages in both the accuracy of the predicted location and the con�dence of the
detection results.

Figure 5 presents a comparative analysis of the bounding box regression accuracy for four types of defects, namely, broken cell defects, crack defects,
unsoldered area defects and mixed defects. Comparing the bounding boxes for each type of defect obtained by yolo v3, yolo v5, FPN, Cascade R-CNN, R-FCN,
Faster R-CNN and the proposed algorithm with the ground truth bounding boxes. As shown in Fig. 5, the real boxes are shown in the last column, which are
indicated in blue. Figure 5a shows the local enlargement of the bounding box for the broken cells of different detection models. Comparing the real box, it can
be concluded that yolo v3, FPN, Cascade R-CNN, and Faster R-CNN all detect broken cell defects, but the regression error is larger, and the IOU value between
the bounding box of broken cell defect and the real box is lower, yolo v5 and R-FCN have higher detection accuracy, and the proposed algorithm has better
performance, especially the proposed method with Resnet101 as the backbone network, which ensures higher regression accuracy. Figure 5b shows the local
enlargement of the bounding box for cracks of different detection models, and it can be seen from the �gure that Cascade R-CNN fails to detect the crack
location accurately, while other methods detect the crack location, and the regression accuracy of R-FCN and the proposed algorithm is higher and the error is
smaller. Figure 5c shows the partial enlargement of the bounding box for unsoldered areas of different detection models. It can be seen that the Cascade R-
CNN bounding box is too small or fails to detect the unsoldered area location completely, and the FPN bounding box is too large, while the other methods
detect the unsoldered area location more accurately, and the proposed algorithm has higher regression accuracy. Figure 5d shows the local enlargement of the
bounding box for mixed defects of different detection models. Observing the �gure, we can see that yolo v3, yolo v5 and Cascade R-CNN have high miss
detection rate, R-FCN and the proposed algorithm have high regression accuracy, and the proposed algorithm has the best effect. In summary, the analysis
shows that in the comparison of the regression accuracy of the four types of defective bounding boxes, the proposed algorithm can not only accurately detect
the defects present, but also ensure a high regression accuracy of the bounding boxes, especially, the proposed algorithm with Resnet101 as the backbone
network has the best effect.

4.2 Quantitative analysis
To further quantitatively compare the performance of the algorithms, this subsection uses yolo v3, yolo v5, Cascade R-CNN, R-FCN, FPN and Faster R-CNN as
the compared algorithms for the experiments (the backbone networks used by each algorithm are shown in Table 3). Table 3 shows the defect detection
results statistics of different algorithms on the same solar dataset. The detection accuracy of each algorithm on 677 graphs was randomly selected from the
experimental results, and the algorithms were analyzed for the number of correct detections (Accurate), the number of false negative (FN), the number of false
positive (FP), the accuracy of the three types of defects (Accuracy), false negative rate (FNR), and false positive rate (FPR). As can be seen from Table 3, in the
detection results of broken cell defects, the FNR of the proposed algorithm based on both backbone networks are 0, and the Accuracy of the proposed
algorithm based on Resnet101 network is the highest and the FPR is the lowest. In the detection results of crack defects, the Accuracy of the proposed
algorithm based on both backbone networks are the highest and the FNR are the lowest, and the FPR of the proposed algorithm based on Resnet101 network
is only 0.3% higher than that of Faster R-CNN with the best effect. In the detection results of unsoldered area defects, the proposed algorithms based on two
backbone networks have the lowest FNR, and the proposed algorithm based on Resnet101 network has the highest Accuracy and the lowest FPR, which is the
same as yolo v3, both of which are 0.97%.

In addition, this paper analyses the detection effects of different algorithms on the surface defects of the single solar cell image. yolo v3, yolo v5, Cascade R-
CNN, R-FCN, FPN, Faster R-CNN and the proposed algorithm are used to detect the test set images, and the detection results are shown in Table 4. The mean
average precision (mAP), which is an important index to evaluate the detection performance, is shown in the last column in Table 4. It can be seen that the
proposed algorithm based on the Resnet101 backbone network has the highest mAP value, which is 6.69% higher than that of the yolo v3 algorithm with the
lowest mAP value. Compared with Faster R-CNN, the mAP values of the proposed algorithm based on two backbone networks are increased by 2.89% and
0.83%, respectively. Overall, the proposed algorithm greatly improves the detection performance on the surface defectsof the solar cell.  
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Table 3
The defect detection statistical results of different defect models

  Methods Yolo v3 Yolo v5 Cascade R-
CNN

R-FCN FPN Faster R-CNN Proposed Method

Backbone
networks

DarkNet Focus + 
CS

detnet59 Resnet101 Resnet101 Vgg16 Resnet101 Vgg16 Backbone
networks

Broken cell Accurate 69 79 67 76 78 75 85 Broken cell Accurate

FN 17 4 16 0 0 0 1 0 FN

FP 4 7 7 14 12 15 4 10 FP

Accuracy(%) 76.7 87.8 74.4 84.4 86.7 83.3 94.4 88.9 Accuracy(%)

FNR(%) 18.9 4.4 17.8 0 0 0 1.1 0 FNR(%)

FPR(%) 4.4 7.8 7.8 15.6 13.3 16.7 4.4 11.1 FPR(%)

Crack Accurate 209 242 194 243 255 236 259 Crack Accurate

FN 62 22 75 14 18 12 16 6 FN

FP 7 14 9 21 5 30 3 7 FP

Accuracy(%) 75.2 87.0 69.8 87.4 91.7 94.9 93.2 95.3 Accuracy(%)

FNR(%) 22.3 7.9 26.98 5.03 6.5 4.3 5.8 2.2 FNR(%)

FPR(%) 2.5 5.03 3.24 7.55 1.8 10.8 1.1 2.5 FPR(%)

Unsoldered
area

Accurate 252 286 266 271 283 252 292 Unsoldered
area

Accurate

FN 54 16 38 16 11 4 8 3 FN

FP 3 7 5 22 15 53 9 23 FP

Accuracy(%) 81.5 92.5 86.1 87.7 91.6 81.5 94.5 91.6 Accuracy(%)

FNR(%) 17.5 5.2 12.3 5.2 3.6 1.3 2.6 0.97 FNR(%)

FPR(%) 0.97 2.3 1.6 7.1 4.9 17.2 2.9 7.4 FPR(%)

 

Table 4
The mAP values of different defect model

Methods Backbone networks Brokencell Crack Unsoldered area mAP(%)

Yolo v3 DarkNet 83.60 79.80 90.30 84.50

olo v5 Focus + CSP 88.00 81.60 98.50 89.40

Cascade R-CNN detnet59 90.90 90.57 90.81 90.76

R-FCN Resnet101 89.26 88.69 89.42 89.12

FPN Resnet101 90.41 89.91 89.76 90.03

Faster R-CNN Vgg16 86.34 84.21 89.17 86.57

Resnet101 90.41 90.47 90.19 90.36

Ous Methods Vgg16 90.06 88.74 89.59 89.46

Resnet101 91.33 91.29 90.94 91.19
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Table 5
Statistical table of test time of different modules

Methods Total test time(s) Average test time per image(s)

Faster R-CNN 520.113 0.768

Faster R-CNN + ACMFN 883.545 1.305

Faster R-CNN + TDC 550.403 0.813

Faster R-CNN + S-NMS 378.448 0.559

Ours Method 557.872 0.824

To evaluate the detection real-time performance of the proposed algorithm, the new network formed by Faster R-CNN combined with each module method in
this paper and the overall network of the proposed algorithm are respectively tested on 677 test images. As shown in Table 5, the total test time and the
average test time of each image are compared. It can be seen that, based on the Faster R-CNN method, the total test time increased by about 70% compared
with the original method after the CCMFN is superimposed separately; the total test time is only about 6% longer than the original method after superimposing
the TDC block alone; after superimposing the S-NMS alone, the total test time is only 73% of the original method due to the reduction of a large number of
redundant prediction boxes. However, after all the above modules are superimposed in proposed method, the average test time per image is only increased by
0.056s compared with the original method. It can be seen that the proposed algorithm meets the real-time detection requirements.

4.3. Ablation experiment
To verify the feasibility and effectiveness of the various strategies adopted in the proposed algorithm, ablation experiments are carried out. Figure 6 verify the
effectiveness of the S-NMS strategy from visual perspectives. Figure 6 compares the visual effects of the partially enlarged images of the bounding box for
many defects before and after using the S-NMS strategy in the Faster R-CNN network. By comparing the two rows of enlarged images, it can be clearly seen
that the redundant boxes and false detection boxes are both reduced after adding the S-NMS strategy, and the prediction con�dence is further improved while
retaining the more accurate detection boxes. It can be concluded that the S-NMS strategy used in the proposed algorithm effectively improves the detection
accuracy of solar cell surface defects.

Table 6
The mAP values statistics of different network module

Backbone
networks

Vgg16 Resnet101

ACMFN     √ √     √ √     √ √     √ √

TDC         √ √ √ √         √ √ √ √

S-NMS   √   √   √   √   √   √   √   √

mAP(%) 86.19 86.57 88.43 88.60 88.37 88.59 89.29 89.46 90.36 90.40 90.68 90.71 90.59 90.63 91.17 91.19

In order to further verify the effectiveness of the three modules of CCMFN, TDC and S-NMS, the different modules are added to the Faster R-CNN model with
VGG16 and Resnet101 as the backbone networks, respectively, and their mAP values are calculated in this paper, and the experimental results are shown in
Table 6. It can be seen from the mAP value statistics table that the mAP values of the models based on the two backbone networks have been improved to
varying degrees when the above three modules are added individually or jointly. When the modules are added individually, the largest mAP value improvement
was obtained for the CCMFN module and the smallest improvement was obtained for the S-NMS module. when the three modules were used simultaneously,
the largest mAP value improvement was obtained with an improvement of 3.27% and 0.83%, respectively. The above analysis shows that each module plays
an important role in the improvement of network performance, and the three modules used together have the best effect, which veri�es the feasibility and
effectiveness of the three strategies adopted in the proposed algorithm.

5 Conclusion
Aiming at the di�culty of detecting solar cell surface defects due to the small defects, various forms, and large scale changes, this paper extracts multi-scale
solar defect target features from different feature layers based on the Faster R-CNN. The convolutional layers with different receptive �elds are further used for
feature extraction and fusion. The NMS evaluation criteria is redesigned, and the cosine similarity is introduced into the candidate box aspect-ratio similarity,
which greatly improves the detection performance of the network. The experimental results show that, compared with the latest deep learning target detection
models, the proposed model not only has higher detection accuracy, but also has lower probability of false detection and missed detection in various types of
defects detection.
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Figures

Figure 1

Faster R-CNN structure
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Figure 2

Overall network structure

Figure 3

Three-branch Dilated Convolution (TDC)

Figure 4

Partial enlarged images of the defect detection results obtained using Faster R-CNN and our method
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Figure 5

a Partially enlarged images of the bounding box for brokencells of different defect models

b Partially enlarged images of the bounding box for cracks of different defect models

c Partially enlarged images of the bounding box for unsoldereds of different defect models

d Partially enlarged images of the bounding box for mixed defects of different defect models

Figure 6
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Partially enlarged images of the bounding box for many defects of NMS and S-NMS


