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Abstract
Despite its projected crucial role in stringent, future global climate policy, non-CO2 greenhouse gas
(NCGG) mitigation remains a large uncertain factor that has received relatively little scienti�c attention. A
revision of the estimated mitigation potential could have massive implications for the feasibility of global
climate policy to reach the Paris Agreement climate goals. Here, we provide a systematic bottom-up
estimate of the total uncertainty in NCGG mitigation, by developing “optimistic, default and pessimistic”
long-term non-CO2 marginal abatement cost (MAC) curves. The global 1.5-degree climate target is found
to be out of reach under pessimistic MAC assumptions, as is the 2-degree target under high emission
assumptions. MAC uncertainty translates into a large projected range in (all in a 2-degree scenario)
relative NCGG reduction (40–58%), carbon budget (± 120 Gt CO2) and policy costs (± 16%). Partly, the
MAC uncertainty signi�es a gap that could be bridged by human efforts, but largely it indicates
uncertainty in technical limitations.

Introduction
Roughly one-third of present-day global warming can be attributed to non-CO2 greenhouse gases
(NCGGs), such as methane (CH4), nitrous oxide (N2O) and �uorinated greenhouse gases (HFCs, PFCs, SF6

and NF3) [4]. Correspondingly, reaching ambitious climate targets also requires deep reductions of these
gases [5, 6]. Reducing NCGG emissions as part of a mitigation strategy can have substantial bene�ts,
including 1) cost reductions [1,7,11-16], 2) rapid impacts on temperature (given the short lifetimes of
some NCGGs [8], and, 3) substantial health bene�ts, as several gases are also air pollutants [17].
Nevertheless, most attention in climate policy analysis has been paid to CO2, given its large share in
overall emissions [18]. 

Global climate change mitigation research relies heavily on integrated assessment models (IAMs)[20].
For projected NCGG mitigation, these IAM models almost universally use NCGG marginal abatement cost
(MAC) curves. These are region- and source-speci�c datasets used in climate policy research and
scenario development to estimate emission reduction potentials and costs. Comprehensive sets of long-
term MAC curves are rarely produced, and many models use relatively old information [19, 21]. Moreover,
IAMs typically use only “one” middle-of-the-road estimate. Therefore, the inherently high uncertainty and
possible large consequences for climate policy are largely unknown or at least hidden in most climate
change mitigation scenarios. 

This study aims to understand the uncertainty in the mitigation potential of emissions from all major
NCGG emission sources and the implications for climate policy feasibility, strategies and costs. For this,
we develop “optimistic”, “pessimistic”, and default NCGG MAC curves based on the most recent literature,
representing the uncertainty range in relative emissions reductions. We subsequently assess the
implications of the MAC curve uncertainty in meeting the objectives of the Paris Agreement using the
IMAGE 3.2 integrated assessment model [2, 3]. By varying assumptions on human activities, this setup
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also allows an assessment of the impact of human activities on overall uncertainty, next to the
implications from technical uncertainty represented by the MACs. 

The MACs represent all major emitting sectors: agriculture, industry, waste and fossil fuel production. (see
methods and supplement S1). They have been developed using the method by ref. [1] but complemented
with uncertainty ranges and the inclusion of an additional approx. 120 recent studies on mitigation
measures. The MAC uncertainty analysis is performed with the most detail for the agricultural sources
since 1) these are hardest to abate (and thus most relevant in stringent climate scenarios) [21], 2)
mitigation potentials are most uncertain, and 3) can be based on the fully bottom-up approach by [1],
with quantitative estimates for all underlying parameters. The agricultural MACs are built-up from
quantitative components, representing 1) reductions when measures can be applied, 2) technical
applicability, 3) non-technical implementation barriers, 4) technological progress, 5) correction for overlap
between measures and 6) costs (See Methods and supplement S2). For each component, uncertainty
ranges have been estimated, where possible, based on the most recent literature. In a Monte Carlo (MC)
simulation, these input parameters have been varied to determine the lower and upper bounds of the
overall relative reduction potential per emissions source. For all non-agricultural sources, uncertainty has
been estimated by deriving source-speci�c maximum reduction potentials from literature and expert
insights from the GAINS research group [22, 23] (see Methods and supplement S6). A full MC analysis is
not possible for these sources, since most values of the underlying parameters are unknown, as the short-
term MAC data is based on external databases. However, reduction potentials for non-agriculture sources
are generally higher than for agriculture sources, implying lower uncertainty and lower residual emissions
in stringent climate scenarios [21]. All MAC curves are available for further research (including model-
based analysis). See supplement “Data_MAC_CH4N2O”.

Scenario analysis. The MAC curves have been used as an input to IMAGE in conjunction with Shared
Socio-economic Pathway (SSP) based scenario assumptions [34]. The scenarios are described in Table
1. The core set to assess the implications of the MAC uncertainty is based on SSP2, a scenario with
middle-of-the-road socio-economic and technological development assumptions. The scenarios are set to
reach a 1.5- and 2-degrees Celsius target in 2100 (represented by 2.0 W/m2 and 2.6 W/m2 radiative
forcing targets) under optimistic, default and pessimistic NCGG MAC assumptions (i.e., with high (H),
medium (M) and low (L) reduction potentials, respectively). The mitigation scenario implications are
compared to a no climate policy baseline (Base). Pre-2100 temperature overshoots are allowed.

In addition, the analysis includes two additional SSP scenarios (in a 2-degree case) to assess the
additional uncertainty due to human activities: SSP1 and SSP3, with low and high GHG-emitting
activities, respectively (see methods for underlying scenario assumptions). SSP1 is combined with
optimistic MAC assumptions (H) and SSP3 with pessimistic assumptions (L) to represent the extremes in
NCGG emissions. The goal of the scenario analysis is to analyze the effect of MAC uncertainty and
uncertainty in human NCGG emitting activities on:

Feasibility of scenarios
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NCGG emission reductions (total and source-speci�c)

Climate policy costs 

Remaining global carbon budgets, i.e., the need for CO2 mitigation

The scenarios used to assess uncertainty in GHG-emitting activities (2H_SSP1 and 2L_SSP3) have only
been used for the feasibility and carbon budget calculations. Policy costs and NCGG reduction are not
directly comparable due to different cost and baseline emission assumptions.

Table 1: Scenario setup

Scenario NCGG MAC reduction
potential

Human GHG-emitting
activities

Radiative forcing target 2100
(W/m2)

Base n.a. Medium (SSP2) n.a. *
2H High / Optimistic Medium (SSP2) 2.6
2M Medium  Medium (SSP2) 2.6
2L Low / Pessimistic Medium (SSP2) 2.6
1.5H High / Optimistic Medium (SSP2) 2.0
1.5M Medium Medium (SSP2) 2.0
1.5L ** Low / Pessimistic Medium (SSP2) 2.0
       
2H_SSP1 High / Optimistic Low (SSP1) 2.6
2L_SSP3
**

Low / Pessimistic High (SSP3)  2.6 

* No target set. Default SSP2 baseline settings lead to a forcing level of 6.0 – 6.2 W/m2

** Infeasible scenarios (see Results)

Results
Literature study agricultural measures. The goal of the literature study has been to include recent case
studies on agricultural measures to the former dataset [1] by collecting information on reduction
e�ciencies (RE), technical applicability (TA) and costs. RE represents the relative emission reduction
when a measure is applied. TA represents the share of the baseline emissions where a measure can be
applied. Table 2 gives an overview of the included measures and associated RE values (supplement S4
includes a table with all emission sources and a description of the measures and assumptions for all
emission sources). Several agricultural sources included in [1] have been excluded here because they are
implicitly part of other measures or con�ict with them (CH4 enteric fermentation: Improved milk
production, extended productive life and for N2O fertilizer: fertilizer free zone, sub-optimal fertilizer
application). The following additional measures have been included in this study: for CH4 enteric
fermentation: Seaweed asparagopsis taxiformis as a feed supplement (optimistic case only); for CH4

manure: solid-liquid separation; for N2O fertilizer: Biochar (optimistic case only), no-tillage, irrigation
practices, and for N2O manure: Anaerobic digestion and manure acidi�cation.
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Table 2: Included agricultural reduction measures, associated reduction efficiencies (when fully applied) and
underlying literature

  Measures Range in reduction
efficiencies (%)

References reduction
efficiencies

CH4 - Enteric
fermentation

Addition of nitrate to the feed 21-42  [36-43]
Genetic selection and breeding 8-31

 
[44-48]

Adding tannins as a food supplement 10-32 [49-53]
Grain processing 10-38 [51, 54-56]
Improved health monitoring and
illness prevention

4-20 [47, 57-59]

Seaweed (Asparagopsis taxiformis) 12-99.5 [60-65]
CH4 - Rice
production 

Rice straw mitigation 26.5-61 [66-71]
Direct seeding 16.6-47 [66, 70, 72-74] 
Replacing urea with ammonium
sulphate

14.18-42 [66, 70, 75, 76]

Addition of phosphogypsum 28-86 [66, 70, 77-80]
Alternate flooding and drainage 18.8-79 [37, 50, 54, 55, 65, 66, 68-

80][81-88]
CH4 - Manure Manure acidification 61-98 [51, 69, 89-93]

Anaerobic digestion 25-75 [66, 94-96]
Solid-liquid separation 46-81 [94, 95]
Manure storage: duration 38-76 [97]
Housing systems and beddings 4-96 [36, 51, 98-102]
Manure storage covering 0-90 [36, 51, 91, 103]

N2O - Fertilizer  Nitrification inhibitors 17-60 [30, 36, 104-114]
Improved land manure application 5-50 [111, 115-119]
Irrigation practices 15-67 [120-123]
Biochar 14-38 [124-127]
Spreader maintenance  22-42 [15, 66, 128, 129]
Improved agronomy practices  14-54 [119, 130-135]
No-tillage 25-48 [136-140]

N2O- Manure Reduced dietary protein 0-52 [51, 141-145]
Decreased manure storage time 35-35 [51]
Manure storage covering 30-75 [36, 51]
Improved animal housing systems
and bedding

9-88 [36, 98, 100, 101]

Anaerobic digestion 34-75 [96, 146, 147]
Acidification 0-96 [148-153]

 

Next to collecting data on RE values (Table 2), the literature study also contributed to updating the default
assumptions for the components TA [154, 155] and costs [57, 66, 67, 17, 119, 156-163]. Supplement
S5 provides an overview of all input values to the Monte Carlo analysis. 
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Optimistic / default / pessimistic MAC curves. The “optimistic”, default and “pessimistic” MAC curves
have been developed for all major NCGG sources for 26 world regions and the 2020-2100 period (See
supplement “Data_MAC_CH4N2O”). Figure 1 shows the MAC curves for the �ve agricultural sources
(example: Western Europe). See supplement S8 for an overview of the non-agricultural MACs (CH4 and
N2O). As the approach and part of the data were similar to those used in Harmsen et al., 2019 [1], it is
relevant to compare the maximum reduction potentials (MRPs) of the MACs in both studies (see also
supplement S7 with an MRP comparison for all sources in 2050 and 2100). For the agricultural sources,
the Harmsen et al., 2019 [1] default estimate is generally found between this study’s default and
optimistic value, i.e., that this study’s default reduction potential is generally somewhat lower. N2O
emissions from manure form an exception with a slightly higher MRP due to newly included measures.
This is mainly the result of the Monte Carlo approach used in this study, where lower implementation and
technical applicability values are included in the solution space. For CH4 rice, recent studies also indicate
a lower reduction e�ciency. Further, this study assumes a higher overlap between CH4 manure measures.

Climate targets are out of reach under pessimistic assumptions. Of the scenarios described in Table 1,
both 1.5L and 2L_SSP3 have proven to be infeasible. This implies that under pessimistic NCGG
mitigation assumptions, the 1.5-degree climate target cannot be reached, despite maximum climate
policy efforts. Further, the combination of high GHG-emitting activities (SSP3-based) and a low NCGG
mitigation potential would even keep the 2-degree climate target out of reach. Figure 2 shows the results
from the scenario exercise. Optimistic NCGG assumptions (indicated in light green) correspond with high
NCGG reductions, lower policy costs and higher carbon budgets, with opposite relations under pessimistic
assumptions (indicated in orange). 

Range in NCGG reduction. Unsurprisingly, MAC uncertainly results in considerable ranges in projected
NCGG reductions (panel a). This is indicated by the range under the same (SSP2) baseline assumptions,
with (in relative difference with a no climate policy baseline in CO2 equivalents) 40% to 58% in the 2-
degree case and 54%-65% in the 1.5-degree case. Net NCGG reductions only provide an overall indication
because of the policy-dependent choice of GWP metric (here: AR4 GPW100) to convert NCGG emissions to
CO2 equivalents. Supplement S9 gives the source-speci�c relative and absolute reductions. Methane
mitigation is the main contributor to total NCGG reduction (in 2100: 45-51%), followed by HFCs (31-38%),
N2O (13-17%) and small contributions of SF6 (1.7%) and PFCs (0.5%). In all mitigation scenarios, total F-
gases are reduced by more than 90% in 2100, leaving most of the uncertainty with CH4 and N2O.[1] An
average 57% of total CH4 reductions is realized in fossil energy. However, the scenario differences are
largely de�ned by differences in projected agriculture emissions. This is also the case for N2O where 90%
of the emissions are produced in agriculture. The optimistic MAC scenarios favor early-century NCGG
mitigation, due to its lower-cost, high mitigation potential. While this does not result in notable climatic
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differences in the 2-degree scenarios, the optimistic 1.5-degree scenario is found to have a 0.04-0.05
degree C lower mid-century peak temperature than the default 1.5 case (not shown).

Climate policy costs. Global climate policy costs (Figure 2, panel b) strongly depend on the availability of
NCGG mitigation options. When low-cost options are exhausted, climate targets can only be met by
“moving up the MAC curve”. This is indicated by the 32% difference in cost between the pessimistic and
optimistic 2-degree scenarios and a 59% difference between the default and optimistic 1.5-degree
scenarios, where nearly all options need to be applied. Although the absolute policy costs are highly
uncertain (here, estimated at roughly 1% - 1.5% of global GDP), the relative scenario differences give a
more robust indication of the large implications of NCGG MAC uncertainty.

Carbon budgets. Under equal climate targets, cumulative CO2 emissions need to compensate for
differences in NCGG emissions, which can be expressed in an allowable global CO2 budget for the
remainder of the century (Figure 2, panel C).[2] MAC uncertainty alone translates into a 240 Gt CO2 range
in the carbon budget under 2-degree conditions. Lower (SSP1-based) GHG-emitting activities can increase
this value by a projected 38 Gt. No feasible low-enough carbon budget (i.e., level of CO2 mitigation) can
be found under the high-emitting, low mitigation conditions in 2L_SSP3. MAC uncertainty is projected to
result in a (partial) 73 Gt range in the carbon budget in the 1.5-degree case. The carbon budget estimates
from this study’s bottom-up uncertainty analysis are relatively consistent with top-down analyses of large
scenario ensembles. As part of the IPCC’s 1.5 degree Special Report and more recent 6th Assessment
Report, It has been estimated that uncertainty in future NCGG emissions could affect the global carbon
budget by ±250 Gt CO2 or ±220 Gt CO2, respectively [222, 223]. Here, we �nd a slightly smaller range in a
2-degree case only and with a single model. The large disadvantage of the top-down approach is the
di�culty in distinguishing between factors underlying the range. These could also simply be the
exclusion of emission categories in models or a simpli�ed representation of NCGG emissions, next to
assumptions on activities and mitigation options. Regardless, both the top-down and bottom-up
estimates portray NCGGs as a huge uncertain factor, considering the remaining CO2 budgets of roughly
1000 Gt and 400 Gt in a 2-degree and 1.5-degree case, respectively.

[1] The gas-speci�c uncertainty is also re�ected by differences in the climatic in�uence of individual
gases. The projected (MAGICC6.3-based) difference in high vs. low radiative forcing in a 2-degree case in
2100 is for (in W/m2): CH4: 0.08, N2O: 0.05, F-gases: 0.02.  
[2] The average carbon budgets presented here are lower than in AR6 (1150 and 500 GtCO2, in a 2- and
1.5 degree scenario [222]) due to more conservative de�nitions of the climate targets, re�ected in lower
forcing targets.

Discussion
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This study shows the crucial role that NCGG mitigation needs to ful�ll in future stringent climate change
mitigation scenarios. It also makes clear that uncertainty in future NCGG mitigation implies that we
cannot be con�dent about the feasibility of stringent climate goals. More NCGG mitigation measure
deployment, case studies and research can help in three ways in this respect: 1) It maximizes learning
and thus reduction potentials, while lowering costs 2) It stimulates early action, limiting short-term
climate change and avoiding limitations in longer-term upscaling, and 3) It helps understand the
limitations of NCGG mitigation, leading to more accurate and effective policy strategies.

The MAC curves exclude natural emission sources that can be in�uenced by human in�uence, most
importantly, wetlands. The human-induced GHG emission �uxes (notably from CH4 and CO2) from
wetlands are highly uncertain and could either be net positive or negative [224]. This study also excludes
uncertainties in NCGG atmospheric chemistry and climate effects. For all non-included factors, we
assumed default values, implying that the uncertainty range is larger in both positive and negative
directions, making it likely that NCGG uncertainty has even larger implications for climate policy
feasibility.

Note that the MAC curves solely specify relative reductions at different price levels. They are agnostic
about the likelihood of climate ambitions, which are almost certainly regionally constrained (e.g., lack of
�nance or ceilings on food prices), represented by the carbon price. These constraints can be estimated
exogenously or speci�ed in IAM-based scenario studies. The information in the MACs only represents
climate policy implications. Mitigation measures might not be desirable when including non-climate
socio-economic aspects (e.g., NCGG pricing leading to higher food prices or negative environmental
implications of intensive agriculture). 

The MAC curves should only be used as an uncertainty benchmark and explicitly not as a representation
of high, default and low ambition levels. It would be misleading to present the optimistic or pessimistic
MACs as realistic options that depend on policy choices. To a large degree, the MAC mitigation
uncertainty indicates uncertainty in technical limitations, which cannot be in�uenced by human efforts,
whereas the “human ambition element” should be represented by the carbon price. However, it can be
argued that highly uncertain, “soft” MAC components such as the implementation potential (representing
the level of social barriers) or R&D efforts behind technological progress could allow for some minor
additional gain at high ambition levels. 

Online Methods
The method section is structured in four parts: 1) A description of the system boundaries and the
coverage of global NCGG emissions, 2) An approach to construct the MACs (provided in more detail in
supplement S2), 3) The development of the “optimistic, default and pessimistic” MACs and 4) A
description of the scenario analysis.
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System boundaries
The MAC curves and scenario assessment in this study are based on the emission source categories of
the IMAGE 3.2 model [2, 3], representing all anthropogenic NCGGs. The MAC curves in this study cover
92% of the present-day NCGG emissions and 96% of the projected emissions in 2100 (see supplement
S1). The MAC curves represent potential emission reductions under CO2 equivalent prices up to 4000
$(2005)/tCeq (or 1446 $(2020)/tCO2eq.), the maximum price that is applied in the IMAGE IAM
framework. Emissions and emission reductions are calculated for the 26 global IMAGE regions (see
supplement S3). Regional differences in present-day emission intensities and activities are fully
represented in the scenario assessment. Regional emissions in the base year (2015 to 2020, depending
on the source) are calibrated with data from several detailed databases covering different emissions
sources; CEDS [24], GAINS [23], EDGAR 4.2.3 [25], [26].

Construction of the MAC curves
The MACs are built up from individual source-speci�c measures and assumptions on long-term
developments (See supplement S2 for a more detailed description). The relative reduction potential (RP)
(in %) of each mitigation measure in year t and region r is determined by Eq. 1. The maximum reduction
potential (MRP) (in %) is the maximum relative abatement compared to baseline source emissions when
all source-speci�c measures are implemented (Eq. 2).

With (all in %): TA: Technical applicability, this is the part of the baseline that can technically be covered
by the measure. This is often 100% but can be lower, e.g., if only a sub-process is targeted or if regional
climatic circumstances are unsuitable. RE: Reduction e�ciency, i.e., the relative reduction in case a
measure can be applied, generally based on multiple case studies. IP: Implementation potential
represents (the lack of) non-technical barriers. This is assumed to increase in time due to improved
technology diffusion and policy acceptance. OVcorr: Correction for overlap between measures that target
the same emissions. If a subsequent measure is applied, it has a diminished bene�t due to lower
remaining emissions. Note that this correction increases with time as IP increases (based on [27], see
S2). TP: Technological progress, increase of the reduction potential with time as a result of new or
improved technologies. This is the only factor that is larger than 100% (see S2). Bcorr: Correction for
regional emission reductions that already occur in the baseline scenario, e.g., due to zero or negative cost
measures, such as the use of fugitive CH4 emissions as an energy source, or non-climate policy
reductions, such as from air quality measures. 
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Marginal costs

 

The combination of measures with the highest estimated maximum reduction potential is used to
construct MAC curves. It is assumed that the least costly measures are implemented �rst. When multiple
measures are used, mitigation costs increase due to diminishing returns when measures overlap, with for
any measure x: 

Cost newx = Cost oldx * 1/OVcorrx                            (3)

 

Regional differences

 

Regional differences in mitigation potential are included if these are known. These differences are
re�ected in the parameters: technical applicability, reduction e�ciency, and costs. Partly, these are due to
socio-economic circumstances (e.g., different present-day emission intensities and different levels of
advancements in farming techniques) that can have short-term implications on mitigation potentials.
However, in the case of similar biophysical circumstances across regions, we assume convergence in
mitigation potentials (i.e., in minimum emission intensities) in the long term and at maximum carbon
prices. Where differences in mitigation potentials are known to be caused by biophysical differences,
such as regional temperature, precipitation, geography, etc., this has been taken into account in the form
of quantitative constraints of the components underlying the MACs. In this study, we differentiated
between regions with high, medium and low technical applicability for enteric fermentation and CH4

manure (see supplement S5), based on the GAINS model global CH4 mitigation potentials for livestock in
2030 and 2050 [22]. Regional differences in reduction e�ciency are incorporated in the measure
‘anaerobic digestion’, which has different known impacts in warm and cold environments. Regional
differences in costs are incorporated based on region-speci�c cost assessments (see tables S5.2 and
S5.3).

 

Emission categories

 

The MACs for the agricultural emission sources (CH4 from rice production, CH4 from enteric fermentation
in ruminants, CH4 and N2O from manure, and N2O from fertilizer) have been constructed fully bottom-up,
using the described methodology, as was also used in [1]. Here, we have updated the agricultural MAC
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curves by including (mostly) reduction e�ciency data from ±120 recent studies. For the Monte Carlo
analysis, ranges have been de�ned for all underlying MAC components (see section 2.3). 

All non-agricultural sources are directly based on [1], with only a few, minor modi�cations to the default
values for the maximum reduction potentials (MRPs). For the development of the pessimistic and
optimistic MACs, MRP ranges have been varied, based on literature (see supplement S6). Waste and
industry MACs (CH4 from land�lls/solid waste, CH4 from sewage and wastewater, N2O from adipic and
nitric acid production, N2O from transport, and N2O from domestic sewage), are based on data up to
2030 [28-30] but have added assumptions on the technological progress up to 2100, largely based on
current best practices [1]. Fossil energy MACs (CH4 from coal, oil and gas production) are based on a
dataset from the GAINS model [23, 31] with added long-term (MRP) assumptions on including promising
technologies that are currently not in use on a large scale. The default F-gas MACs (HFCs, PFCs and SF6)
are directly used from [1], including recent calibrations by [26] and [32].  

 

MAC uncertainty range
 

Agriculture: Monte Carlo analysis 
 

The uncertainty analysis for agricultural sources is based on a Monte Carlo (MC) analysis where the
underlying parameters have been randomly varied and subsequently run 1000 times. The outcome of the
MC analysis is a range in relative reductions at all carbon eq. prices between zero and 4000$/tC. The
pessimistic, default and optimistic MACs are based on the 5th, 50th and 95th percentile in reductions for
each carbon price, respectively. 

Each MAC component value within a range is given equal weight (i.e., uniform distribution) (see
supplement S5 for the input values, assumptions and motivation). The minimum and maximum for the
reduction e�ciency (RE) component are based on case studies found in the literature. For each measure,
the highest and lowest outliers were excluded to prevent the distribution from being skewed. The
minimum and maximum of the distributions of the other MAC components are based on a delta value (all
in ±%points, since uncertainty is expected to be equally large at high and low values, except for costs,
which is given in US$ and where absolute uncertainty is expected to be proportional to values) around the
default component value (unless new information was available, this was based on ref. [1]. The default
delta values are (in ±%points): TA(40), OVcorr(30), IP(30), TP(10) (note, this applies to the “diff” term,
explained in S1) and (in ±%): Cost(80). The cost delta value is large because of particularly large
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uncertainty. The values of all components can never be lower than 0 and higher than 100%. Where found
relevant, based on existing literature, the sampling was constrained by technical limits (e.g., a TA value is
never allowed to be higher than 70% if it is known that 30% of the baseline emissions cannot be reduced
by a certain measure).

Non-agricultural sources: range in maximum reduction potentials 
 

The optimistic, default and pessimistic MACs for the non-agricultural sources have been developed by
varying the maximum reduction potentials (MRPs) in 2050 and 2100 and scaling them in intermediate
years. A full MC analysis is not possible for these sources, since most values of the underlying
parameters are unknown, as the short-term MAC data is based on external databases. However, reduction
potentials are generally higher, implying lower uncertainty and lower residual emissions in stringent
climate scenarios [21]. The default MACs are largely equal to those developed by [1], with some small
modi�cations (see supplement S6 for the quantitative assumptions by source). Where known, estimates
of current technical reduction potentials (based on projections by GAINS and US-EPA [12, 22, 33]) were
used as a minimum value for the pessimistic MACs.

 

Scenario analysis
 

The MAC curves have been used as an input to IMAGE 3.2 [2, 3] in conjunction with Shared Socio-
economic Pathway (SSP) based scenario assumptions [34]. The scenarios are described in Table 1. The
core set to assess the implications of the MAC uncertainty is based on SSP2, a scenario with middle-of-
the-road socio-economic and technological development assumptions. In these scenarios, a 1.5- and 2-
degrees Celsius target should be reached in 2100 (represented by 2.0 W/m2 and 2.6 W/m2 radiative
forcing targets), under optimistic, default and pessimistic NCGG MAC assumptions (i.e., with low (L),
medium (M) and high (H) reduction potentials, respectively). The mitigation scenario implications are
compared to a no climate policy baseline (Base). Pre-2100 temperature overshoots are allowed.

In addition, the analysis includes two additional SSP narratives (in a 2-degree case) to assess the
additional uncertainty due to human activities: SSP1 and SSP3, with low and high GHG-emitting
activities, respectively. The underlying scenario assumptions for SSP1 and SSP3 are described in [35]
with included updates [3]. SSP1 is combined with optimistic MAC assumptions (H) and SSP3 with
pessimistic assumptions (L) to represent the extremes in NCGG emissions. The goal of the scenario
analysis is to analyze the effect of MAC uncertainty and uncertainty in human NCGG emitting activities
on:



Page 13/32

Feasibility of scenarios

NCGG emission reductions (total and source-speci�c)

Climate policy costs 

Remaining global carbon budgets, i.e., the need for CO2 mitigation

The scenarios used to assess uncertainty in GHG-emitting activities (2H_SSP1 and 2L_SSP3) have been
used for the feasibility and carbon budget calculations only. Policy costs and NCGG reduction are not
directly comparable due to different cost and baseline emission assumptions.

Table 1: Scenario setup

Scenario NCGG MAC reduction
potential

Human GHG-emitting
activities

Radiative forcing target 2100
(W/m2)

Base n.a. Medium (SSP2) n.a. *
2H High / Optimistic Medium (SSP2) 2.6
2M Medium  Medium (SSP2) 2.6
2L Low / Pessimistic Medium (SSP2) 2.6
1.5H High / Optimistic Medium (SSP2) 2.0
1.5M Medium Medium (SSP2) 2.0
1.5L ** Low / Pessimistic Medium (SSP2) 2.0
       
2H_SSP1 High / Optimistic Low (SSP1) 2.6
2L_SSP3
**

Low / Pessimistic High (SSP3)  2.6 

* No target set. Default SSP2 baseline settings lead to a forcing level of 6.0 – 6.2 W/m2

** Infeasible scenarios (see Results)
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Figure 1

Agricultural MAC curves. Example: Western Europe. Optimistic (green), default (grey) and pessimistic
(orange) MACs represent the 5th, 50th and 95% percentile in a 1000 MAC range. The blue-shaded area
shows the Monte Carlo range. Left panels: 2050, Right panels: 2100. Relative reduction (Y-axis) is relative
to the present-day, global mean emission intensity. CO2 eq. prices (X-axis) are given in 2020$
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Figure 2

Scenario results. NCGG reduction (a) shows reduced Gt CO2 equivalents (based on AR4 100-yr GWP)
relative to baseline (SSP2) with % reductions in bars. Policy costs (b) represent global, �rst-order direct
expenditures as a percentage of global GDP (PPP), discounted over the 2020-2100 period. Discount rate
follows the yearly economic growth, with a Ramsey/Stern function. Carbon budgets (c) represent the net
global CO2 emissions over the 2020 – 2100 period. 2 Degree scenarios: right panels, 1.5-degree
scenarios: left panels



Page 32/32

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

DataMACCH4N2O.xlsx

AgricultureMACMonteCarloTool.txt

SupplementaryInformation.docx

https://assets.researchsquare.com/files/rs-2238789/v1/d1d32165599feddd8c2f3517.xlsx
https://assets.researchsquare.com/files/rs-2238789/v1/1850b1a30f49e9dd9929af88.txt
https://assets.researchsquare.com/files/rs-2238789/v1/0e814e217e13858f731650eb.docx

